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Abstract

Despite the progress in machine translation
quality estimation and evaluation in the last
years, decoding in neural machine translation
(NMT) is mostly oblivious to this and cen-
ters around finding the most probable trans-
lation according to the model (MAP decoding),
approximated with beam search. In this pa-
per, we bring together these two lines of re-
search and propose quality-aware decoding for
NMT, by leveraging recent breakthroughs in
reference-free and reference-based MT evalu-
ation through various inference methods like
N -best reranking and minimum Bayes risk de-
coding. We perform an extensive comparison
of various possible candidate generation and
ranking methods across four datasets and two
model classes and find that quality-aware de-
coding consistently outperforms MAP-based
decoding according both to state-of-the-art au-
tomatic metrics (COMET and BLEURT) and
to human assessments. Our code is available
at https://github.com/deep-spin/
qaware-decode.

1 Introduction

The most common procedure in neural machine
translation (NMT) is to train models using maxi-
mum likelihood estimation (MLE) at training time,
and to decode with beam search at test time, as a
way to approximate maximum-a-posteriori (MAP)
decoding. However, several works have questioned
the utility of model likelihood as a good proxy for
translation quality (Koehn and Knowles, 2017; Ott
et al., 2018; Stahlberg and Byrne, 2019; Eikema
and Aziz, 2020). In parallel, significant progress
has been made in methods for quality estimation
and evaluation of generated translations (Specia
et al., 2020; Mathur et al., 2020b), but this progress
is, by and large, not yet reflected in either training
or decoding methods. Exceptions such as minimum
risk training (Shen et al., 2016; Edunov et al., 2018)

* Equal contribution.

Figure 1: Quality-aware decoding framework. First,
translation candidates are generated according to the
model. Then, using reference-free and/or reference-
based MT metrics, these candidates are ranked, and the
highest ranked one is picked as the final translation.

come at a cost of more expensive and unstable train-
ing, often with modest quality improvements.

An appealing alternative is to modify the decod-
ing procedure only, separating it into two stages:
candidate generation (§2.1; where candidates are
generated with beam search or sampled from the
whole distribution) and ranking (§2.2; where they
are scored using a quality metric of interest, and the
translation with the highest score is picked). This
strategy has been explored in approaches using
N -best reranking (Ng et al., 2019; Bhattacharyya
et al., 2021) and minimum Bayes risk (MBR) de-
coding (Shu and Nakayama, 2017; Eikema and
Aziz, 2021; Müller and Sennrich, 2021). While
this previous work has exhibited promising results,
it has mostly focused on optimizing lexical metrics
such as BLEU or METEOR (Papineni et al., 2002;
Lavie and Denkowski, 2009), which have limited
correlation with human judgments (Mathur et al.,
2020a; Freitag et al., 2021a). Moreover, a rigorous
apples-to-apples comparison among this suite of
techniques and their variants is still missing, even
though they share similar building blocks.

Our work fills these gaps by asking the question:

“Can we leverage recent advances in MT qual-
ity evaluation to generate better translations?
If so, how can we most effectively do so?”

To answer this question, we systematically explore
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NMT decoding using a suite of ranking proce-
dures. We take advantage of recent state-of-the-
art learnable metrics, both reference-based, such
as COMET and BLEURT (Rei et al., 2020a; Sel-
lam et al., 2020), and reference-free (also known
as quality estimation; QE), such as TransQuest
and OpenKiwi (Ranasinghe et al., 2020; Kepler
et al., 2019). We compare different ranking strate-
gies under a unified framework, which we name
quality-aware decoding (§3). First, we analyze
the performance of decoding using N -best rerank-
ing, both fixed according to a single metric and
learned using multiple metrics, where the coeffi-
cients for each metric are optimized according to a
reference-based metric. Second, we explore rank-
ing using reference-based metrics directly through
MBR decoding. Finally, to circumvent the expen-
sive computational cost of the latter when the num-
ber of candidates is large, we develop a two-stage
ranking procedure, where we use N -best rerank-
ing to pick a subset of the candidates to be ranked
through MBR decoding. We explore the interac-
tion of these different ranking methods with various
candidate generation procedures including beam
search, vanilla sampling, and nucleus sampling.

Experiments with two model sizes and four
datasets (§4) reveal that while MAP-based de-
coding appears competitive when evaluating with
lexical-based metrics (BLEU and ChrF), the story
is very different with state-of-the-art evaluation
metrics, where quality-aware decoding shows sig-
nificant gains, both with N -best reranking and
MBR decoding. We perform a human-study to
more faithfully evaluate our systems and find that,
while performance on learnable metrics is not al-
ways predictive of the best system, quality-aware
decoding usually results in translations with higher
quality than MAP-based decoding.

2 Candidate Generation and Ranking

We start by reviewing some of the most commonly
used methods for both candidate generation and
ranking under a common lens.

