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Abstract

We present a system for document retrieval
that combines direct classification with stan-
dard content-based retrieval approaches to sig-
nificantly improve the relevance of the retrieved
documents. Our system exploits the availabil-
ity of an imperfect but sizable amount of la-
beled data from past queries. For domains such
as technical support, the proposed approach
enhances the system’s ability to retrieve docu-
ments that are otherwise ranked very low based
on content alone. The system is easy to imple-
ment and can make use of existing text ranking
methods, augmenting them through the novel
Q2R orchestration framework. Q2R has been
extensively tested and is in use at IBM.

1 Introduction

A document retrieval system typically solves a text
ranking problem defined as follows: given a query
x, a relevance score s(x,y) is computed for each
document y in the target collection D. Thus, the
text ranking problem can be equivalently cast as a
relevance-based binary classification problem (Lin
et al., 2020), where for each (z,y) pair, the label
is either “relevant” or “not-relevant”. A learned
probabilistic model can be used to provide the score
where s(z,y) o< Pr(relevant|z, y).

Typically, computing the relevance score s(x, y)
involves using the content of each document y.
For example, the keyword-based approach BM25
(Robertson and Zaragoza, 2009) employs sparse
bag-of-words representations of the query x and
the content y, f,(x) and fy(y), and then s(x, y) is
given by the inner product (f,(x), fa(y)).

Modern deep learning approaches learn a para-
metric classifier sg(x,y) that takes as input the
concatenated content of x and y. Such ap-
proaches may be computationally costly since
sp(x,y) needs to be evaluated for every y € D.
A two-stage approach is typically employed where
a small D' C D is first retrieved through a

Laura Wynter
IBM Research, Singapore
lwynter@sg.ibm.com

fast keyword-based method, then re-ranked with
sg(x,y). An alternative to this approach is to
learn a dense-representation (e.g. Reimers and
Gurevych (2019)) for both f, and f; and com-
pute s(z,y) = £(fy(x), faly)) where € is casy
to compute (e.g. the dot product) and f;(y) can be
pre-computed for every y € D. For simple &, the
top-scoring documents can be easily retrieved via
approximate nearest-neighbors (ANN) techniques.
The latter is appealing for real-world applications
due to its computational advantage.

While content-based methods have proven effec-
tive for general-purpose document ranking and are
in widespread use, there are circumstances where
using the content of the target documents is less
effective. A primary example is when the doc-
ument content is technical and queries are struc-
turally and linguistically different. Consider the
medical domain where documents concern medical
treatments. Queries may describe symptoms expe-
rienced, which need not be included in a database
of treatments. The availability of labeled examples
that map symptoms to treatment plans motivates
mapping queries from the labeled pairs to the best
treatment documents. The same occurs in other do-
mains such as information technology (IT), law, etc.
For these technical domains, where such curated
historical data often exists, we propose an approach
based on direct classification that relies on learn-
ing a classifier from the queries themselves to the
identity of the target document, without the need
for the content of the target documents. The pro-
posed method is complementary to content-based
approaches. Hence, to cover potential new queries
where similar labeled examples do not exist, we
provide an ensemble paradigm, called the Q2R Or-
chestrator — Q2R stands for “Query-to-Resolution”
— to obtain the best of both worlds.

In the proposed approach, each document y € D
is viewed as a class. We thus have a multiclass
classification problem with |D| classes. In prac-
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tice, |D| can be huge and is likely to increase with
time. Therefore, a parametric method for learning
a classifier may not be a good fit. We thus pro-
pose a nonparametric approach based on kernel
K -nearest-neighbors (KNN), which readily han-
dles a growing set of documents, D, and requires
only occasional re-tuning.

The KNN approach takes the similarity between
a new query x and past queries z’ in the training
set, rather than the contents of the documents y. In
addition to bypassing the problem of using long
document content, this approach allows retrieving
documents not reachable through content alone.
This ability is valuable in application domains such
as technical support, where the content may not
be well-represented in pretrained language models.
The effectiveness of the KNN approach is, however,
limited by the availability of labeled training exam-
ples and their coverage in terms of the “reachable”
documents in D. The Q2R Orchestrator thus com-
bines highly accurate results from KNN for queries
where labeled training data is sufficiently similar
with a standard content-based retrieval system, for
non-similar queries, through a learned orchestra-
tor. Empirically we show that the resulting system
benefits from both components.

