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Abstract

Recently, large-scale transformer-based mod-
els have been proven to be effective over var-
ious tasks across many domains. Neverthe-
less, applying them in industrial production
requires tedious and heavy works to reduce
inference costs. To fill such a gap, we intro-
duce a scalable inference solution: Easy and
Efficient Transformer (EET), including a se-
ries of transformer inference optimization at
the algorithm and implementation levels. First,
we design highly optimized kernels for long
inputs and large hidden sizes. Second, we pro-
pose a flexible CUDA memory manager to re-
duce the memory footprint when deploying a
large model. Compared with the state-of-the-
art transformer inference library (Faster Trans-
former v4.0), EET can achieve an average of
1.40-4.20x speedup on the transformer decoder
layer with an A100 GPU.

1 Introduction

In recent years, transformer-based models have
achieved impressive performance across vari-
ant domains, such as natural language process-
ing (Vaswani et al., 2017; Devlin et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020), computer vi-
sion (Jiang et al., 2021; Dosovitskiy et al., 2020)
and speech processing (Baevski et al., 2020, 2021).
The scaling law proposed by Kaplan et al. (2020)
indicates that the validation PPL of a neural lan-
guage model scales as a power-law with model
sizes, dataset sizes, and the amount of training com-
putation. Such law is corroborated empirically by
many following works (Brown et al., 2020; Zhai
etal., 2021).

However, the mega-sized models are notoriously
expensive for deployment in the industry. For
example, GPT-2 medium model (700M parame-
ters (Radford et al., 2019)) spends up to 10s to gen-
erate 512 tokens given a prompt with the length of
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512 on an RTX 2080ti GPU, which is not allowed
in the industrial application. Multiple approaches
have been proposed to solve such problems, includ-
ing knowledge distillation (Hinton et al., 2015; Jiao
et al., 2020), model pruning (Voita et al., 2019), and
quantization (Shen et al., 2019). Apart from these
works, much attention has also been paid to opti-
mizing CUDA implementation of a transformer
layer for better hardware utilization. Previous
works (e.g.: TensorRT (NVIDIA, 2021b), Light-
Seq (Wang et al., 2021) and Faster Transformer
(FT) (NVIDIA, 2021a)) have implemented many
optimization techniques, including kernels fusion,
gemm optimization, quantization, etc. However,
these works still have several limitations. TensorRT
only contains the multi-head attention(MHA) oper-
ation, lacking a complete transformer model. Light-
Seq cannot support the model hidden size and input
sequence length over 1024. FT contains some per-
formance flaws which need to be improved.

In this paper, we propose a novel transformer
inference acceleration library, Easy and Efficient
Transformer (EET) . First, we implement custom
CUDA kernels to avoid explicit matrix addition of
attention and padding masks with attention weights.
As a result, the attention mask matrix is no longer
required, while FT spends overhead to initialize an
attention mask on the CPU and push it to CUDA. In
addition, compared with FT, padding masks are no
longer needed in computation, leading to additional
performance improvement. Second, we propose a
new method, thread block folding, to extend all ker-
nels to support a larger model size up to 12288 and
a longer sequence up to 4096. For FT, it directly
assigns the thread number in a CUDA block, which
may hurt the parallel efficiency. Finally, we design
a dynamic CUDA memory management mecha-
nism to reduce the CUDA memory occupation for
the same model size, while FT needs to manually
allocate memory usage.

We have conducted comprehensive experiments
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to compare EET with Fairseq,' LightSeq and FT. In
our experiments, EET achieves about 4.48-20.27x
and 4.30-27.43x speedup over Fairseq on 2080ti
and A 100 respectively. When we set the model size
to 768 and 1024 on 2080Ti, EET makes 0.82-2.46x
speedup over LightSeq. Compared to FT(v3.1),
EET achieves about 1.21-6.30x and 1.62-8.16x
speedup on 2080ti and A100 respectively. Com-
pared to FT(v4.0), EET achieves about 1.40-4.20x
speedup on A100. The remarkable experimental
results corroborate the effectiveness of our EET.

2 Custom Kernels

FT (NVIDIA, 2021a) has implemented highly opti-
mized CUDA kernels for transformer inference. To
make further optimization, we design our custom
kernels with the considerations below:

e Because padding tokens do not affect the final
results, preventing padding tokens from participat-
ing in MHA instead of simply applying padding
masks can significantly reduce the computational
overhead.

e Although an attention mask is essential for
MHA in text generation, constructing a mask that
varies with the input length is time-consuming.

o The hidden sizes and input lengths of the large-
scale pre-trained models can easily exceed 1024.
It is necessary to extend these kernels to support
large hidden sizes and input lengths elegantly and
efficiently.

