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Abstract

Autoregressive transformer (ART)-based
grapheme-to-phoneme (G2P) models have
been proposed for bi/multilingual text-to-
speech systems. Although they have achieved
great success, they suffer from high inference
latency in real-time industrial applications,
especially processing long sentence.
In this paper, we propose a fast and high-
performance bilingual G2P model. For fast and
exact decoding, we used a non-autoregressive
structured transformer-based architecture and
data augmentation for predicting output length.
Our model achieved better performance than
that of the previous autoregressive model and
about 2700% faster inference speed.

1 Introduction

The voice generated by speech synthesis is getting
used to through various real-world services, such as
dubbing in video contents and news article-reading
services. In text-to-speech (TTS) system, there
are several text processing like Text normalization,
predicting phonological phrasing and Grapheme-to-
phoneme (G2P). As one of them, the G2P module
convert text to phonemes and it has been studied in
various ways (Deri and Knight, 2016; Yolchuyeva
et al., 2021; Sun et al., 2019a; Kim et al., 2021;
Choi et al., 2021). Monolingual G2P researches
have the most conducted, although recently bilin-
gual or multilingual G2P research is also being
actively performed (Clematide and Makarov, 2021;
Yu et al., 2020; Bansal et al., 2020; Gautam et al.,
2021). Most of the proposed models with high per-
formance are based on autoregressive transformers
(A.Vaswani et al., 2017) in both monolingual and
multilingual G2P. However, these models suffer
from high inference latency, which is sometimes
unacceptable for real-time TTS applications that
generate long speech synthesis sounds, such as
news sentences. A previous study (Kim et al., 2021)
used a simple model structure with a few features

and batch inference for fast inference speed; how-
ever, there were limitations in specific language
characteristics.
In this paper, we propose a high-performance bilin-
gual G2P model that has an fast inference speed
that enables real-time service. For an efficient ex-
pression for each language, byte-level representa-
tion input and a language index are used as the
main inputs, and for fast decoding, the transformer
model is based on a non-autoregressive structured
decoder (Sun et al., 2019b). Because the length of
the estimated output used in the non-autoregressive
structured decoder has a great impact on the G2P
accuracy, a sub-network and a data augmentation
technique are used to better infer the output length.
In addition, we experimented with the difference
between training the whole input unit (sentence)
and the tokenized unit.
We conducted experiments for different language
systems, such as European which have a small num-
ber of graphemes and East Asian ones which have
a large number of graphemes. We chose two lan-
guages for bilingual G2P model; English and Ko-
rean. Experimental results showed that, despite
significantly losing speed, our non-autoregressive
transformer-conditional random field (NART-CRF)
based G2P model achieved better performance than
those of previous ART models. When it is applied
to an actual service system, we can generate the
phonemes of several languages with one model, in
addition to the speed and high accuracy applicable
to real-time TTS application.

2 Related work

2.1 Multilingual G2P

Recent works propose various methods for multi-
lingual natural language processing (NLP) tasks
such as machine translation (Aharoni et al., 2019;
Zhang et al., 2020) and language model (Pires et al.,
2019). A few multilingual G2P studies are also in



progress.
The benchmarks for multilingual g2p is provides
and utilized various G2P models : A neural trans-
ducer system using an imitation learning paradigm
(Ashby et al., 2021), studies building an ensemble
of several different sequence models (Vesik et al.,
2020; Gautam et al., 2021; Clematide and Makarov,
2021). Meanwhile, there is a neural multilingual
G2P model with byte-level input representation (Yu
et al., 2020). On this wise, most of the autoregres-
sive sequence models are used to learn phonemes
of various languages. But, the autoregressive fac-
torization makes the inference process hard to be
parallelized as the results are generated token by
token sequentially. Therefore, these models have
limitations in applying them to real-world process-
ing services, especially dealing with long sentence,
because the inference time increases linearly with
the length of the generated phoneme output.