2.1 Candidate Generation

An NMT model defines a probability distribution
pθ(y|x) over a set of hypotheses Y , conditioned
on a source sentence x, where θ are learned pa-
rameters. A translation is typically predicted using

MAP decoding, formalized as

ŷMAP = argmax
y∈Y

log pθ(y|x). (1)

In words, MAP decoding searches for the most
probable translation under pθ(y|x), i.e., the mode
of the model distribution. Finding the exact ŷMAP

is intractable since the search space Y is combi-
natorially large, thus, approximations like beam
search (Graves, 2012; Sutskever et al., 2014) are
used. However, it has been shown that the transla-
tion quality degrades for large values of the beam
size (Koehn and Knowles, 2017; Yang et al., 2018;
Murray and Chiang, 2018; Meister et al., 2020),
with the empty string often being the true MAP
hypothesis (Stahlberg and Byrne, 2019).

A stochastic alternative to beam search is to draw
samples directly from pθ(y|x) with ancestral sam-
pling, optionally with variants that truncate this dis-
tribution, such as top-k sampling (Fan et al., 2018)
or p-nucleus sampling (Holtzman et al., 2020) –
the latter samples from the smallest set of words
whose cumulative probability is larger than a pre-
defined value p. Deterministic methods combining
beam and nucleus search have also been proposed
(Shaham and Levy, 2021).

Unlike beam search, sampling is not a search
algorithm nor a decision rule – it is not expected
for a single sample to outperform MAP decoding
(Eikema and Aziz, 2020). However, samples from
the model can still be useful for alternative decod-
ing methods, as we shall see. While beam search
focus on high probability candidates, typically sim-
ilar to each other, sampling allows for more explo-
ration, leading to higher candidate diversity.

2.2 Ranking
We assume access to a set Ȳ ⊆ Y containing N
candidate translations for a source sentence, ob-
tained with one of the generation procedures de-
scribed in §2.1. As long as N is relatively small, it
is possible to (re-)rank these candidates in a post-
hoc manner, such that the best translation maxi-
mizes a given metric of interest. We highlight two
different lines of work for ranking in MT decod-
ing: first, N -best reranking, using reference-free
metrics as features; second, MBR decoding, using
reference-based metrics.

2.2.1 N -best Reranking
In its simplest form (which we call fixed reranking),
a single feature f is used (e.g., an estimated quality
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score), and the candidate that maximizes this score
is picked as the final translation,

ŷF-RR = argmax
y∈Ȳ

f(y). (2)

When multiple features [f1, . . . , fK ] are available,
one can tune weights [w1, . . . , wK ] for these fea-
tures to maximize a given reference-based evalua-
tion metric on a validation set (Och, 2003; Duh and
Kirchhoff, 2008) – we call this tuned reranking. In
this case, the final translation is

ŷT-RR = argmax
y∈Ȳ

∑K
k=1wkfk(y). (3)

2.2.2 Minimum Bayes Risk (MBR) Decoding
While the techniques above rely on reference-free
metrics for the computation of features, MBR de-
coding uses reference-based metrics to rank candi-
dates. Unlike MAP decoding, which searches for
the most probable translation, MBR decoding aims
to find the translation that maximizes the expected
utility (equivalently, that minimizes risk, Kumar
and Byrne 2002, 2004; Eikema and Aziz 2020).
Let again Ȳ ⊆ Y be a set containing N hypotheses
and u(y∗, y) a utility function measuring the simi-
larity between a hypothesis y ∈ Y and a reference
y∗ ∈ Ȳ (e.g, an automatic evaluation metric such
as BLEU or COMET). MBR decoding seeks for

ŷMBR = argmax
y∈Ȳ

EY∼pθ(y|x)[u(Y, y)]︸ ︷︷ ︸
≈ 1

M

∑M
j=1 u(y

(j), y)

, (4)

where in Eq. 4 the expectation is approximated as
a Monte Carlo (MC) sum using model samples
y(1), . . . , y(M) ∼ pθ(y|x).1 In practice, the transla-
tion with the highest expected utility can be com-
puted by comparing each hypothesis y ∈ Ȳ to all
the other hypotheses in the set.

3 Quality-Aware Decoding

While recent works have explored various combi-
nations of candidate generation and ranking pro-
cedures for NMT (Lee et al., 2021; Bhattacharyya
et al., 2021; Eikema and Aziz, 2021; Müller and
Sennrich, 2021), they suffer from two limitations:

• The ranking procedure is usually based on simple
lexical-based metrics (BLEU, chrF, METEOR).

1We also consider the case where y(1), . . . , y(M) are ob-
tained from nucleus sampling or beam search. Although the
original MC estimate is unbiased, these ones are biased.

Although these metrics are well established and
inexpensive to compute, they correlate poorly
with human judgments at segment level (Mathur
et al., 2020b; Freitag et al., 2021c).

• Each work independently explores N -best
reranking or MBR decoding, making unclear
which method produces better translations.

In this work, we hypothesize that using more
powerful metrics in the ranking procedure may lead
to better quality translations. We propose a unified
framework for ranking with both reference-based
(§3.1) and reference-free metrics (§3.2), indepen-
dently of the candidate generation procedure. We
explore four methods with different computational
costs for a given number of candidates, N .

Fixed N -best Reranker. An N -best reranker us-
ing a single reference-free metric (§3.2) as a feature,
according to Eq. 2. The computational cost of this
ranker is O(N×CMQE), where CMQE denotes the
cost of running an evaluation with a metric MQE.

