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Abstract

Text-based adversarial attacks are becoming
more commonplace and accessible to general
internet users. As these attacks proliferate, the
need to address the gap in model robustness
becomes imminent. While retraining on ad-
versarial data may increase performance, there
remains an additional class of character-level
attacks on which these models falter. Addi-
tionally, the process to retrain a model is time
and resource intensive, creating a need for a
lightweight, reusable defense. In this work,
we propose the Adversarial Text Normalizer,
a novel method that restores baseline perfor-
mance on attacked content with low computa-
tional overhead. We evaluate the efficacy of the
normalizer on two problem areas prone to ad-
versarial attacks, i.e. Hate Speech and Natural
Language Inference. We find that text normal-
ization provides a task-agnostic defense against
character-level attacks that can be implemented
supplementary to adversarial retraining solu-
tions, which are more suited for semantic alter-
ations.

1 Introduction

Natural language processing (NLP) models help
preserve the integrity of discourse in online social
networks by detecting hate speech, misinformation,
and other content that violates community poli-
cies (Halevy, 2020). In these application scenarios,
classifiers operate under significantly more adver-
sarial conditions than in the standard paradigm of
model development. Users often post content that
is heavily altered in order to induce worst-case
errors, dramatically reducing model performance
relative to a standard test set. Recent research in
machine learning has made strides towards build-
ing robust models to defend against sophisticated
adversaries. Nevertheless, our experience and ex-
periments show that models remain vulnerable to
many simple and intuitive attacks.

One such class of highly-effective attacks are
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Figure 1: This figure showcases that text normalization
is able to restore baseline scores on the Learning From
The Worst (LFTW) test set for several augmentation
types. The model scores in this graph are the averaged
scores across all five LFTW models. To see the raw
evaluation results, view Table 4 in the Appendix.

syntactic attacks, which include adding punctua-
tion and spacing, replacing fonts, and inserting
zero-width characters. Attackers commonly em-
ploy these methods with little or no expert knowl-
edge of machine learning algorithms, and consti-
tute a large proportion of practical threats to natural
language processing models deployed in industry.
In our experiments on state-of-the-art robust NLP
models, such attacks can decrease a model’s perfor-
mance by more than half. Thus, these text-based
attacks remain a serious and unaddressed problem
for the at-scale deployment of language models in
integrity areas.

The literature has proposed methods to improve
adversarial robustness by retraining models on
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“hard” and adversarial examples (Nie et al., 2020;
Vidgen et al., 2021) but we observe several open
challenges with applying these approaches. First,
as our experiments demonstrate, even state-of-the-
art models trained on multiple iterations of ad-
versarial data continue to lack robustness to eas-
ily accessible syntactic attacks. For example, in
Figure 2, inserting zero-width characters reduces
a hate speech classification model’s accuracy to
less than 15%. Second, these approaches are not
amenable to quick iteration. Whenever a new ad-
versarial attack becomes more prevalent, a model
developer would need to collect new data or cre-
ate synthetic examples of such attacks, retrain the
model, and redeploy it. This costs time, compu-
tational resources and has an environmental im-
pact (Wu et al., 2021).

To address these outstanding issues, we propose
a novel lightweight and easily extensible method
for recovering model performance in the face of
adversaries who perform syntactic attacks. Our
key insight is that many adversarial modifications
can be undone before they even reach the model
with little computational overhead. From a ma-
chine learning perspective, this can be thought of
as restoring the distribution of inference-time in-
puts to the original distribution on which the model
was trained. From a computer security perspective,
this method is analogous to sanitizing the inputs to
programs so as to make the input safe for further
processing. In this work, we present the design and
implementation of a system called the Adversar-
ial Text Normalizer (ATN), that achieves this goal.
This iterative approach produces a defense mecha-
nism that can be applied at scale in a lightweight
fashion to ensure robust model performance.