The three main contributions of Q2R are as fol-
lows: (i) Q2R adds a direct classification compo-
nent to document retrieval based on kernel KNN
that enhances the ability to retrieve relevant docu-
ments. (ii) Q2R makes use of a labeled data set to
train a symmetric query-to-query similarity metric
for the kernel KNN, which enhances considerably
the system performance, and (iii) Q2R blends the
results from the KNN and content-based retrieval
methods through an optimized orchestrator.

2 Related Work

For a survey on text ranking, especially modern
transformer-based approaches, we refer the reader
to Lin et al. (2020). The majority of text-ranking
approaches, driven by publicly available datasets
such as those from TREC (Voorhees, 2004) and
more recently MS MARCO (Nguyen et al., 2016),
are content-based. These approaches range from
keyword-based, such as BM25 (Robertson and
Zaragoza, 2009), to the recent BERT-based (Devlin
et al., 2019) models such as re-ranking (Nogueira
and Cho, 2019; Dai and Callan, 2019; MacA-
vaney et al., 2019; Li et al., 2020) and full-ranking
with dense-representations (Reimers and Gurevych,

2019; Karpukhin et al., 2020; Khattab and Zaharia,
2020; Xiong et al., 2021).

In terms of ensembling multiple document re-
trieval approaches, the recent focus has been on
the computational cost, where faster techniques are
used to pre-filter the large document pool, to be
re-ranked by computationally more expensive but
more accurate techniques. A good example is the
work by Ganhotra et al. (2020), which combines
a series of traditional IR techniques with neural
approaches.

While content-based approaches benefit greatly
from models pre-trained with large corpora, they
are at a disadvantage in specialized domains involv-
ing technical support documents. In such domains,
the “resolution” documents given a query need not
have a high relevance score based on the content
alone. Document expansion techniques can play a
role but often fall short as compared to direct clas-
sification, as we demonstrate in this work. To the
best of our knowledge, there are no existing works
that combine a content-based approach with direct
classification as proposed in this work.

The proposed Q2R Orchestrator learns a separate
classifier to choose results from either the content-
based or the direct classification approaches. Tradi-
tional fusion techniques (Fox and Shaw, 1994; Vogt
and Cottrell, 1999; Aslam and Montague, 2001)
can be used here and in some settings may further
improve the retrieval performance. We leave this
as possible future work.

3 Method

3.1 Kernel KNN

A key component of Q2R is direct clas-
sification through kernel KNN. Let Z =
{(z1,91), (z2,92) ..., (xN,yn)} be the training
set of query-document pairs, where x; is the text
of a query and y; the identifier of the document
that was matched to each query in a curated dataset.
We emphasize that y; here refers to the document
identity only, and not its content. Note that there
may be more than one historical document y; for
any given historical query z;. Furthermore, there
are often many examples x;, x;, z; # x; with the
same document label y; = y;; this motivates the
use of a kernel-weighted voting paradigm. For
now, we assume that a feature function f is given
and f(x) € ® is defined for each z, where ® is a
finite-dimensional Euclidean space.

The kernel KNN is a generative model for clas-
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sification where the class conditional distributions
p(X|Y) are represented by a mixture:

1
pX=2zlY =y) = —

‘ y|(a¢’,y’)EZy

where Z, = {(2/,y') € Z : ¢y = y} and ¢ :
® — R is a kernel function, with the following
properties:

() >0, [D (u)du = 1.

A frequently used, smooth kernel function is the
. 2
Gaussian kernel ¢ (u) exp{—@}.
Given a query z, classification is done based on
the posterior, given by:
p(Y =y|X ==z)
x p(X =zlY =y)p(Y =y)

|3 X evw-sn ] ()
Y (@ y)ez,

x Y v (f@) - f@).

(x'y')eZy

In practice, the computation of the posterior
p(Y'|X) is restricted to only the K nearest neigh-
bors of  in the feature space ®. Let ZX(z) C Z
be the set of K nearest neighbors of x in ® based on
f(z) and Zf(az) = ZK(z) N Z,, then the kernel
KNN relevance score between x and y is defined
as

Ky = Y

(@ y)EZK ()

Here, K is a hyperparameter that is optimized
using a separate validation set. The feature function
f plays a critical role and is optimized through
metric learning on Z (Section 3.2). Notice that
the relevance score s between a query z and a
document y as defined in (1) depends only on the
features of x (the query) and x’ (training queries)
and never on the contents of the document .