Tuned N -best Reranker. An N -best reranker us-
ing as features all the reference-free metrics in §3.2,
along with the model log-likelihood log pθ(y|x).
The weights in Eq. 3 are optimized to maximize
a given reference-based metric Mref using MERT
(Och, 2003), a coordinate-ascent optimization al-
gorithm widely used in previous work. Note that
Mref is used for tuning only; at test time, only
reference-free metrics are used. Therefore, the de-
coding cost is O(N ×∑

iCMQE
i

).

MBR Decoding. Choosing as the utility function
a reference-based metric Mref (§3.1), we estimate
the utility using a simple Monte Carlo sum, as
shown in Eq. 4. The estimation requires computing
pairwise comparisons and thus the cost of running
MBR decoding is O(N2 × CMref ).

N -best Reranker → MBR. Using a large num-
ber of samples in MBR decoding is expensive
due to its quadratic cost. To circumvent this is-
sue, we explore a two-stage ranking approach: we
first rank all the candidates using a tuned N -best
reranker, followed by MBR decoding using the top
M candidates. The computational cost becomes
O(N×∑

iCMi+M2×CMref ). The first ranking
stage prunes the candidate list to a smaller, higher
quality subset, making possible a more accurate
estimation of the utility with less samples, and po-
tentially allowing a better ranker than plain MBR
for almost the same computational budget.
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3.1 Reference-based Metrics
Reference-based metrics are the standard way to
evaluate MT systems; the most used ones rely on
the lexical overlap between hypotheses and ref-
erence translations (Papineni et al., 2002; Lavie
and Denkowski, 2009; Popović, 2015). However,
lexical-based approaches have important limita-
tions: they have difficulties recognizing correct
translations that are paraphrases of the reference(s);
they ignore the source sentence, an important indi-
cator of meaning for the translation; and they do
not always correlate well with human judgments,
particularly at segment-level (Freitag et al., 2021c).

In this work, apart from BLEU (computed us-
ing SacreBLEU2 (Post, 2018)) and chrF, we use
the following state-of-the-art trainable reference-
based metrics for both ranking and performance
evaluation of MT systems:

• BLEURT (Sellam et al., 2020; Pu et al., 2021),
trained to regress on human direct assessments
(DA; Graham et al. 2013). We use the largest
multilingual version, BLEURT-20, based on the
RemBERT model (Chung et al., 2021).

• COMET (Rei et al., 2020a), based on XLM-R
(Conneau et al., 2020), trained to regress on qual-
ity assessments such as DA using both the ref-
erence and the source to assess the quality of a
given translation. We use the publicly available
model developed for the WMT20 metrics shared
task (wmt20-comet-da).

These metrics have shown much better correla-
tion at segment-level than previous lexical metrics
in WMT metrics shared tasks (Mathur et al., 2020b;
Freitag et al., 2021c). Hence, as discussed in §2.2,
they are good candidates to be used either indi-
rectly as an optimization objective for learning the
tuned reranker’s feature weights, or directly as a
utility function in MBR decoding. In the former,
the higher the metric correlation with human judg-
ment, the better the translation picked by the tuned
reranker. In the latter, we approximate the expected
utility in Eq. 4 by letting a candidate generated by
the model be a reference translation – a suitable
premise if the model is good in expectation.

3.2 Reference-free Metrics
MT evaluation metrics have also been developed
for the case where references are not available –

2nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0

they are called reference-free or quality estimation
(QE) metrics. In the last years, considerable im-
provements have been made to such metrics, with
state-of-the-art models having increasing correla-
tions with human annotators (Freitag et al., 2021c;
Specia et al., 2021). These improvements enable
the use of such models for ranking translation hy-
potheses in a more reliable way than before.

In this work, we explore four recently pro-
posed reference-free metrics as features for N -best
reranking, all at the sentence-level:

• COMET-QE (Rei et al., 2020b), a reference-free
version of COMET (§3.1). It was the winning
submission for the QE-as-a-metric subtask of the
WMT20 shared task (Mathur et al., 2020b).

• TransQuest (Ranasinghe et al., 2020), the win-
ning submission for the sentence-level DA pre-
diction subtask of the WMT20 QE shared task
(Specia et al., 2020). Similarly to COMET-QE
this metric predicts a DA score.

• MBART-QE (Zerva et al., 2021), based on the
mBART (Liu et al., 2020) model, trained to pre-
dict both the mean and the variance of DA scores.
It was a top performer in the WMT21 QE shared
task (Specia et al., 2021).

• OpenKiwi-MQM (Kepler et al., 2019; Rei et al.,
2021), based on XLM-R, trained to predict the
multidimensional quality metric (MQM; Lom-
mel et al. 2014).3 This reference-free metric
was ranked second on the QE-as-a-metric subtask
from the WMT 2021 metrics shared task.

