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Abstract

An Entity Linking system aligns the textual
mentions of entities in a text to their corre-
sponding entries in a knowledge base. How-
ever, deploying a neural entity linking system
for efficient real-time inference in production
environments is a challenging task. In this
work, we present a neural entity linking sys-
tem that connects the product and organization
type entities in business conversations to their
corresponding Wikipedia and Wikidata entries.
The proposed system leverages Elasticsearch to
ensure inference efficiency when deployed in
a resource limited cloud machine, and obtains
significant improvements in terms of inference
speed and memory consumption while retain-
ing high accuracy.

1 Introduction

Companies that offer VoIP telephony products with
built-in speech and natural language processing
features aim to assist the customer support agents
with information relevant to the content of their
conversations with the customers. To be useful,
such assistance should be provided in near real-
time of the triggering utterance. In this paper, we
demonstrate how we build a near real-time entity
linking system at Dialpad1 to link the entities in
business phone transcripts to a knowledge base to
provide more semantically-informed assistance.

The entity linking task is usually comprised of
three steps: (i) detect the mentions in the given text,
(ii) generate a list of candidate entities relevant to
each mention, and finally (iii) link each mention
to its most relevant entry in the knowledge base
(Ravi et al., 2021). Note that entity linking systems
used in production should provide the optimum
performance in terms of both inference speed and
memory consumption while being used within a
limited computational budget. Since there are mil-
lions of entities stored in a knowledge base, the

1https://www.dialpad.com/

scaling issue is a major concern while developing
a real-time entity linking system.

The goal of this research is to develop a neu-
ral entity linking system to efficiently link product
and organization type entities in business phone
conversations to their respective entries in a knowl-
edge base for information extraction. For that pur-
pose, we present an extended version of the state-
of-the-art neural entity linker, the BLINK model
(Wu et al., 2020). Though BLINK was originally
proposed for entity linking on Wikipedia, we ex-
tend it for entity linking on Wikidata2 since unlike
Wikipedia, the Wikidata knowledge base contains
information related to the entities in a structured
way. Thus, it allows effective extraction of rele-
vant information for each entity. More importantly,
for production deployment, we also introduce sev-
eral new techniques that significantly reduce the
memory requirements, computational resource us-
age, and the inference speed of BLINK. More con-
cretely, our major contributions are stated below:

• We tackle the computational complexities
in BLINK by saving all pre-trained entity
embeddings in Elasticsearch3 and propose a
word matching technique to retrieve the can-
didate entities faster. We also present an ap-
proach to pre-compute the linking between the
Wikipedia page of each entity to its respective
Wikidata page to reduce the runtime latency.

• Extensive experiments show that our entity
linking system significantly reduces the infer-
ence time and memory requirements while
retaining high accuracy in a computation-
ally inexpensive machine. We also success-
fully deploy our entity linking system in a
10GB RAM machine (without GPU) whereas
the original model requires a machine in our
server having 60 GB RAM for inference.

2https://www.wikidata.org/
3https://www.elastic.co/elasticsearch/
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Figure 1: The Proposed Entity Linking System. First, our Internal NER model detects the mention in the given
text. Then we retrieve a list of candidate entities with their embeddings from Elasticsearch. At the same time, we
generate the contextualized representation of the input text using the pre-trained BLINK embeddings. Afterward,
we utilize the pre-trained BLINK Bi-Encoder to determine the entity that is the most relevant among the candidates
and finally we extract information related to that entity from our knowledge base in Elasticsearch.

2 Related Work

Prior work on entity linking mostly focused on link-
ing named entities to unstructured knowledge bases
like Wikipedia, whereas the amount of work that
used a structured knowledge base like Wikidata is
very limited (Shen et al., 2014; Sakor et al., 2020).
Though other knowledge bases like DBpedia (Auer
et al., 2007) or YAGO (Fabian et al., 2007) have
also been studied, the utilization of Wikidata as the
knowledge base to extract relevant information has
gained lots of attention recently (Lin et al., 2021;
Möller et al., 2021).