3.2 Metric Learning

Q2R improves the relevance score s% in (1) by
fixing the kernel ¢) and optimizing the feature func-
tion f through metric learning. Assume that f is
parameterized by 6 € ©, and denote the particular
instance fp. In general, © can be a space of neu-
ral networks, and fy can range from linear to very
complex nonlinear mappings.

The objective is to find f such that f(x) is close
to f(«') if both (z,y) and (2, y) are in Z. In other
words, queries that have the same answers should
be close to each other in the feature space. We use
the triplet loss (2), a widely used objective function
for metric learning (Weinberger and Saul, 2009;
Schroff et al., 2015).

The idea is to create a set 7 of “triplets”
(x4, Tp, zy) from Z. Each triplet contains an an-
chor example z,, a positive example x,, that be-
longs to the same class as z, and a negative exam-
ple x,, that belongs to a different class. Given T,
we find:

2

(xll »Tp 7In)€7—

1fo(xa) = fo(wp) | =l fo(xa) = folzn)l[}
()

6" =argmin max{0,1 +

0cO

For large Z, the number of triplets can be huge.
We propose an iterative sampling approach similar
to that in Xiong et al. (2021) to optimize fy as
follows:

1. Initialize 6 randomly.
2. Set T « 0.

3. For each (z,y) € Z,

(a) Sample (2, y") from Z, — {(z,y)} with
weight ¢ (fo(x) — fo(a)); let xp < .
(b) Sample (2”,y”) from Z — Z, with
weight ¥ (fo(z) — fo(2")); let 2, 2"
(c) Let zq < z, add (24, zp, ) to T

4. Solve (2) for 6*; let 0 < 6*.

5. Evalute fy on validation set. Stop if no im-
provement after sufficiently many iterations.

6. Otherwise, go to step 2.

In Step 3, note that both the positive and the
negative examples are sampled based on their simi-
larities to the anchor example, preferring the more
similar ones. Empirically we find that this ap-
proach performs better than always choosing a
“hard” triplet i.e. picking the most dissimilar posi-
tive examples and the most similar negative exam-
ples. One reason could be that positive examples
form clusters that are far from each other and in-
cluding such distant examples in the triplet may
actually harm the learning process.

355



Dataset || # URLs # Training # Validation # Test

Twitter 3585 9622 493 472
Telco 1214 31,096 3859 3732
IBM 149,729 433,369 24,082 22,143

Table 1: Specifications of the Data Sets

Step 3 can be repeated for each (z,y) € Z to
produce multiple triplets. In our implementation,
for each anchor, we sample one triplet using the
weighted distribution as described above and an-
other triplet using uniform weights. For large Z,
one can use a subset of Z in Step 3. For general
neural networks, (2) can be solved using stochas-
tic gradient descent or its variants on minibatches
from 7.

3.3 The Q2R Orchestrator

As noted in Section 3.1, the content of a document
y is never used in the direct classification approach
via kernel KNN, only its identity. This relies on
the presence of a sufficient number of labeled ex-
amples (z,y) in Z for each y € D. In practice,
this will be possible for some, but not all, y, es-
pecially when the collection of documents, D, is
large. To provide answers to previously unseen,
or under-represented documents in Z, Q2R makes
use of a standard content-based retrieval approach
in conjunction with the kernel KNN method. This
is done through the Q2R Orchestrator.

Suppose that s€ is the relevance score for a
content-based approach while s is the relevance
score for kernel KNN described above. Suppose
that the objective is to return the top /2 documents.
For a given query z, let Y© = {y(cl) e y(CR)} cD
be the top R documents based on s and respec-
tively YK = {yg) . yg%)} C D the top R doc-
uments based on s%. The question of interest is
formulated as a binary decision: decide whether
to select Y or YK as the set of results to pro-
vide to the user. The Q2R Orchestrator thus trains
a binary classifier to make this decision. For ef-
ficiency we use a linear classifier trained using
logistic regression. To construct the training set,
we identify examples in the validation set where
the ground truth is contained in V¢ or YK, but
not both. The input features for the classifier
include minimally (sc(x,y((’l)), e ,sc(x,y(c;%)),
s (x, yg)), o sB(x, yg%))), and may include
other features such as confidence intervals.