4 Experiments

4.1 Setup

We study the benefits of quality-aware decoding
over MAP-based decoding in two regimes:

• A high-resource, unconstrained, setting with
large transformer models (6 layers, 16 atten-
tion heads, 1024 embedding dimensions, and
8192 hidden dimensions) trained by Ng et al.
(2019) for the WMT19 news translation task
(Barrault et al., 2019), using English to German
(EN → DE) and English to Russian (EN → RU)
language pairs. These models were trained on

3MQM annotations are expert-level type of annotations
more fine-grained then DA, with individual errors annotated.
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Figure 2: Values for BLEU (top) and COMET (bottom) for EN → DE as we increase the number of candidates for
different generation and ranking procedures, as well as oracles with the respective metrics, for the large (left) and
small (right) models. Baseline values (with beam size of 5) are marked with a dashed horizontal line.

over 20 million parallel and 100 million back-
translated sentences, being the winning submis-
sions of that year’s shared task. We consider the
non-ensembled version of the model and use new-
stest19 for validation and newstest20 for testing.

• A more constrained scenario with a small trans-
former model (6 layers, 4 attention heads, 512
embedding dimensions, and 1024 hidden dimen-
sions) trained from scratch in Fairseq (Ott et al.,
2019) on the smaller IWSLT17 datasets (Cettolo
et al., 2012) for English to German (EN → DE)
and English to French (EN → FR), each with
a little over 200k training examples. We chose
these datasets because they have been extensively
used in previous work (Bhattacharyya et al.,
2021) and smaller model allows us to answer
questions about how the training methodology
affects ranking performance (see § 4.2.2). Fur-
ther training details can be found in Appendix A.

We use beam search with a beam size of 5 as our
decoding baseline because we found that it resulted
in better or similar translations than larger beam
sizes. For tuned N-best reranking, we use Tra-
vatar’s (Neubig, 2013) implementation of MERT
(Och, 2003) to optimize the weight of each feature,
as described in §3.2. Finally, we evaluate each sys-
tem using the metrics discussed in §3.1, along with
BLEU and chrF (Popović, 2015).

4.2 Results

Overall, given all the metrics, candidate generation,
and ranking procedures, we evaluate over 150 sys-
tems per dataset. We report subsets of this data
separately to answer specific research questions,
and defer to Appendix B for additional results.

4.2.1 Impact of Candidate Generation
First, we explore the impact of the candidate gener-
ation procedure and the number of candidates.

Which candidate generation method works best,
beam search or sampling? We generate candi-
dates with beam search, vanilla sampling, and nu-
cleus sampling. For the latter, we use p = 0.6
based on early results showing improved perfor-
mance for all metrics.4 For N -best reranking, we
use up to 200 samples; for MBR decoding, due to
the quadratic computational cost, we use up to 100.

Figure 2 shows BLEU and COMET for differ-
ent candidate generation and ranking methods for
the EN → DE WMT20 and IWSLT17 datasets,
with increasing number of candidates. The base-
line is represented by the dashed line. To assess the
performance ceiling of the rankers, we also report
results with an oracle ranker for the reported met-
rics, picking the candidate that maximizes it. For
the fixed N -best reranker, we use COMET-QE as
a metric, albeit the results for other reference-free
metrics are similar. Performance seems to scale
well with the number of candidates, particularly for
vanilla sampling and for the tuned N -best reranker
and MBR decoder. (Lee et al., 2021; Müller and
Sennrich, 2021). However, all the rankers using
vanilla sampling severely under-perform the base-
line in most cases (see also §4.2.2). In contrast,
the rankers using beam search or nucleus sampling
are competitive or outperform the baseline in terms
of BLEU, and greatly outperform it in terms of
COMET. For the larger models, we see that the per-
formance according to the lexical metrics degrades
with more candidates. In this scenario, rankers us-

4We picked nucleus sampling over top-k sampling because
it allows varying support size and has outperformed top-k in
text generation tasks (Holtzman et al., 2020).
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Figure 3: COMET scores for EN → DE (IWSLT17)
for models trained with and without label smoothing.

ing nucleus sampling seem to have an edge over
the ones that use beam search for COMET.

Based on the findings above, and due to gener-
ally better performance of COMET over BLEU
for MT evaluation (Kocmi et al., 2021), in follow-
ing experiments we use nucleus sampling with the
large model and beam search with the small model.

4.2.2 Impact of Label Smoothing
How does label smoothing affect candidate gener-
ation? Label smoothing (Szegedy et al., 2016) is
a regularization technique that redistributes proba-
bility mass from the gold label to the other target
labels, typically preventing the model from becom-
ing overconfident (Müller et al., 2019). However,
it has been found that label smoothing negatively
impacts model fit, compromising the performance
of MBR decoding (Eikema and Aziz, 2020, 2021).
Thus, we train a small transformer model without
label smoothing to verify its impact in the perfor-
mance of N -best reranking and MBR decoding.
Figure 3 shows that disabling label smoothing re-
ally helps when generating candidates using vanilla
sampling. However, the performance degrades for
candidates generated using nucleus sampling when
we disable label smoothing, hinting that the pruning
mechanism of nucleus sampling may help mitigate
the negative impact of label smoothing in sampling
based approaches. Even without label smoothing,
vanilla sampling is not competitive with nucleus
sampling or beam search with label smoothing,
thus, we do not experiment further with it.