Detecting mentions (i.e., entities) in the given
text (Huang et al., 2015; Akbik et al., 2018) is an
important step for entity linking. In recent years,
utilizing the neural network architecture for men-
tion detection has been extensively studied (Wu
et al., 2020; Onoe and Durrett, 2020a). More re-
cently, the impressive success of the transformer
architecture (Vaswani et al., 2017; Devlin et al.,
2019; Yamada et al., 2020) in a wide range of natu-
ral language processing tasks has also inspired re-
searchers to apply transformer models for the entity
recognition (Lin et al., 2021) step in entity linking
(Ravi et al., 2021), which results in obtaining supe-
rior performance over the previously used recurrent
neural network-based models (Peters et al., 2018).

For the candidate generation step in entity link-
ing, early work mostly utilized various non-neural
network approaches such as TF-IDF or alias ta-
bles (Wu et al., 2020), whereas more recent work
utilized dense embeddings learnt via pre-trained
transformers to retrieve the relevant candidates (Wu
et al., 2020; Onoe and Durrett, 2020b). However,
there is an important limitation while generating
the candidates via pre-trained embeddings. For
instance, the state-of-the-art neural entity linking
model BLINK (Wu et al., 2020) loads the pre-

trained embeddings of all entities in Wikipedia
into memory. Thus, it becomes inapplicable for
deployment in production scenarios where the re-
quirement is to ensure lower memory consumption.
In this paper, we address this issue via storing the
pre-trained embeddings in Elasticsearch. Moreover,
we introduce new techniques that pre-compute the
linking between Wikipedia and Wikidata to ensure
efficient information retrieval, while also optimize
the pre-trained models to meet the goal of deploy-
ing the proposed system in a limited computational
resource setting.

3 System Overview

To develop the entity linking system, we adopt
BLINK, a neural entity linker that uses the
transformer-based BERT model (Vaswani et al.,
2017; Devlin et al., 2019) and trains it on Wikipedia.
BLINK connects each mention in a given text with
its respective Wikipedia page based on the overall
context. Since Wikipedia contains textual data in
an unstructured format, it is difficult to extract in-
formation from it. Thus, we connect BLINK with
a structured knowledge base, Wikidata, to extract
information about product and organization type
entities. Note that we store our knowledge base
as well as the embedding representation of each
entity in Elasticsearch. Moreover, we replace the
Flair Named Entity Recognition (NER) model (Ak-
bik et al., 2019) originally used by BLINK with
an NER model (we denote it as Internal NER)
trained on transcripts of business phone conversa-
tions using DistilBERT (Sanh et al., 2019).

We show our entity linking system in Figure 1.
At first, the input text is processed by the NER
model to detect the mention. Then, we generate
the representation for the input text using the pre-
trained BLINK embeddings, while we retrieve the
relevant candidates with their embeddings from
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Figure 2: Precomputing Wikipedia to Wikidata Linking.

Elasticsearch using the Multi Match Query4 feature
of Elasticsearch. Finally, the embedding represen-
tations of the input text and the candidates are sent
to the pre-trained BLINK Bi-Encoder to select the
most relevant candidate. Below, we first demon-
strate our proposed entity linking system: BLINK
with Elasticsearch, followed by describing how
we deploy our proposed system in production.

3.1 BLINK with Elasticsearch

The original BLINK model requires about 25GB
RAM to load all pretrained embeddings into mem-
ory. In our proposed system, we instead store these
embeddings in an external database. To do so,
we store all entity embeddings as dense vectors5

in our knowledge base in a remote Elasticsearch
server along with saving textual information, such
as Wikipedia title, description, URL, and etc. of
each entity. This allows the model to only load
the top K candidate embeddings into the memory
that are most relevant to the mention in a given
utterance. As mentioned earlier, the BLINK model
was trained over Wikipedia, while our goal is to
utilize Wikidata for information extraction. Thus,
we need to map the Wikipedia URL of each entity
to its Wikidata URL such that we can utilize Wiki-
data to extract relevant information. Below, we
first describe how we add Wikidata URL of each
entity to our knowledge base. Then, we demon-
strate how we retrieve the relevant candidates from
our knowledge base.