To remove previously mentioned masks in com-
putation, we redesign the kernels and call the mech-
anism mask fusion. To extend all the kernels to
support the model size or sequence length greater
than 1024, we improve the CUDA thread structure
and call the method as thread block folding. Next,
we describe these two methods in detail.

2.1

The attention mask indicates the attention boundary
for each token to prevent the attention from look-
ing forward. The padding mask indicates where
the padding tokens are. Thus they both charac-
terize the position information of the tokens in a
sequence. Meanwhile, each CUDA thread also
has a unique positional index. So we can map
each token in the MHA to a thread or block in the
CUDA kernels. The function of the attention mask
is achieved by comparing whether the CUDA po-
sition of the query token being processed is larger

Mask Fusion

"https://github.com/pytorch/fairseq
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than the CUDA position of the key token. The func-
tion of the padding mask is achieved by starting
the valid calculations from the padding offset when
sequentially processing each token. Therefore, we
transform the mask computation to logical opera-
tion with CUDA thread index comparison. Thus
there is no need to store any explicit functional
parameters of the masks and the computation over-
head of masking operation is saved. The algorithm
pseudo-code is shown in Algorithm 1.

Algorithm 1 MHA with mask fusion

Input: gk, paddingLen, seqLen, batch, head Num
Qutput: the attention weights back to gk
CUDA Initialize grid < (batch * head Num)
CUDA Initialize block + (seqLen)
batchld < blockIdz.x/head Num
padLen < paddingLen[batchld]
qkOf fset < blockIdx.x x seqLen x seqLen
gkOf fset < qkOf fset + paddLen * seqLen
s < padLen > start at first non-pad
e < seqLen > end at last token
reduceMax < —inf
reduceSum < 0
for i = stoedo
position < qkOf fset + threadldz.x
data <+ qk[position]
u + padLen
l+1
if | < threadldz.z < u then
reduceM az < block ReduceMazx(data)
reduceSum <« block ReduceSum/(data)
data < softmax(reduceMax,reduceSum)
end if
gklposition] < data
end for

> upper boundary
> lower boundary

2.2 Thread Block Folding

Large-scale models often have model sizes and
input lengths larger than 1024. For example, the
standard GPT-3 has a model size of 12288 and an
input length of 2048. However, the CUDA block
only supports a maximum thread number of 1024,
most inference frameworks, such as FT(v3.1) and
LightSeq, have implemented kernels that restrict
the model size and input length up to 1024, leading
to limited availability.

To deal with large model sizes and sequence
lengths, we propose to use several blocks to sim-
ulate a large block, shown as Figure 1. Imagine a
virtual block large enough to hold all the tasks, then
we can fold it once to create two blocks, with each
block having half the size of the original block. We
can repeat the process until the sub-blocks size sat-
isfies the CUDA constraint. Then, the large model
sizes or input lengths can be handled correctly, and
a new CUDA thread dimension is created to man-
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Figure 1: The schematic diagram of thread block folding.

age the folding procedure. We call this method
thread block folding, which allows us to extend
any kernel to any model size and any sequence
length with minimum changes and non-degraded
performance. For instance, assuming the model
size is 1280, we fold it once and create two half-
size blocks, then the data can be assigned into two
separate blocks with 640 threads in each.

We introduce a folding coefficient to characterize
the number of folding. Given the model size h, the
folding coefficient ¢ and the number of threads n
in one block is defined as:

h

t= 2(10%1_1; n=g

As for simplicity, thread block folding only adds
a new dimension for the block, which slightly im-
pacts the basic CUDA thread grid structure. As
for efficiency, the minimum thread number is 512
when the model size or input length is larger than
1024 and makes full use of thread parallelism. The
sequence expansion process is similar to the model
expansion process. Finally, we support the model
size no larger than 16384 and sequence length no
longer than 4096.

3 Dynamic Memory Manager

The inference is much more sensitive to latency
compared to training. As a result, model paral-
lelism (Shoeybi et al., 2020) and pipeline paral-
lelism (Huang et al., 2019) are undesirable for in-
ference. Their communication overhead introduced
by tensor slicing or layer split is significant even
with the support of NVLink and GPUDirect. To
reduce the latency and hardware requirements for
online service, minimizing the memory footprint
is of exceptional value when loading very large
models. Thus we propose a dynamic memory man-
agement strategy for this issue.