2.2 Fast decoding

For various tasks, the transformer (A.Vaswani et al.,
2017) model achieve good performance. However,
the autoregressive method suffer from high infer-
ence latency. Therefore, there are several studies
to solve this problem. Since decoding takes a high
inference latency, the deep-encoder and shallow-
decoder architecture is proposed and it improve
the inference speed (Kasai et al., 2021). For par-
allelism, the non-autoregressive sequence models
are proposed and applied it to the machine trans-
lation and speech synthesis (Gu et al., 2018; Sun
et al., 2019b). The non-autoregressive sequence
models improve the inference speed; however, they
cannot get results as good as their autoregressive
counterparts that generate each token in the tar-
get sentence independently. To decode token co-
occurrence be guaranteed, a structured inference
module is included in the non-autoregressive de-
coder (Sun et al., 2019b). In this study, we follow
the structure (Sun et al., 2019b) to apply G2P task
and achieve great performance.

3 The proposed model

This section describes the proposed model for fast
bilingual G2P conversion. The overall structure of
the model is shown in Figure 1.

3.1 Byte-level representation input and
sentence/token-level input

Following the method of Yu et al. (2020), the pro-
posed model uses an input with a byte-level repre-
sentation for the efficient representation of multiple
languages. Each character is expressed at the byte
level based on the UTF-8 encoding. This expres-
sion can reduce the size of the input vocabulary,
and the number of elements of the byte-level vo-
cabulary is constrained to be not greater than 256.
In this study, two experiments were performed:
processing of the entire sentence as the input, and
tokenizing of the sentence and processing of each
token as one batch.
Processing of the entire sentence as the input
: The input sentence encoded at the byte level
and the language index of the input are used as the
inputs to the model. Using the entire sentence as
the input is good for inferring the correct pronunci-
ation sequence according to the meaning because
it learns by considering the context of the entire
sentence together. On the other hand, if the dataset
is divided by language, as in this experiment, it
is necessary to separate and process the language-
mixed sentences for each language when inferring
the pronunciation sequence.
Processing of the input token unit : First, a given
input sentence is divided into tokens using an ap-
propriate tokenizer for the language. In the case of
Korean and English, a tokenizer that separates the
space-delimited orthographic words (tokens) was
used in this study.
Here, in the case of Korean, there is a point to
be particularly careful about. The pronunciation
of the first syllable or the last syllable of a token
may change depending on whether the tokens are
read after a break or not. Therefore additional fea-
tures were needed to connect the separated tokens
naturally in the final G2P results. Following the
method of Kim et al. (2021), we used the phonolog-
ical phrasing information between tokens. More-
over, for the first and last syllables of token to be
naturally connected with each front/next token, in-
formation on the ending or beginning of the part
to be connected is required. For example, for the
input as shown in the Figure 2, each token’s input
elements in the input sentence are as follows: A
language index, a input token xt to be converted
to a byte-level representation (part a), two phono-
logical phrasing information on both sides of the
token (part b), a last jaso (orthographic phoneme



Figure 1: The overview of proposed model

Figure 2: The example of composition of features for
each token in a sentence

segments) in front token xt−1 (part c) and a first
jaso in next token xt+1 (part d).
They are concatenated with each token, and the
entire token in the sentence is composed of one
batch, so that it learns and infers at once. In this
way, if it is configured in token units, it is not nec-
essary to separate the language-mixed sentences
for each language and compose the input, and it is
possible to infer faster with relatively short input
and output lengths. On the other hand, tokenizers
for each language are required, and there is a limit
for including context information rather than the
entire sentence unit.

3.2 Transformer-based structured decoding
model for G2P conversion

The model design follows the NART architecture
with CRFs. For more information on the model,
see A.Vaswani et al. (2017); Gu et al. (2018); Sun
et al. (2019b).