4https://www.elastic.co/guide/en/
elasticsearch/reference/current/
query-dsl-multi-match-query.html

5https://www.elastic.co/guide/en/
elasticsearch/reference/current/
dense-vector.html

Figure 3: Our Multi Match Query in Elasticsearch.

3.1.1 Pre-computing Wikipedia to Wikidata
Linking

We pre-compute the mapping between Wikipedia
and Wikidata using the Wikimapper6 API and add
the Wikidata URL of each entity to our knowledge
base in Elasticsearch (see Figure 2). This allows
our entity linking system to reduce the runtime
latency. Note that during the pre-computation step,
other information from Wikidata for each entity
can also be added to the knowledge base (for our
case, we add the instance of property as the entity
type).

3.1.2 Multi Match Query for Candidate
Retrieval

We find that the whole word or subword(s) in the
product or organization type entity names usually
appear in the Wikipedia title and description fields.
Thus, to retrieve the most relevant candidates, we
utilize the multi match query feature of Elastic-
search for each entity mention in the input text and
apply it to the title and description fields in our
knowledge base (see Figure 3). For multi match
query, we give more weight to the title field to make
it two times more important than the description
field. In this way, we retrieve the top k = 250 can-
didates from Elasticsearch and send to the BLINK
Bi-Encoder to select the most relevant entity.

3.2 Model Deployment

We deploy our entity linking system in containers7

in a Kubernetes8 cluster with 2 CPUs and 10GB
RAM. The deployed system architecture is shown
in Figure 4. For production deployment, we also
apply some optimization techniques to reduce the
size of the pre-trained Bi-Encoder, as well as our
knowledge base. We describe these below.

6https://github.com/jcklie/wikimapper
7https://cloud.google.com/

kubernetes-engine
8https://kubernetes.io/
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Figure 4: Deployed System Architecture.

3.2.1 Pre-trained Bi-Encoder Optimization

We noticed that the binary file of the pre-trained
BLINK Bi-Encoder had two type of tensors: one
for context encoding (for the input representation),
and the other for the candidate encoding. However,
the candidate encoding is only required during the
training phase and it is not required during the in-
ference stage since all the candidate embeddings
are already stored in our knowledge base in Elastic-
search. Thus, we remove the unnecessary candidate
encoding tensors from the binary file which results
in reducing the file size from 2.5GB to 1.2GB (50%
reduced space) to improve memory efficiency.

3.2.2 Knowledge Base Optimization

The original version of the pre-trained BLINK
model (Wu et al., 2020) learns the embedding rep-
resentations of 59,03,527 Wikipedia entities. In
total, the size of these pre-computed embeddings
is about 23GB. As our goal is to detect the Product
and Organization type entities in business conver-
sational data, we apply some filtering techniques
to optimize the knowledge base such that it mostly
contains the entities that are relevant to our NER
system. In order to do that, we utilize the Instance
Of property in Wikidata of each entity and remove
entities that are of Person, Disambiguation, Loca-
tion, etc. In this way, the size of the Knowledge
base is reduced from 23GB to 12GB (about 50%
reduced space), while the total number of entities
has been reduced from 59,03,527 to 27,84,042.

4 Experimental Details

In this section, we demonstrate the datasets used in
our experiments and the implementation details.

4.1 Datasets

To demonstrate the effectiveness of our proposed
approach, we conduct a series of experiments on
seven academic datasets as well as on a sample of
287 utterances collected from business conversa-
tion data. Below, we describe these datasets.

4.1.1 Business Conversation Dataset
As our goal is to develop an entity linking system
that can link entities in conversational data from
business domains, we sample some real world busi-
ness phone conversation transcripts. After data col-
lection, we use domain experts (in-house scientists)
to annotate the utterances to label the mentions
(i.e., product and organization type entities). Our
annotated business conversation data consists of
287 utterances that we use in our experiment for
evaluation.