Except for the model weights, the memory foot-
print includes the caches and the buffers. It is hard
to reduce the memory footprint of weights because
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they are inherent to the model. Similarly, The
K/V caches for MHA are also hard to compress
because they are pre-allocated to avoid runtime
memory requests, the size of which depends on the
model size, maximum batch size, and maximum
sequence length. Whereas the activation cache and
the buffers used to store the operator’s results are
compressible. Hence our dynamic memory man-
agement strategy mainly focuses on the activation
caches and the operation result buffers.

3.1 Cache Reuse

The caches include K/V caches and activation
caches. In incremental decoding, the keys and
the values for every step are stored for the next
step’s attention computation. The maximum size
of K/V caches is predictable because we can deter-
mine the maximum batch size and decoding steps
at the start of the running instance. We allocate the
maximum required memory in advance to reduce
the forward latency, avoiding malloc overhead and
memory corruption.

Different from K/V caches, the activation re-
sults are useless after we have calculated and
passed them to the next layer. The memory for
these activations can be reused across different lay-
ers and different operators. We could reuse the
activation caches in the following cases.

e The embedding operator shares the cache with
the feed-forward operator and the final output. Yet
the attention operator holds another cache because
of the residual connection.

e The cache for input sequences can be reused
by the decoded tokens. The maximum size is deter-
mined by the maximum input length.

e The cache can be reused across different layers.

We use the following notations: b, the maximum
batch size; s, the maximum sequence length; p, the
maximum prompt length; h, the hidden units; [, the
layer number. The total activation cache size is:

2xbxhx*xp



The total K/V cache size is :
2%bxh*xsx*l

3.2 Buffer Reuse

The continuous CUDA kernels are not always
fused, especially when it comes to Cublas GEMM
calls. So we need some buffers to store the returns
for those non-fused kernels. Managing the buffers
manually like FT is complicated and inefficient.
We develop a dynamic buffer manager to avoid
the tedium of manual design and achieve a highly
efficient memory allocation.

Memory Request

Buffer Create Buffer Reuse Buffer Create

To Buffer List To Buffer List

Set to Busy

Figure 2: The schematic diagram of buffer decision
strategy.

We maintain a list of buffers and use different
strategies within and across modules to improve
memory utilization. When within modules, we
reuse the buffer only when the request size is iden-
tical to an idle buffer in the list, preventing memory
fragmentation. When across modules, we reuse the
buffer when the request size is smaller than any idle
buffer in the list, avoiding duplicated malloc. The
decision process is demonstrated in Figure 2. In our
design, the developer only needs to request a buffer
of a specified size and mark it as idle when it is
useless, without concerning how to reuse memory
exactly. The total buffer size is:

bxpx* (6%h+nx*p)

where b is the batch size, p is the input length, h is
the hidden size, and n is the head number.
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4 Experiments

During inference, many factors can affect the ac-
tual performance, including model size, prompt
length, sequence length, padding ratio in a batch,
and hardware feature. Completely traversing all
combinations requires a huge amount of works.
Because the dataset has no effect on the experiment
results, we adopt the fake inputs for convenience.
To compare fairly and reduce our works, we de-
fine some typical experiment settings. If there is
no special instruction, the experiment is conducted
based on Configuration A in Table 1. Fairseq is
an intuitional baseline because it is implemented
using pure PyTorch code.

Table 1: Configuration A and B

CoNFIG A CONFIG B

BATCH SIZE 4 8

MODEL SIZE 1024 2048
MAX PROMPT 1024 1024
MAX SEQUENCE 1024 1024
DATATYPE FP16 FP16

4.1 Speedup for GPT-2 Layer with Different

Sequence Lengths

We first apply EET over GPT-2 on NVIDIA
2080ti and A100. Figure 3 and 4 reveal that
EET achieves about 4.48-20.27x and 4.30-27.43x
speedup than Fairseq and about 1.21-6.30x and
1.62-8.16x speedup than FT(v3.1), on 2080ti and
A100 respectively. For Fairseq and FT(v3.1), the
incremental decoding processes the input tokens
one by one, while EET improves the tokens paral-
lelism by processing input tokens all at once. As a
result, the speedup grows with the increase of the
input length.
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Figure 3: Inference speedup of EET with different
prompt lengths on 2080ti compared to Fairseq and
FT(v3.1).
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Figure 4: Inference speedup of EET with different

prompt lengths on A100 compared to Fairseq and
FT(v3.1).

The recent version of FT(v4.0) also introduces
the parallel decoding of the input sequences for
text generation as we did, so the performance of
EET and FT(v4.0) is getting closer with the input
length increasing. However, EET still has some per-
formance advantages, which are attributed to our
operation kernel optimization. Figure 5 shows that
EET achieves about 1.40-2.54x speedup compared
to FT(v4.0) with the configuration B in Table 1.
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Figure 5: Inference speedup of EET with different
prompt lengths on A100 and 3090 over FT(v4.0).