NART-based model : Like in the ART model,
the encoder of our model takes the embeddings
of the input tokens and their additional features
as the input and generates a contextual represen-
tation. Following the decoder in NART-CRF, the
decoder independently decodes each pronunciation
token given a sequence length T ′ and a decoder
input z. We also uses the decoder input formed
the padding symbol ‘[pad]’ followed by the end-of-
sentence symbol ‘[eos]’. The transformer model
utilizes multi-head self-attention and multi-head
encoder-decoder attention. In contrast to the ART
model, multi-head positional attention in the de-
coder is also used to make word orders within a
sentence or a token. In our model, each decoder
layer refers to the output of each encoder layer with
the same depth. It follows the model architecture of
Yu et al. (2020) and performs better than the exist-
ing architecture in our experiment. The point-wise
feed-forward network consists of two layer with a
ReLU activation function and is applied after using
multi-head attention in both the encoder and the
decoder.

Structured inference module: Like in Sun et al.
(2019b), a linear-chain CRF is incorporated into the
decoder part to make richer structural dependencies.
We also jointly trained the CRF module with neu-



Figure 3: The sub-network for predicting and using
output length

ral networks using a negative log-likelihood loss
LCRF . In the context of G2P conversion, we use a
“phoneme” for the decoder output and decode its
highest scoring sequence.

3.3 Predicting output length for decoder

In the NART-CRF structure, an input of a specific
length is used as the input z of the decoder. The
length of this input has a great influence on infer-
ring the final output of the model. Through several
experiments, we realized that it is not easy to pre-
dict the exact output length using only the encoder
output. Even if it is long or short by a small number
such as 1 or 2, the pronunciation sequence can be
generated incorrectly, which greatly affects the per-
formance. So, while adding a layer or sub-network
to predict the output length T ′, we applied a data
augmentation technique that can supplement the
decoding process despite incorrect prediction val-
ues.
Sub-network for predicting the output length
In the G2P task, the prediction of the input and
output lengths of the decoder has a greater effect
on the overall accuracy than that in the machine
translation task (Sun et al., 2019b). We added a
sub-network to infer the phoneme sequence length
exactly, as shown in Figure 3. The sub-network fol-
lows the model proposed in Yang et al. (2020); how-
ever, it differs in the prediction of an output length

that is continuous in nature using linear regression
rather than softmax at the end of the model.
Data augmentation As mentioned above, the
length of the sentence is very important in the
phoneme sequence of the G2P model. Therefore,
even if the sentence length is incorrectly predicted,
it should still be used to generate a phoneme se-
quence with the correct length. Thus, we trained
model to guess correctly actual output length by
padding by the length that exceeds the actual length
even in a sequence that is a little longer than the
actual output length. To this end, data augmenta-
tion was performed by pairing an output with an
output length of 1 or 2 longer in addition to the
existing dataset and filled with a padding tag with
an existing input.
Joint training with regression loss: Our train-
ing loss L is the sum of the CRF negative log-
likelihood loss LCRF and the mean square error
(MSE) of the sub-network as loss Llength. :

L = LCRF +Llength = − logP (y|x)+(T −T ′)2

(1)

4 Experiments

4.1 Experimental settings

We collected scripts of domains used in real-world
services and constructed a Korean and English G2P
dataset by labeling it from speech. A voice actor
read a Korean or English script naturally, and tag-
gers dictated the phonological phrasing information
and pronunciations exactly as they heard them. We
used 20,000 sentences in each language for training
and 200 samples in each language for testing. Each
sentence consisted of an average of 12.45 tokens
(words in English and Eojoel in Korean) and the
average length of output for each token is 5 and
the maximum is 29. The phonological phrasing
information used in this model is mainly composed
of the intonation phrase (IP), accent phrase (AP),
clitic, and end of sentence (sb). IP refers to reading
with a pause, and AP refers to a delimitation. The
size of input vocabulary of bilingual was 110 and
the number of phonemes was 42 in Korean and 39
in English.
We used the default network architecture of the
original base transformer (A.Vaswani et al., 2017),
which consists of a four-layer encoder and a four-
layer decoder.