4.1.2 Academic Datasets
Since our goal is to develop an entity linking sys-
tem to extract information for product and orga-
nization type entities, at first we pre-process the
academic datasets such that our model only links
product and organization type entities during ex-
periments. Similar to the original BLINK model
(Wu et al., 2020), we also did not leverage the
training data and only used the test data of each
dataset for zero-shot entity linking. In our experi-
ment, we use the AIDA-YAGO2-CONLL dataset
(testa and testb) from Hoffart et al. (2011) that con-
tains newswire articles from the Reuters Corpus;
the ACE 2004, AQUAINT, and MSNBC datasets
from (Guo and Barbosa, 2018) that were con-
structed from news articles; and the WNED-CWEB
(Guo and Barbosa, 2018) and the WNED-WIKI
(Gabrilovich et al., 2013) datasets that were con-
structed from CWEB and Wikipedia respectively.
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4.2 Implementation

Recall that instead of using the Flair NER model
(Akbik et al., 2019) used by the original BLINK
model, we train an NER model on phone transcripts
as our goal is to build the entity linking model for
real world business conversation data. For this pur-
pose, we adopt the pre-trained DistilBERT model
(Sanh et al., 2019) and fine-tune it on a business
conversational dataset collected from some phone
transcripts in Dialpad that contains 516124 train-
ing samples (16124 instances were annotated by
humans while 500k instances were pseudo labels
generated by the pre-trained LUKE NER model
(Yamada et al., 2020)). There were also 2292 hu-
man annotated samples in the validation set while
4497 human annotated samples in the test set. We
use the HuggingFace9 library (Wolf et al., 2020) to
implement the distilbert-base-cased10 model and
utilize it for the sequence labeling task with the
following hyperparameters: learning rate = 2e-5,
total number of epoch = 15, and batch size = 32.
To implement the BLINK model for inference, we
use its original source code11.

5 Results and Discussions

We denote our entity linking model that utilizes
Multi Match Query (MMQ) on Elasticsearch (ES)
as BLINK + ESMMQ. Here, we first discuss its per-
formance on our business conversation data. Then
we conduct experiments on some academic datasets
to demonstrate its generalized effectiveness.

5.1 Performance on Business Conversation
Data

Below, we present some baselines that we use to
compare the performance of our proposed model.
BLINK + PWB: This model adopts the original
BLINK model for entity linking on Wikipedia and
utilizes Pywikibot12(PWB) for linking between
Wikipedia and Wikidata.
BLINKFAISS + PWB: This model is similar to the
above but utilizes the approximate nearest neigh-
bour search using FAISS (Johnson et al., 2021).

9https://github.com/huggingface
10https://huggingface.co/

distilbert-base-cased/blob/main/config.
json

11https://github.com/facebookresearch/
BLINK

12https://www.mediawiki.org/wiki/Manual:
Pywikibot

BLINK + ESCS: This model is similar to our pro-
posed model but uses the Cosine Similarity (CS)
feature of Elasticsearch instead of MMQ to retrieve
the candidate entities.

For this experiment, we use the following evalu-
ation metrics, (i) average inference time: it refers
to how much time it takes on average per utter-
ance for entity linking, (ii) accuracy: it computes
the correctness of linking the named entities to the
Wikidata knowledge base, (iii) memory: it refers to
the RAM configuration of the Machine that had to
be used to run the model in Google Cloud Platform
(GCP)13 .

Since the utilization of GPUs significantly in-
creases the computational cost, we did not lever-
age any GPU in our experiments to mimic the
production environment. We show our experi-
mental results in Table 1 and find that our pro-
posed model significantly reduces the inference
time while achieving high accuracy. Moreover, we
were able to run our proposed model in GCP on an
n1-standard-4 machine having 15GB RAM with 4
CPUs whereas BLINK models with Pywikibot had
to be run on an n1-standard-16 machine having
60GB RAM with 16 CPUs (we failed to run the
model for inference due to memory leaks in other
n1-standard machines in GCP that had less RAM).