4 Experiments

4.1 Data Sets

We focus on the task of natural-language retrieval
of technical documents. We evaluate the proposed
method along with baseline methods on datasets
in which labeled examples are available.! In par-
ticular, we use the Twitter and Telco datasets de-
scribed in Ganhotra et al. (2020) along with an
IBM dataset.

The Twitter dataset is publicly available. It con-
tains 10,587 labeled examples. Each example con-
sists of a sequence of dialog messages and a URL
document as the answer label. The set is split
90%/5%/5% for train/validation/test, respectively.
The Telco set contains 38,687 examples, with
an 80%/10%/10% train/validation/test split. The
IBM set is an order of magnitude larger than the
Telco set with a 90%/5%/5% train/validation/test
split. Table 1 summarizes the data sets used in our
experiments.

4.2 Models

Q2R allows for virtually any content-based method
to be used in conjunction with the kernel KNN
component. Furthermore, thanks to the availability
of training examples, the content-based approach
itself can be improved by augmenting the content
of the documents with the labeled examples us-
ing text from the corresponding training examples
(Amitay et al., 2005). We show that this augmenta-
tion improves considerably the performance of the
content-based approaches.

Here, as a baseline content-based method, we
use BM25 (Robertson and Zaragoza, 2009). The
variant wherein each document y € D is aug-
mented with text from {z : (z,y) € ZTn} is
referred to as BM25-aug. We also include results
obtained using the information retrieval method
proposed by Ganhotra et al. (2020) (IRC, short for
IR-Cascade) as well as ESIM (Chen et al., 2017).
In addition, we examine a number of content-based

'The documents in the IR data sets Robust04 and MS

MARCO are not sufficiently well-covered by the training set
for use with Q2R.
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methods based on Sentence-BERT (Reimers and
Gurevych, 2019). We fine-tuned a pretrained Dis-
tilBERT model (Sanh et al., 2019) on our data sets
using the triplet loss. To deal with long documents,
we use a similar technique as in Dai and Callan
(2019). We evaluate the following variants:

* SBERT-First (SB-F): Only the beginning of
each document is used, up to the maximum
sequence length of the model.

* SBERT-MaxP (SB-M): Each document is seg-
mented into overlapping sliding windows. For
training, each sub-document is assumed rele-
vant. For evaluation, the maximum relevance
score over all sub-documents is used.

* SBERT-aug-MaxP (SB-aug): SBERT-MaxP
with augmented content as described above.

For our proposed KNN-based direct-
classification component, we use kernel KNN with
the following similarity metrics:

* (BOW) A simple TF-IDF weighted bag-of-
words (BOW) representation for f(-) and
¢(u) o< 1 — 3|lull>. Each feature vector
f(z) is normalized such that || f(z)|| = 1,
in which case it is straightforward to see that

(f(x) = f(2') = (f(2), f(2")).

¢ (LinNet) We use (2) to train a linear transfor-
mation (LinNet) that maps the BOW vectors
to a low-dimensional space. The feature di-
mension is a hyperparameter optimized on a
validation set. We use dimension 200 through-
out. For ¢ we use the Gaussian kernel.

* (Transformers) For f(x), fine-tune a pre-
trained transformer architecture using (2).
We use DistilBERT (Sanh et al., 2019) (la-
beled KNN-DB) and MPNET (Song et al.,
2020) (labeled KNN-MP), both with final 768-
dimensional feature vectors. For ¢, we again
use the Gaussian kernel.

For the kernel KNN models, we use a valida-
tion set to select the number of neighbors, K €
{5, 10, 20,40, 80, 160, 320,640}.  The nearest-
neighbor search can be done via an index by
approximate-KNN (Malkov and Yashunin, 2020),
and is as such nearly as fast as BM25.

Recall@
MRR| 1 [ 3 | 5
Content-based
BM25 0.079 | 0.051 | 0.087 | 0.114
BM25-aug 0.498 | 0.403 | 0.561 | 0.629
IRC 0.498 | 0.417 | 0.547 | 0.606
ESIM 0.380 | 0.261 | 0.460 | 0.519
SB-F-0 0.030 | 0.015 | 0.028 | 0.042
SB-M-0 0.028 | 0.013 | 0.028 | 0.042
SB-aug-0 0.299 | 0.220 | 0.333 | 0.409
SB-F 0.449 | 0.375 | 0.489 | 0.545
(A) SB-M 0.482 | 0.384 | 0.536 | 0.598
(B) SB-aug || 0.546 | 0.449 | 0.600 | 0.663
Kernel KNN (ours)
BOW 0.477 | 0.409 | 0.525 | 0.568
LinNet 0.504 | 0.441 | 0.559 | 0.619
(C) KNN-DB | 0.542 | 0.462 | 0.612 | 0.661
Q2R Orchestrator (ours)
(A)+(C) 0.557 | 0.466 | 0.621 | 0.665
(B)+(C) 0.552 | 0.473 | 0.608 | 0.657