When processing a batch of inputs, the length of
them may be uneven. The FT(v4.0) uses the mini-
mum length of the prompts for full decoding, while
the EET uses the maximum length. For example,
if there is a batch containing sequences of different
length like [5, 2, 4, 10], the final prompt length
used for parallelism is 2 in the FT. In contrast, it
is 10 in the EET. Figure 6 shows that we make
2.74-4.42x speedup with the prompt fixed to 512
and other configurations keeping the same as the
configuration B in Table 1.

Unlike Fairseq and FT(v4.0), LightSeq only sup-
ports model sizes that are smaller than 1024, we
also make a comparison here as a supplement. Fig-
ure 7 shows that we make 0.82-2.46x speedup when
we set the model size to 768 and 1024.
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Figure 6: Inference speedup of EET with different
padding ratio on A100 and 3090 compared to FT(v4.0)
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Figure 7: Speedup compared to LightSeq.

4.2 Speedup for Transformer Decoder Layer
with Different Model Sizes

To prove the scalability of our EET, we evaluate
the performance on different model sizes with con-
figuration C in Table 2. Figure 8 and Figure 9
reveal that EET achieves about 2.25-7.50x speedup
than Fairseq and about 1.71-4.61x speedup than
FT(v4.0). The acceleration ratio decreases as the
model size increases due to the increased ratio of
matrix multiplication in the inference. Neverthe-
less, with the help of thread block folding, EET
can still deliver significant speedup with very large
model sizes, compared to Fairseq and FT(v4.0).

Table 2: Configuration C

CoONFIG C
BATCH SIZE 4/8
PROMPT 512
MAX SEQUENCE 1024
DATATYPE FP16

4.3 Speedup for Bert Layer on 2080ti

We conduct experiments to validate the perfor-
mance of the Bert encoder layer in EET on 2080ti.
It is worth noting that the padding tokens take up
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Figure 8: Speedup with different model sizes on 2080ti
and A100 compared to Fairseq.

= 3090 = A100

5

4

4.61
4.03
3.19 334 3.07
3 2.87
2.40
227 516 2.21

2 18017 1.93 1.95
0

1024 2560 4096 5120 12288
hidden size

speedup

1536 2048

Figure 9: Speedup with different hidden sizes compared
to FT(v4.0).

half of the total tokens. The result is shown in
Figure 10. Deprecation of the padding masks with
the mask fusion trick brings in 0.99-1.27x speedup.
As for Bert, its hidden size is fixed to 1024 and
it has no sequence mask, which kicks off the op-
timization of thread-block folding and sequence
mask fusion, then the speedup is not as significant
as GPT2.
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Figure 10: Performance speedup for Bert layer on
2080ti compared to FT(v4.0).

4.4 Memory distribution

Given the batch size 16, the maximum sequence
length 1024, the vocab size 13672, we plot the
memory distribution of the hidden size of 1024 and
4096 with layer numbers 24 and 40 respectively,
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as shown in Figure 11. Regardless of the hidden
size, we can find that model weights and K/V
caches occupy most memory. The activation caches
and the buffers only take up a small part, which
shows the effectiveness of our dynamic memory
management strategy.

params number(B)

Hweights Bkv M activation buffer

Figure 11: Memory distribution for 1024/4096 hidden
sizes.

Given the batch size 4, the maximum sequence
length 1024, we plot the memory occupancy of dif-
ferent model parameter sizes, see Figure 12. Com-
pared with the 10 billion of PyTorch’s maximum
model parameter sizes, it is up to 18 billion for our
EET, which proves that we can place much larger
models onto one GPU, thus avoiding unnecessary
waste of GPU resources and inter-GPU communi-
cation overhead on multiple cards.
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Figure 12: Memory occupancy for different model sizes.

5 Conclusion

This paper comprehensively describes a series of
optimization techniques for transformer inference
acceleration exploiting both algorithmic and GPU
hardware features. These techniques are packed
into the EET, a library dedicated to inference ac-
celeration for large transformer-based models and
long input lengths. EET has a 1.40-4.42x speedup
for the GPT-2 layer and a 0.99-1.27x speedup for
the Bert layer compared to the state-of-the-art trans-
former inference library FT. To make EET easier to



apply to a specific task, we provide operation level
and model level API, meanwhile integrating web
service with dynamic batching. We will continue
to improve and keep it up-to-date.
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