From Table 1, we also observe that the perfor-
mance of BLINK + ESCS model is the poorest
among all models. One possible explanation be-
hind this could be because the BLINK model did
not leverage cosine similarity during its training
phase and so zero-shot cosine similarity between
the embedding of the candidate entity and the in-
put embedding for candidate entity retrieval led to
poorer accuracy. Moreover, we observe that the
cosine similarity between embeddings is also very
slow in comparison to MMQ. Furthermore, we find
that our Internal NER is more effective than the
Flair NER (about 46%) and combining it with the
MMQ leads to the highest accuracy score of 93.03.

5.2 Performance on Academic Datasets

In this section, we further analyze the performance
of our proposed BLINK + ESMMQ model via con-
ducting experiments on seven academic datasets.
We particularly conduct this experiment to investi-
gate the generalized effectiveness of multi match
query. For this analysis, we use the BLINK +
ESCS model as the baseline where cosine similar-

13https://cloud.google.com/
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Model NER Avg. Inf. Time Accuracy Memory
BLINK + PWB Flair 2.45 62.72 60 GB

BLINKFAISS + PWB Flair 2.34 60.28 60 GB
BLINK + PWB Internal 2.79 91.64 60 GB

BLINKFAISS + PWB Internal 2.71 88.50 60 GB
BLINK + ESCS Internal 13.93 75.96 15 GB

BLINK + ESMMQ Internal 1.76 93.03 15 GB

Table 1: Experimental Results on a sample of 287 utterances. Here, “Avg. Inf. Time” refers to “Average Inference
Time in seconds per utterance”, “Memory” refers to the RAM configuration of the Machine that was used. Moreover,
we refer the DistilBERT model fine-tuned on phone conversational transcripts as the “Internal” NER model.

Datasets BLINK + ESCS BLINK + ESMMQ Total Instances
AIDA-YAGO2-CONLL (testa) 67.83 62.84 3407
AIDA-YAGO2-CONLL (testb) 63.74 65.64 3425

ACE 2004 75.12 82.95 217
AQUAINT 76.96 76.46 599
MSNBC 71.50 79.02 386

WNED-CWEB 54.98 61.15 8834
WNED-WIKI 70.07 74.10 5617

Table 2: Experimental Results on academic datasets based on Cosine Similarity (CS) vs Multi Match Query (MMQ).
Here, we use Accuracy as the evaluation metric.

ity has been used instead of multi match query. As
our goal is to deploy our model in a limited com-
putational resource setting to ensure less memory
consumption, we only use the models in this ex-
periment that can be run in a machine that do not
require more than 16GB RAM. For this reason, we
use the models that leverage Elasticsearch instead
of Pywikibot (we have already demonstrated in
our previous experiment on business conversation
data how our proposed method is more effective
in terms of both accuracy and efficiency than other
baseline models that utilized Pywikbot).

We show the results of our experiments in Ta-
ble 2 to find that in 5 out of 7 datasets, our pro-
posed method that uses multi match query instead
of cosine similarity outperforms its counterparts.
The only two datasets where our model could not
outperform the baseline are the AIDA-YAGO2-
CONLL dataset (testa) and the AQUAINT dataset
where cosine similarity outperforms multi match
query by 7.94% and 0.65% respectively. In other
datasets, our proposed BLINK + ESMMQ model
outperforms the BLINK + ESCS model by 2.98%,
10.42%, 10.52%, 11.22%, and 5.75% in AIDA-
YAGO2-CONLL (testb), ACE 2004, MSNBC,
WNED-CWEB, and WNED-WIKI datasets respec-
tively. Furthermore, we find during our experi-
ments that our proposed method outperforms its

Top K Avg. Inf. Time Accuracy
K = 100 1.53 89.55
K = 250 1.76 93.03
K = 500 2.30 94.08

Table 3: Case study results on our business conversation
data by varying the value to retrieve the top K candidates.
Here, “Avg. Inf. Time” refers to “Average Inference
Time in Seconds per utterance”,

counterpart in terms of inference speed in all 7
datasets (on average, 8 times faster). These findings
further validate the effectiveness of our proposed
BLINK + ESMMQ model for real world deploy-
ment in computationally limited resource settings.