Table 2: Results on the Twitter set

4.3 Results

The results for the Twitter set are shown in Table 2,
in terms of both the Mean Reciprocal Rank (MRR)
as well as Recall@R for R € {1, 3,5}. The results
reported in Ganhotra et al. (2020) were obtained by
restricting the answer set to URLs from the same
company/domain; here we use the full URL set,
making the problem more challenging.

For the content-based approach, document-
expanded BM25-aug and IRC far outperform
vanilla BM25. Also included are results for the
three “SB-x-0" variants, which use the pretrained
DistilBERT model without any fine-tuning on the
Twitter training set. Again, we see that augmenta-
tion makes a huge difference. The best-performing
content-based approach is the fine-tuned SB-aug.
The KNN classification methods based on bag-of-
words perform similarly to the content-based meth-
ods but are outperformed by KNN-DB. Finally, it
is clear that combining both approaches with the
Q2R orchestrator results in the best performance.

Table 3 shows a breakdown of the results based
on training-set coverage of the ground truth URLSs.
For each test query, we use the term “training cov-
erage” to refer to the number of training examples
that share the same ground truth URL. In classifier
terms this is equivalent to the size of the training

357



Training coverage 0 1-9 | 10-55 | 56-338 | 339+

# Test queries 96 93 100 91 92
Content-based

BM25 0.075 | 0.131 | 0.160 | 0.021 | 0.001

BM25-aug 0.046 | 0.373 | 0.531 | 0.815 | 0.749

IRC 0.022 | 0.354 | 0.507 | 0.711 | 0.917

ESIM 0.063 | 0.149 | 0.371 | 0.559 | 0.776

SB-F 0.144 | 0.363 | 0.453 | 0.417 | 0.884

(A) SB-M 0.149 | 0.351 | 0.447 | 0.577 | 0.904

(B) SB-aug 0.089 | 0.382 | 0.612 | 0.782 | 0.884

Kernel KNN (ours)

BOW 0.000 | 0.268 | 0.420 | 0.817 | 0.913

LinNet 0.000 | 0.311 | 0.485 | 0.863 | 0.891

(C) KNN-DB 0.000 | 0.269 | 0.656 | 0.879 | 0.923

Q2R Orchestrator (ours)
(A)+(C) 0.090 | 0.313 | 0.608 | 0.859 | 0.937
B)+(©O) 0.069 | 0.368 | 0.602 | 0.815 | 0.930

Table 3: MRR by training coverage on Twitter set. Training coverage of 0 means documents not in training set.

Recall@
MRR| 1 [ 3 | 5
Content-based
BM25 0.033 | 0.012 | 0.034 | 0.049
BM25-aug 0.337 | 0.201 | 0.408 | 0.510
(A) IRC 0.444 | 0.294 | 0.532 | 0.633
ESIM 0.458 | 0.299 | 0.554 | 0.658
(B) IRC+E 0.481 | 0.327 | 0.596 | 0.691
SB-F 0.428 | 0.280 | 0.519 | 0.616
SB-M 0.432 | 0.287 | 0.524 | 0.612
SB-aug 0.420 | 0.284 | 0.511 | 0.596
Kernel KNN (ours)
BOW 0.484 | 0.346 | 0.569 | 0.656
(C) LinNet 0.496 | 0.370 | 0.599 | 0.665
KNN-DB 0.454 | 0.321 | 0.546 | 0.627
(D) KNN-MP || 0.493 | 0.360 | 0.591 | 0.661
Q2R Orchestrator (ours)
(A)+(C) 0.496 | 0.371 | 0.598 | 0.664
(A)+(D) 0.510 | 0.372 | 0.603 | 0.676
(B)+(D) 0.515 | 0.381 | 0.623 | 0.694

Table 4: Results on the Telco set

set with the same label. Training coverage of 0
means no such document was in the training set.
Naturally, for kernel KNN classification, we ex-
pect higher recall performance for queries with
larger training coverage. This can be observed in
Table 3 for all kernel-KNN models which far out-
perform on queries with coverage more than 10. On

MRR || Train | Validation [ Test |

SB-F || 0.498 0.433 0.428
SB-M || 0.506 0.438 0.432
SB-aug || 0.841 0.430 0.420

Table 5: Investigating Sentence-BERT performance on
the Telco set.

the other hand, kernel KNN has O-recall for doc-
uments with O coverage since no neighbors could
vote for such documents. The content-based ap-
proaches are able to perform on such queries. Q2R
benefits from both approaches, performing well on
queries with both high and low training coverage.