4.2.3 Impact of Ranking and Metrics
We now investigate the usefulness of the metrics
presented in §3 as features and objectives for rank-
ing. For N -best reranking, we use all the available
candidates (200) while, for MBR, due to the com-
putational cost of using 100 candidates, we report
results with 50 candidates only (we found that rank-
ing with tuned N -best reranking with N = 100 and
MBR with N = 50 takes about the same time). We
report results in Table 1, and use them to answer

some specific research questions.

Which QE metric works best in a fixed N -best
reranker? We consider a fixed N -best reranker
with a single reference-free metric as a feature (see
Table 1, second group). While none of the metrics
allows for improving the baseline results in terms
of the lexical metrics (BLEU and chrF), rerankers
using COMET-QE or MBART-QE outperform the
baseline according to BLEURT and COMET, for
both the large and small models. Due to the afore-
mentioned better performance of these metrics for
translation quality evaluation, we hypothesize that
these rankers produce better translations than the
baseline. However, since the sharp drop in the
lexical metrics is concerning, we will verify this
hypothesis in a human study, in §4.2.4.

How does the performance of a tuned N -best
reranker vary when we change the optimization
objective? We consider a tuned N -best reranker
using as features all the reference-free metrics in
§3.2, and optimized using MERT. Table 1 (3rd

group) shows results for EN → DE. For the small
model, all the rankers show improved results over
the baseline for all the metrics. In particular, opti-
mizing for BLEU leads to the best results in the lex-
ical metrics, while optimizing for BLEURT leads
to the best performance in the others. Finally, opti-
mizing for COMET leads to similar performance
than optimizing for BLEURT. For the large model,
although none of the rerankers is able to outper-
form the baseline in the lexical metrics, we see
similar trends as before for BLEURT and COMET.

How does the performance of MBR decoding vary
when we change the utility function? Table 1
(4th group) shows the impact of the utility func-
tion (BLEU, BLEURT, or COMET). For the small
model, using COMET leads to the best perfor-
mance according to all the metrics except BLEURT
(for which the best result is attained when optimiz-
ing itself). For the large model, the best result
according to a given metric is obtained when using
that metric as the utility function.

How do (tuned) N -best reranking and MBR com-
pare to each other? Looking at Table 1 we see
that, for the small model, N -best reranking seems
to perform better than MBR decoding in all the
evaluation metrics, including the one used as the
utility function in MBR decoding. The picture is
less clear for the large model, with MBR decoding
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Large (WMT20) Small (IWSLT)

BLEU chrF BLEURT COMET BLEU chrF BLEURT COMET

Baseline 36.01 63.88 0.7376 0.5795 29.12 56.23 0.6635 0.3028

F-RR w/ COMET-QE 29.83 59.91 0.7457 0.6012 27.38 54.89 0.6848 0.4071
F-RR w/ MBART-QE 32.92 62.71 0.7384 0.5831 27.30 55.62 0.6765 0.3533
F-RR w/ OpenKiwi 30.38 59.56 0.7401 0.5623 25.35 51.53 0.6524 0.2200
F-RR w/ Transquest 31.28 60.94 0.7368 0.5739 26.90 54.46 0.6613 0.2999

T-RR w/ BLEU 35.34 63.82 0.7407 0.5891 30.51 57.73 0.7077 0.4536
T-RR w/ BLEURT 33.39 62.56 0.7552 0.6217 30.16 57.40 0.7127 0.4741
T-RR w/ COMET 34.26 63.31 0.7546 0.6276 30.16 57.32 0.7124 0.4721

MBR w/ BLEU 34.94 63.21 0.7333 0.5680 29.25 56.36 0.6619 0.3017
MBR w/ BLEURT 32.90 62.34 0.7649 0.6047 28.69 56.28 0.7051 0.3799
MBR w/ COMET 33.04 62.65 0.7477 0.6359 29.43 56.74 0.6882 0.4480

T-RR+MBR w/ BLEU 35.84 63.96 0.7395 0.5888 30.23 57.34 0.6913 0.3969
T-RR+MBR w/ BLEURT 33.61 62.95 0.7658 0.6165 29.28 56.77 0.7225 0.4361
T-RR+MBR w/ COMET 34.20 63.35 0.7526 0.6418 29.46 57.13 0.7058 0.5005

Table 1: Evaluation metrics for EN → DE for the large and small model settings, using a fixed N -best reranker
(F-RR), a tuned N -best reranker (T-RR), MBR decoding, and a two-stage approach. Best overall values are bolded
and best for each specific group are underlined.

achieving best values for a given fine-tuned metric
when using it as the utility; this comes at the cost of
worse performance according to the other metrics,
hinting at a potential “overfitting” effect. Overall,
N -best reranking seems to have an edge over MBR
decoding. We will further clarify this question with
human evaluation in § 4.2.4.

Can we improve performance by combining N -
best reranking with MBR decoding? Table 1
shows that, for both the large and the small model,
the two-stage ranking approach described in §3
leads to the best performance according to the
fine-tuned metrics. In particular, the best result
is obtained when the utility function is the same as
the evaluation metric. These results suggest that
a promising research direction is to seek more so-
phisticated pruning strategies for MBR decoding.