So far, we discuss the effectiveness of our en-
tity linking system in terms of both accuracy and
efficiency based on extensive experiments in busi-
ness conversation data, as well as in benchmark
academic datasets. Below, we conduct a case study
to analyze how the top K candidates retrieval from
Elasticsearch impacts the overall performance.

5.3 Case Study
For the case study (see Table 3), we conduct ex-
periments with some additional values of K for
candidate retrieval to investigate its effect on ac-
curacy and inference speed. For that purpose, in
addition to the original value of K = 250 for the
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Model Avg. Inf. Time Accuracy
BLINK + ESMMQ 1.76 93.03
without BLINK 0.55 74.22

Table 4: Ablation test results on our business conversa-
tion data. Here, “Avg. Inf. Time” refers to “Average
Inference Time in Seconds per utterance”,

BLINK + ESMMQ model, we use the following
values: K = 100 and K = 500. We find that even
though reducing the value of K to 100 for can-
didate retrieval leads to a faster inference speed,
the accuracy is decreased by 3.74%. Moreover,
increasing the value of K to 500 provides an oppo-
site impact, as it improves the accuracy by 1.13%
but makes the candidate retrieval speed slower by
taking more than 2 seconds per utterance. This
trade-off implies that the retrieval value for K can
be tuned based on the requirement.

5.4 Ablation Study

To further investigate the effectiveness of our pro-
posed approach of combining BLINK with Elastic-
search via leveraging MMQ for candidate retrieval,
we do an ablation test. In our ablation test, we
remove BLINK and only utilize the MMQ of Elas-
ticsearch to retrieve the most relevant candidate. In
this way, only one top matched candidate entity
is retrieved from Elasticsearch. The result of our
experiment is given in Table 4.

From Table 4, we observe that even though re-
moving BLINK led to a great improvement in terms
of the inference speed, there is a significant drop in
accuracy (by 20.22%). This makes the model with-
out BLINK inapplicable in production scenarios
where the requirement is to ensure high accuracy.

6 Conclusion

In this paper, we introduce an efficient, scalable ver-
sion of the BLINK model and extend it for entity
linking on Wikidata. With extensive experiments,
we show that our proposed system is usable for
production environments within a limited budget
setting since it significantly reduces memory re-
quirements, computing resource usage, as well as
the inference time while retaining high accuracy.
We also effectively deploy our proposed entity link-
ing system in a 10GB RAM machine without using
any GPU for near real-time inference. In the future,
we will investigate how to make our entity linking
system more efficient such that it can give inference

in real-time (e.g., within one second). Moreover,
we will study how different BERT-based (Sanh
et al., 2019; Devlin et al., 2019; Liu et al., 2019;
Lan et al., 2019) sentence similarity models (Garg
et al., 2019; Laskar et al., 2020a,b, 2021) for can-
didate retrieval can impact the performance, while
also exploring different techniques such as dimen-
sionality reduction (Wang et al., 2016) to optimize
the space used in Elasticsearch as well as the com-
puting resource requirements.

7 Ethics Statement

The business phone conversational data used for
entity linking experiments is annotated by the in-
house Scientists for which the annotations were
acquired for individual utterances. Whereas to an-
notate the conversation dataset to train our internal
NER model, Appen was used (https://appen.
com/) for data annotation and the annotators were
provided with adequate compensation (above mini-
mum wages). There is a data retention policy avail-
able for all users so that data will not be collected
if the user is not consent to data collection. To pro-
tect user privacy, sensitive data such as personally
identifiable information (e.g., credit card number,
phone number) were removed while collecting the
data. Since our model is doing classification to
link the named entities to their corresponding en-
tries in a publicly available knowledge base for
information extraction, incorrect predictions will
not cause any harm to the user besides an unsat-
isfactory experience. We also maintain the licens-
ing requirements accordingly while using different
tools, such as Wikidata, WikiMapper, PyWikiBot,
Elasticsearch, HuggingFace, BLINK, etc.
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