Table 4 shows the results for the Telco set. The
Telco set breakdown by training coverage is pro-
vided in the Appendix in Table 8. We see that
among content-based approaches, the BERT-based
approaches are no longer superior. Interestingly,
SB-aug performs worse than SB without augmen-
tation. Table 5 reveals that even though the fi-
nal model is picked based on the validation-set
results, there may be overfitting on the training set.
Amongst the KNN models, LinNet performs the
best overall, slightly better than the transformer-
based model. However, the breakdown in Table 8
shows that each excels in different subsets of test
queries. Q2R, combining IRC and KNN-MP re-
sults in better performance than combining IRC
and LinNet.
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Train. coverage 0 1-2 34 5-9 | 10-18 | 19-36 | 37-71 | 72-163 | 164-467 | 471+
# Test queries || 2457 | 2649 | 1576 | 2255 | 2243 | 2170 | 2191 | 2194 2204 2204
Content-based
(A) COMBL || 0.166 | 0.118 | 0.108 | 0.093 | 0.088 | 0.078 | 0.079 | 0.080 | 0.071 | 0.060

BM25 0.111 | 0.087 | 0.089 | 0.076 | 0.069 | 0.068 | 0.075 | 0.074 | 0.067 | 0.048
(B) BM25-aug || 0.077 | 0.100 | 0.128 | 0.164 | 0.198 | 0.225 | 0.294 | 0.303 | 0.302 | 0.262
(O)IRC 0.002 | 0.070 | 0.110 | 0.143 | 0.187 | 0.221 | 0.290 | 0.340 | 0.404 | 0.418
Kernel KNN (ours)
BOW 0.000 | 0.024 | 0.058 | 0.103 | 0.154 | 0.200 | 0.295 | 0.357 | 0.465 | 0.647
(D) LinNet 0.000 | 0.032 | 0.069 | 0.115 | 0.190 | 0.246 | 0.351 | 0.412 | 0.519 | 0.689
Q2R Orchestrator (ours)
(A)+(D) 0.050 | 0.052 | 0.081 | 0.117 | 0.188 | 0.241 | 0.345 | 0.409 | 0.513 | 0.683
(B)+(D) 0.012 | 0.039 | 0.073 | 0.116 | 0.189 | 0.245 | 0.349 | 0.412 | 0.517 | 0.686
(O)+(D) 0.000 | 0.032 | 0.070 | 0.115 | 0.190 | 0.246 | 0.351 | 0.413 | 0.519 | 0.688
(A)+(D) W. 0.139 | 0.100 | 0.104 | 0.116 | 0.148 | 0.177 | 0.247 | 0.306 | 0.401 | 0.578
(B)+(D) W. 0.073 | 0.097 | 0.122 | 0.158 | 0.199 | 0.228 | 0.304 | 0.341 | 0.394 | 0.515

Table 6: MRR by training coverage on the IBM set. Coverage of 0 means documents not in training set.

Recall@
MRR| I [ 3 [ 5
Content-based
(A) COMBL || 0.095 | 0.060 | 0.107 | 0.134
BM25 0.077 | 0.044 | 0.086 | 0.113
(B) BM25-aug || 0.204 | 0.131 | 0.234 | 0.287
(O) IRC 0.216 | 0.153 | 0.247 | 0.291
Kernel KNN (ours)
BOW 0.228 | 0.162 | 0.256 | 0.311
(D) LinNet 0.260 | 0.186 | 0.298 | 0.352
Q2R Orchestrator (ours)
(A)+(D) 0.266 | 0.194 | 0.306 | 0.358
(B)+(D) 0.261 | 0.186 | 0.299 | 0.353
(O)+(D) 0.260 | 0.186 | 0.298 | 0.351
(A)+(D) W. 0.231 | 0.168 | 0.266 | 0.315
(B)+(D) W. 0.242 | 0.162 | 0.273 | 0.327

Table 7: Results on the IBM set

Finally, Tables 6 and 7 show the results on the
large IBM dataset. LinNet is the best-performing
model for the kernel KNN. The transformer-
based models are too computationally-costly and
are not considered competitive; in addition, the
transformer-based model results are inferior to
those presented in the table. For content-based ap-
proaches on the IBM set, we include an alternative
to BM25, based on keyword enrichment, labeled
COMBL.