An important principle in computer security
is that defense mechanisms should be evaluated
against adaptive adversaries (Petitcolas, 2011),
i.e. those that can adjust their techniques to ac-
tions by the defender. Therefore, we also partner
with red teaming experts skilled at creating novel
adversarial inputs to classical computer systems to
conduct an adaptive evaluation of the ATN. Our
text normalizer can provide sufficient robustness
gains even in the face of such adaptive adversaries.

Our contributions are as follows:

* We design and implement a system for undo-
ing syntactic attacks on textual models called
the Adversarial Text Normalizer.

* We conduct an adaptive attacker red teaming

exercise to evaluate the ATN’s performance
against skilled human adversaries.

* Through extensive experiments on three differ-
ent benchmarks, we evaluate the performance
of the ATN and conclude that it successfully
recovers the original performance of a model
when faced with syntactic attacks.

2 Related Work

Several papers have introduced benchmarks for ad-
versarial attacks on NLP systems. Attacks focused
on preserving semantic content and grammar (Jin
etal., 2020; Alzantot et al., 2018; Iyyer et al., 2018)
have been shown to be effective against state-of-
the-art models at the cost of requiring a greater
understanding of the sentence structure and task
context. In contrast, Eger and Benz (2020) propose
a benchmark of character level, orthographic per-
turbations as more realistic attacks in general appli-
cations, attributing the success of their high perfor-
mance attacks to large out-of-vocabulary rates and
disruption to tokenization. Other work (Eger et al.,
2019; Boucher et al., 2021) investigates the replace-
ment of characters with visually similar embedding
spaces and the insertion of zero-width characters,
noting the effectiveness of those methods against
NLP models but marginal effect on human legi-
bility — especially when perturbing key offensive
words. For such targeted attacks, (Rodriguez and
Rojas-Galeano, 2018) use a simple string match-
ing algorithm to filter obfuscated and negated key
words (Rojas-Galeano, 2017), focusing on a lim-
ited list of target vocables on each pass.

Our work focuses on the implementation of text
normalization as a computationally inexpensive
and reusable solution to mitigate a range of highly
accessible but effective adversarial text attacks such
as character insertions, replacements, and censor-
ship. Concurrent work in the NLI domain has ad-
dressed the bias in model performance on classic
test sets and adversarial user attacks through it-
erative human-and-model-in-the-loop (Nie et al.,
2020) data generation and model training. Simi-
larly, Vidgen et al. (2021) proposed a complemen-
tary approach with the amalgamation of targeted
annotator samples including challenging perturba-
tions to generate adversarial data for hate speech
classification. Both works explored leveraging
domain-experienced annotator resources to pro-
gressively train more robust models with each suc-
cessive iteration. Other works on small text pertur-
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bations such as adversarial typos, have proposed
the use of robust token-level encodings (Jones
et al., 2020) and preceding word recognition mod-
els (Pruthi et al., 2019) as reusable systems that
are trained once and then reused across models and
tasks. In this work we explore a more lightweight,
systematic correction layer that does not require
training to create model and task-agnostic defenses.

3 Methodology
3.1 Models and Datasets

We identify two natural language tasks with sig-
nificant importance to industrial applications and
adversarial pressure. First, hate speech classifica-
tion is the problem of detecting statements that are
likely to cause harm and inject toxicity in online
discourse. It has now become standard practice for
providers of services where people can post com-
ments and discuss content to employ hate speech
classification models. These models are set up as
binary classification models that output a score for
the “hatefulness” of a given input statement. Sec-
ond, Natural Language Inference (NLI) has been
adapted for the detection of misinformation (Nie
et al., 2020). In this setting, NLI models aim to flag
statements that do not receive support from rep-
utable sources or directly contradict information in
them. Thus, a model is given access to a set of sup-
port statements and a “hypothesis” and it outputs a
3-way classification from among “supported,” “not
supported,” and “not enough information.” In the
cases of “supported” or “not supported,” the model
also outputs the statement that supports or refutes
the hypothesis.