4.2 Inference

In the training process, to generate an accurate
phoneme sequence, we performed data augmenta-
tion so that the pad was filled even when a length
exceeding the actual length was predicted. In fact,
the model predicted a length that was a few smaller
or longer than the actual output length. So, we bias
the predicted length so that the decoder’s input is
made longer than the actual output length in most
cases. It is intended that the pad will eventually
be filled in to generate a phoneme sequence of the
correct length.
We evaluate the average per-sentence decoding
latency with a single NVIDIA Tesla V100 GPU
for the ART-G2P and our models to measure the
speedup.

4.3 Evaluation

We use metrics for evaluation; the phoneme error
rate (PER), accuracy (Acc) and accuracy of length
(L-Acc). PER is the average of Levenshtein dis-
tance between the reference and predicted phoneme
sequences that divided by the number of reference’s
phonemes. It used in the evaluaton of the G2P
(Yu et al., 2020). Acc is the percentage of sen-
tences in which the predicted output completely
equals the reference one. L-Acc is the percentage
of sentence’s lengths in which the predicted length
completely equals the actual one.

4.4 Results : ART vs NART

Table 1 shows the performance of the ART (Yu
et al., 2020) with sentence-level and the proposed
G2P model with a sentence- or token-level input.
While ART-G2P shows high accuracy, the infer-
ence time is very long. When time was measured
for each area, the average encoding and decoding
time was 40/66ms, but since ART continuously
decodes as much as the output length, the time in-
creases linearly as much as the output length. On
the other hand, the proposed NART-CRF based
model trained at sentence-level showed about 22
times faster speed than ART-G2P; but, it was less
accurate than ART-G2P. The model trained in token
unit showed higher accuracy with about 27 times
faster inference speed, confirming that it is a fast
and accurate model structure.
In the Korean dataset, the proposed model has out-
performs ART. It is analyzed that the richer struc-
tural dependencies and using features for natural-
ness are helpful.

Figure 4: Results with predicted output length (biased
or not)

In the case of the proposed model, the token-level
showed higher performance in both languages be-
cause the shorter input length is more advantageous
in predicting the output length. In actual, the dis-
tribution of the difference between the actual and
predicted length in the case of sentence-level, was
a large deviation, which caused a lot of errors.

4.5 Ablation study about augmentation

The Table 2 is an ablation study showing whether
the method described in Section 3.3 is effective.
The compared models are three models trained at
sentence-level : Model 1 incorporating regression
layer for predicting output length in NART-CRF,
Model 2 trained with data augmentation in the same
structure as Model 1, Model 3 incorporating sub-
network for predicting output length and trained
with data augmentation. Figure 4 shows how much
the predicted sentence length differs from the ac-
tual sentence length.
Looking at the sentence length prediction result of
Model 1, it is inferred a lot with approximations
around the actual sentence length, so the sentence
length accuracy is only 54.5%. Model 2 has a
slightly higher value for accurately predicting the
length than Model 1. Through this, it can be seen
that data augmentation is effective in accurately
predicting the length of a sentence by filling the
‘[pad]’ tag even in sentences that are longer than the
actual length. However, since data augmentation
was performed only in cases of be longer, there are
still cases in which it is not applied for shorter than
actual length. Therefore we used the predicted sen-
tence length with a bias of 2, and actually showed
a big increase in performance.



Model Language Acc (%) PER Inference time (ms/sent)
ART-G2P Merged 83.25 0.62 3830

English 92.50 0.43
Korean 74.00 0.82

Sentence-level NART-CRF G2P Merged 81.00 0.64 177.15 (×22)
English 84.50 0.72
Korean 77.50 0.56

Token-level NART-CRF G2P Merged 87.75 0.43 140 (×27)
English 93.00 0.38
Korean 82.50 0.49

Table 1: The table shows results of the ART-G2P and proposed NART-CRF G2P models with sentence and token
level training. We evaluate accuracy, PER of model and inference time in each language.