One important observation for this dataset is
that the KNN models significantly outperform the

content-based approaches in terms of overall av-
erage performance. This results in a significantly
unbalanced training set for the orchestrator, where
most examples would favor choosing the KNN re-
sults. The Q2R orchestrator can thus be trained
using a weighted loss such that examples where the
content-based model should be selected are given
more weight. We tag this weighted version with
“W.” in the tables. Observe that the unweighted
hybrid methods perform the best overall, but from
Table 6 we see that the weighted version gives a
more balanced performance across queries with
different levels of training coverage.

5 Conclusion

We presented the Q2R system aimed at providing
relevant documents in response to technical queries
in natural language. The key novelty in this system
is its use of both content-based document retrieval
techniques as well as the proposed kernel KNN ap-
proach, which taps into the available labeled data
from historical queries. Our experimental results
show that content-based document retrieval and
the kernel KNN approach complement each other;
Q2R is able to take advantage of both. The sys-
tem has been deployed at IBM on various applica-
tions that involve natural language queries and has
shown encouraging performance improvement over
existing systems. Potential future enhancements
include more sophisticated sampling procedures
for the metric-learning, as well as new fusion ap-
proaches for the orchestrator.
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A Appendix: Privacy

Since our training data includes past queries, it
is important to remove all sensitive or personal
information from the raw text before using them
for training. We employ both automated masking
and filtering followed by manual human tagging
(for truly sensitive queries) as a preprocessing step
in our data preparation pipeline.

B Appendix: Additional Experiment
Details

All our models are trained using single-GPU
(NVidia V100) 16-core machines with 128GB
RAM. The total training time for each model varies
from a few minutes (Twitter set, BM25) to a few
days (larger BERT-based models).

For bag-of-words models, we trim the vocabu-
lary by removing rare words and stop words, to
2000, 5600 and 54,000 words respectively for Twit-
ter, Telco and IBM data sets.

Our BERT-based models use pretrained Distil-
BERT (’distilbert-base-nli-mean-tokens’) (model
size 253MB) and MPNET (’all-mpnet-base-v2’)
(model size 418MB).

For most results, the variance due to
approximate-NN is small so we omitted them. For
results based on neural-network training, we report
averages based on at least 3 runs.

C Appendix: Additional Results

In Table 8 we present the Telco set breakdown
results by training coverage.
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Training 0- | 63- | 216- | 2009- | 4165
coverage 59 | 213 | 1557 | 2388
# Test 757 | 759 | 887 786 543
queries
Content-based
BM25 0.07 | 0.05 | 0.03 | 0.01 | 0.00
BM25-aug || 0.17 | 0.31 | 0.40 | 0.37 | 047
IRC 0.24 | 044 | 0.56 | 0.41 | 0.58
(A)
ESIM 0.17 1 0.31 | 0.54 | 0.59 | 0.75
IRC+E 0.17 | 0.36 | 0.58 | 0.61 | 0.75
(B)
SB-F 0.22 1 0.30 | 047 | 0.50 | 0.72
SB-M 0.23 1 0.30 | 048 | 0.56 | 0.64
SB-aug 0.21 { 0.31 | 048 | 0.52 | 0.63
Kernel KNN (ours)
BOW 0.15]028 | 0.52 | 0.70 | 0.87
LinNet 0.15 1035 | 0.56 | 0.63 | 0.89
©
KNN-DB || 0.11 | 0.29 | 0.52 | 0.60 | 0.83
KNN-MP | 0.15 | 0.35 | 0.61 | 0.65 | 0.77
(D)
Q2R Orchestrator (ours)
(A)+©O) 0.17 1 0.37 | 0.55 | 0.60 | 0.88
(A)+(D) 0.21 | 042 ] 0.62 | 0.60 | 0.75
B)+D) 0.1510.37 | 0.63 | 0.68 | 0.80

Table 8: MRR by training coverage on Telco set. Train-
ing coverage of 0 means documents not in training set.
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