4.2.4 Human Evaluation

Which metric correlates more with human judg-
ments? How risky is it to optimize a metric and
evaluate on a related metric? Our experiments
suggest that, overall, quality-aware decoding pro-
duces translations with better performance across
most metrics than MAP-based decoding. However,
for some cases (such as fixed N -best reranking and
most results with the large model), there is a con-
cerning “metric gap” between lexical-based and
fine-tuned metrics. While the latter have shown to
correlate better with human judgments, previous
work has not attempted to explicitly optimize these
metrics, and doing so could lead to ranking systems

that learn to exploit “pathologies” in these metrics
rather than improving translation quality. To inves-
tigate this hypothesis, we perform a human study
across all four datasets. We ask annotators to rate,
from 1 (no overlap in meaning) to 5 (perfect trans-
lation), the translations produced by the 4 ranking
systems in §3, as well as the baseline translation
and the reference. Further details are in App. C.
We choose COMET-QE as the feature for the fixed
N -best ranker and COMET as the optimization
metric and utility function for the tuned N -best
reranker and MBR decoding, respectively. The rea-
sons for this are two-fold: (1) they are currently
the reference-free and reference-based metrics with
highest reported correlation with human judgments
(Kocmi et al., 2021), (2) we saw the largest “metric
gap” for systems based on these metrics, hinting of
a potential “overfitting” problem (specially since
COMET-QE and COMET are similar models).

Table 2 shows the results for the human eval-
uation, as well as the automatic metrics. We see
that, with the exception of T-RR w/ COMET, when
fine-tuned metrics are explicitly optimized for, their
correlation with human judgments decreases and
they are no longer reliable indicators of system-
level ranking. This is notable for the fixed N -best
reranker with COMET-QE, which outperforms the
baseline in COMET for every single scenario, but
leads to markedly lower quality translations. How-
ever, despite the potential for overfitting these met-
rics, we find that tuned N -best reranking, MBR,
and their combination consistently achieve better
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EN-DE (WMT20) EN-RU (WMT20)

BLEU chrF BLEURT COMET Human R. BLEU chrF BLEURT COMET Human R.

Reference - - - - 4.51 - - - - 4.07

Baseline 36.01 63.88 0.7376 0.5795 4.28 23.86 51.16 0.6953 0.5361 3.62
F-RR w/ COMET-QE 29.83 59.91 0.7457 0.6012 4.19 20.32 49.18 0.7130 0.6207 3.25
T-RR w/ COMET 34.26 63.31 0.7546 0.6276 4.33 22.42 50.91 0.7243 0.6441 3.65
MBR w/ COMET 33.04 62.65 0.7477 0.6359 4.27 23.67 51.18 0.7093 0.6242 3.66
T-RR + MBR w/ COMET 34.20 63.35 0.7526 0.6418 4.30 23.21 51.26 0.7238 0.6736 3.72†

EN-DE (IWSLT17) EN-FR (IWSLT17)

Reference - - - - 4.38 - - - - 4.00

Baseline 29.12 0.6635 56.23 0.3028 3.68 38.12 0.6532 63.20 0.4809 3.92
F-RR w/ COMET-QE 27.38 0.6848 54.89 0.4071 3.67 35.59 0.6628 60.90 0.5553 3.63
T-RR w/ COMET 30.16 0.7124 57.32 0.4721 3.90† 38.60 0.7020 63.77 0.6392 4.05†

MBR w/ COMET 29.43 0.6882 56.74 0.4480 3.79† 37.77 0.6710 63.24 0.6127 4.05†

T-RR + MBR w/ COMET 29.46 0.7058 57.13 0.5005 3.83† 38.33 0.6883 63.53 0.6610 4.09†

Table 2: Results for automatic and human evaluation. Top: WMT20 (large models); Bottom: IWSLT17 (small
models). Methods with † are statistically significantly better than the baseline, with p < 0.05.

translation quality than the baseline, specially with
the small model. In particular, N -best reranking
results in better translations than MBR, and their
combination is the best system in 2 of 4 LPs.

4.2.5 Improved Human Evaluation

To further investigate how quality-aware decoding
performs when compared to MAP-based decoding,
we perform another human study, this time based
on expert-level multidimensional quality metrics
(MQM) annotations (Lommel et al., 2014). We
asked the annotators to identify all errors and inde-
pendently label them with an error category (accu-
racy, fluency, and style, each with a specific set of
subcategories) and a severity level (minor, major,
and critical). In order to obtain the final sentence-
level scores, we require a weighting scheme on
error severities. We use weights of 1, 5, and 10
to minor, major, and critical errors, respectively,
independently of the error category. Further details
are in App. D. Given the cost of performing a hu-
man study like this, we restrict our analysis to the
translations generated by the large models trained
on WMT20 (EN → DE and EN → RU).

Table 3 shows the results for the human evalua-
tion using MQM annotations, including both error
severity counts and final MQM scores. As hinted
in §4.2.4, despite the remarkable performance of
the F-RR with COMET-QE in terms of COMET
(see Table 2), the quality of the translations de-
creases when compared to the baseline, suggesting
the possibility of metric overfitting when evaluating
systems using a single automatic metric that was
directly optimized for (or a similar one). However,
for both language pairs, the T-RR with COMET
and the two stage approach (T-RR + MBR with

COMET) achieve the highest MQM score. In ad-
dition, these systems present the smallest number
of errors when combining both major and critical
errors.