Model Acc (%) PER L-Acc (%)
Model 1 ; NART-CRF 48.75 2.91 54.5
Model 2 ; NART-CRF + augm 63.75 1.48 69.0
Model 2 + biased 81.50 0.80 89.5
Model 3 ; NART-CRF w/subNN + augm 24.50 4.22 27.0
Model 3 + biased 81.00 0.64 87.8

Table 2: The Ablation study about data augmentation and bias

In the case of Model 3, the accuracy of length
was very low at 27% because the sentence length
was often predicted shorter than the actual length,
but when the sentence length was biased dur-
ing inference, the length prediction accuracy in-
creased significantly. In fact, looking at the gen-
erated result, when the actual sentence length is
14 and the biased inference sentence length is
17, the pronunciation sequence is generated as
y = {y0, y1, ..., y13, pad, pad, pad}. If ‘[pad]’
tags are deleted in post-processing, the inference
result and the correct answer were matched. The
proposed method of biasing the predicted sentence
length and data augmentation makes predict the
correct length through an additional decoding pro-
cess, even at the wrongly predicted length.

4.6 In real-time TTS application

We applied it to the industrial TTS system. In
our system, bilingual TTS attempts to generate a
pronunciation sequence based on a specific lan-
guage for an input with mixed languages. To this
end, numbers and symbols are normalized based
on a specific language, and each language goes
through processing such as estimation of phono-
logical phrasing information for each language. In
bilingual G2P, the phoneme sequence is generated
with the grapheme processed for each language for

the input with mixed languages and then connect
the results.
We utilized the Open Neural Network Exchange
(ONNX) 1 to apply to a TTS system running in
a CPU environment2. ONNX is an open-source
machine-independent format and widely used for
exchanging neural network models. First, our
model implemented in tensorflow was exported
to ONNX format, and inference was performed us-
ing Onnxruntime 3. Onnxruntime is a accelerated
inference and training engine for ONNX models.
It performs hardware acceleration through graph
optimization, graph partition and then distributed
runner.
We applied our model to a real-time processing sys-
tem and inferred at an average speed of 40ms/sent
for 1000 sentences. In addition, we measured the
Real Time Factor (RTF) when only the monolin-
gual G2P module used in the existing system was
changed to our model. As our Unit-selection Text-
to-Speech (UTS) system, it is judged that real-time
processing is possible only when the volume of
processing is less than 0.1RT. When 500 sentences
were processed for each language, 0.026 to 0.037
RTx for Korean and 0.033 to 0.057 RTx for English

1https://github.com/onnx/onnx
2Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz (40 cores)
3https://onnxruntime.ai

https://github.com/onnx/onnx
https://onnxruntime.ai


were measured, confirming that real-time process-
ing was possible.

5 Conclusion

In this study, a structure of a NART-CRF was pro-
posed for fast bilingual G2P with real-time pro-
cessing. For bilingual, input of byte representation
was used, and additional sub-network and data aug-
mentation techniques were used for accurate out-
put length inference. The proposed model showed
higher accuracy than the existing ART-G2P and
at the same time showed about 27 times faster in-
ference speed. In addition, when applied to an
industrial TTS system, the speed was improved to
a level capable of real-time processing.
In future work, we will study a model with con-
textual information or representation of language
model to solve some error cases caused by lack
of context. Furthermore, we will experiments
with fast "multilingual" G2P by expanding the lan-
guage types to Chinese, Japanese, and European
languages. As a result of testing two different lan-
guage system (i.e. European and East Asian), It is
expected that expansion of languages, which others
in same language group, will be possible. Addi-
tionally, considering the accents and tones used in
languages such as English and Chinese, and train-
ing on an unbalanced dataset remain issues to be
resolved.
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