Although the performance of all systems is com-
parable for EN→DE, both the T-RR and the T-
RR+MBR decoding markedly reduce the number
of grammatical register errors related to using pro-
nouns and verb forms that are not compliant with
the register required for that translation, at the cost
of increasing the number of lexical selection errors
(see Figure 4). For EN→RU, however, the num-
ber of lexical selection errors produced when using
the T-RR or the T-RR+MBR decoding is approxi-
mately a half of the ones produced by the baseline
(see Figure 5). In this case, this comes at appar-
ently almost no cost in other error types, leading to
significantly better results, as shown in Table 3.

5 Related Work

Reranking. Inspired by the work of Shen et al.
(2004) on discriminative reranking for SMT, Lee
et al. (2021) trained a large transformer model us-
ing a reranking objective to optimize BLEU. Our
work differs in which our rerankers are much sim-
pler and therefore can be tuned on a validation set;
and we use more powerful quality metrics instead
of BLEU. Similarly, Bhattacharyya et al. (2021)
learned an energy-based reranker to assign lower
energy to the samples with higher BLEU scores.
While the energy model plays a similar role to a QE
system, our work differs in two ways: we use an
existing, pretrained QE model instead of training
a dedicated reranker, making our approach appli-
cable to any MT system without further training;
and the QE model is trained to predict human as-
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EN-DE (WMT20) EN-RU (WMT20)

Minor Major Critical MQM Minor Major Critical MQM

Reference 24 67 0 97.04 5 11 0 99.30

Baseline 8 139 0 95.66 17 239 49 79.78
F-RR w/ COMET-QE 15 204 0 93.47 13 254 80 76.25
T-RR w/ COMET 12 109 0 96.20 9 141 45 85.97†

MBR w/ COMET 11 161 0 94.38 8 182 40 83.65
T-RR + MBR w/ COMET 10 138 0 95.44 11 134 45 86.78†

Table 3: Error severity counts and MQM scores for WMT20 (large models). Best overall values are bolded.
Methods with † are statistically significantly better than the baseline, with p < 0.05.

sessments, rather than BLEU scores. Leblond et al.
(2021) compare a reinforcement learning approach
to reranking approaches (but not MBR decoding, as
we do). They investigate the use of reference-based
metrics and, for the reward function, a reference-
free metric based on a modified BERTScore (Zhang
et al., 2020). This new multilingual BERTScore
is not fine-tuned on human judgments as COMET
and BLEURT and it is unclear what its level of
agreement with human judgments is. Another line
of work is generative reranking, where the reranker
is not trained to optimize a metric, but rather as a
generative noisy-channel model (Yu et al., 2017;
Yee et al., 2019; Ng et al., 2019).

Minimum Bayes Risk Decoding. MBR decod-
ing (Kumar and Byrne, 2002, 2004) has recently
been revived for NMT using candidates generated
with beam search (Stahlberg et al., 2017; Shu and
Nakayama, 2017) and sampling (Eikema and Aziz,
2020; Müller and Sennrich, 2021). Eikema and
Aziz (2021) also explore a two-stage approach for
MBR decoding. Additionally, there is concurrent
work by Freitag et al. (2021b) on using neural
metrics as utility functions during MBR decod-
ing: however they limit their scope to MBR with
reference-based metrics, while we perform a more
extensive evaluation over ranking methods and met-
rics. Amrhein and Sennrich (2022) also concur-
rently explored using MBR decoding with neural
metrics, but with the purposes of identifying weak-
nesses in the metric (in their case COMET), simi-
larly to the metric overfitting problem we discussed
in §4.2.4. A comparison with N -best re-ranking
was missing in these works, a gap our paper fills.
A related line of work is minimum risk training
(MRT; Smith and Eisner 2006; Shen et al. 2016),
which trains models to minimize risk, allowing ar-
bitrary non-differentiable loss functions (Edunov
et al., 2018; Wieting et al., 2019) and avoiding ex-
posure bias (Wang and Sennrich, 2020; Kiegeland

and Kreutzer, 2021). However, MRT is consider-
ably more expensive and difficult to train and the
gains are often small. Incorporating our quality
metrics in MRT is an exciting research direction.

6 Conclusions and Future Work

We leverage recent advances in MT quality esti-
mation and evaluation and propose quality-aware
decoding for NMT. We explore different candidate
generation and ranking methods, with a comprehen-
sive empirical analysis across four datasets and two
model classes. We show that, compared to MAP-
based decoding, quality-aware decoding leads to
better translations, according to powerful automatic
evaluation metrics and human judgments.

There are several directions for future work. Our
ranking strategies increase accuracy but are sub-
stantially more expensive, particularly when used
with costly metrics such as BLEURT and COMET.
While reranking-based pruning before MBR decod-
ing was found helpful, additional strategies such
as caching encoder representations (Amrhein and
Sennrich, 2022) and distillation (Pu et al., 2021)
are promising directions.
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Supplemental Material
A Training Details

For the experiments using IWSLT17, we train a small transformer model (6 layers, 4 attention heads, 512
embedding dimensions, and 1024 hidden dimensions) from scratch, using Fairseq (Ott et al., 2019). We
tokenize the data using SentencePiece (Kudo and Richardson, 2018), with a joint vocabulary with 20000
units. We train using the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9 and β2 = 0.98 and use
an inverse square root learning rate scheduler, with an initial learning rate of 5× 10−4 and with a linear
warm-up in the first 4000 steps. For models trained with label smoothing, we use the default value of 0.1.

B Additional Results

For completeness, we include in Table 4 results to evaluate the impact of the metrics presented in §3 as
features and objectives for ranking using the other language pairs: EN → RU (large model) and EN → FR
(small model).

Large (WMT20) Small (IWSLT)

BLEU chrF BLEURT COMET BLEU chrF BLEURT COMET

Baseline 23.86 51.16 0.6953 0.5361 38.12 63.20 0.6532 0.4809

F-RR w/ COMET-QE 20.32 49.18 0.7130 0.6207 35.59 60.90 0.6628 0.5553
F-RR w/ MBART-QE 22.39 50.59 0.6993 0.5481 36.68 62.17 0.6593 0.5091
F-RR w/ OpenKiwi 20.88 48.72 0.7040 0.5688 32.03 55.68 0.5996 0.2581
F-RR w/ Transquest 21.60 50.14 0.7060 0.5836 36.02 62.26 0.6681 0.5397

T-RR w/ BLEU 23.87 51.51 0.7042 0.5669 39.10 64.22 0.6968 0.6189
T-RR w /BLEURT 22.84 51.25 0.7265 0.6470 38.60 63.76 0.7042 0.6405
F-RR w/ COMET 22.42 50.91 0.7243 0.6441 38.60 63.77 0.7020 0.6392

MBR w/ BLEU 24.03 51.12 0.6938 0.5393 37.97 63.13 0.6484 0.4764
MBR w/ BLEURT 23.01 50.87 0.7314 0.5984 37.29 62.82 0.6886 0.5361
MBR w/ COMET 23.67 51.18 0.7093 0.6242 37.77 63.24 0.6710 0.6127

T-RR+MBR w/ BLEU 24.11 51.44 0.6967 0.5482 38.96 64.04 0.6781 0.5636
T-RR+MBR w/ BLEURT 23.18 51.30 0.7344 0.6277 37.43 63.14 0.7092 0.5961
T-RR+MBR w/ COMET 23.21 51.26 0.7238 0.6736 38.33 63.53 0.6883 0.6610

Table 4: Evaluation metrics for EN → RU for the large model setting and EN → FR for small model settings, using
a fixed N -best reranker (F-RR), a tuned N -best reranker (T-RR), MBR decoding, and a two-stage approach. Best
overall values are bolded and best for each specific group are underlined.

C Human Study

In order to perform human evaluation, we recruited professional translators who were native speakers
of the target language on the freelancing site Upwork.5 300 sentences were evaluated for each language
pair, sampled randomly from the test sets after a restriction that sentences were no longer than 30 words.
All translation hypotheses for a single source sentence were first deduplicated, and then shown to the
translator side-by-side in randomized order to avoid any ordering biases.

Sentences were evaluated according to a 1-5 rubric slightly adapted from that of Wieting et al. (2019):

1. There is no overlap in the meaning of the source sentence whatsoever.

2. Some content is similar but the most important information in the sentence is different.

3. The key information in the sentence is the same but the details differ.

4. Meaning is essentially equal but some expressions are unnatural.

5. Meaning is essentially equal and the sentence is natural.
5https://upwork.com. Freelancers were paid a market rate of 18-20 US dollars per hour, and finished approximately

50 sentences in one hour.
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D MQM Framework

Human evaluations were performed by Unbabel’s PRO Community, made of professional translators and
linguists with relevant experience in linguistic annotations and translation errors annotations. In order to
properly assess translations quality, annotators must be native speakers of the target language and with a
proven high proficiency of the source language, so that they can properly capture errors and their nuances.
The systems’ outputs were evaluated by using the annotation framework adopted internally at Unbabel,
which is an adaptation of the MQM Framework (Lommel et al., 2014).

We asked the annotators to identify all errors and independently label them with an error category and a
severity level. We consider three categories (each of them containing a set of different subcategories)
that may affect the quality of the translations:

• Accuracy, if the target text does not accurately reflect the source text (e.g., changes in the meaning,
addition/omission of information, untranslated text, MT hallucinations);

• Fluency, if there are issues that affect the reading and the comprehension of the text (e.g., grammar and
spelling errors);

• Style, if the text has stylistic problems (e.g., gramatical and lexical register).

Additionally, each error is labeled according to three severity levels (minor, major, and critical), de-
pending on the way they affect the accuracy, the fluency, and the style of the translation. The final
sentence-level score is obtained using a weighting scheme where minor, major, and critical errors are
weighted as 1, 5, and 10, respectively.

Figures 4 and 5 show the counts of errors breakdown by typology and severity level for EN→DE and
EN→RU, respectively.
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Figure 4: Error typology and severity level breakdown for WMT20 (large models) EN→DE.
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Figure 5: Error typology and severity level breakdown for WMT20 (large models) EN→RU.
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