Since both tasks are the subject of adversar-
ial pressure, there have been several proposed ap-
proaches to robustifying models trained on them.
Most notably, the Dynalab (Vidgen et al., 2021)
approach proactively samples “hard” examples by
asking human raters to conceive inputs that chal-
lenge the model. Researchers then retrain the mod-
els and repeat the process for several rounds. This
paradigm helps achieve a large increase in robust-
ness through the rounds, so we evaluate our ap-
proaches on those models as the benchmark for
state-of-the-art robust performance.

For Hate Speech, we utilize the Hate-
Check (Rottger et al., 2021) dataset (2,563
examples) and the Learning from the Worst
(LFTW) (Vidgen et al., 2021) test set (4,120 exam-
ples). The performance of state-of-the-art models

Problem Area  Model # Parameters
Hate Speech LFTW 125,000,000
Adversarial NLI DeBERTa 140,000,000
Adversarial NLI RoBERTa 125,000,000
Adversarial NLI T5 220,000,000
Adversarial NLI BERT 109,000,000
Adversarial NLI ALBERT 17,000,000

Table 1: The models, associated problem areas, and
number of parameters used in our evaluations. All
LFTW models, from rounds 1-4 and more, have an iden-
tical number of parameters since they are all RoOBERTa
models.

trained on adversarial data from Learning from the
Worst (LFTW) were compared with and without
the addition of the text normalizer on both baseline
and augmented versions of the dataset. Addition-
ally, we chose to evaluate NLI models on the test
sets from all three rounds of Adversarial NLI (Nie
et al., 2020) (1,000, 1,000, and 1,200 examples re-
spectively). We assessed the performance of these
baseline, augmented, and normalized datasets on
five model architectures trained on SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
FEVER (Thorne et al., 2018) and all three rounds of
Adversarial NLI. To see which models we evaluate
on, please review Table 1. We specifically choose
models already trained on adversarial datasets to
assess opportunities for improvement beyond re-
training.

3.2 Attacks

To attack the aforementioned datasets, we use
the open-source augmentation library AugLy (Pa-
pakipos and Bitton, 2022) to simulate various text-
based adversarial attacks commonly used on social
media platforms. We focus on using character-level
attacks as opposed to attacks that can potentially
add, remove, or change full words in the text, to
avoid perturbations in the semantic meaning. The
specific augmentations selected for the analysis are
listed in Table 2.

In addition to the synthetically generated attacks,
we collected 98 samples of hate speech text which
were adversarially created and modified by indi-
viduals in a cybersecurity Red Team. In the first
half of the session, participants were tasked with
creating their own attacks based off of their prior
knowledge of text-based attacks seen online. In the
second half of the session, they were given direct
access to the code implementation for the text nor-
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Augmentation

Output Text

Normalized Text

None
insert_punctuation_chars
insert_whitespace_chars
insert_zero_width_chars

merge_words

replace_fun_fonts
replace_similar_chars
replace_similar_unicode_chars

simulate_typos

split_words

This is augmented text

Th.i.s ,is ...a.ug;mlen’t?ed, ,te!x.t
Thisisaugmented text
This is augmented text

Thisis augmented text

This is agmhéntéd text

Th!s is @ugmented tex7

Thig is augménteD text

This is augmentde texht

Th is is augment ed text

This is augmented text
This ,is ...augmented, ,text
This is augmented text
This is augmented text
Thisis augmented text

This is augmented text
Th!s is @ugmented tex7
This is augmented text

This is augmentde texht
Th is is augment ed text

Table 2: Examples of augmentations generated using the open-source library AugLy (Papakipos and Bitton, 2022),
leveraged in the analysis for adversarial attacks on the text datasets, and their normalized counterparts. Note that
while the output of insert_zero_width_chars appears visually identical to the original sentence, there are
actually zero-width unicode characters embedded throughout the entire string. We include augmentations that are
not covered by the normalizer (such as merge_words) in our evaluations to showcase that our method does not

further corrupt unknown attack types.

malizer and were tasked to bypass it using targeted
attacks.

Many of the attacks created were similar to
the attacks of insert_punctuation_chars,
replace_fun_fonts, simulate_typos,
replace_similar_unicode_chars, and
replace_similar_chars. The adversaries
also created letter repetition attacks, i.e. “hel-
lllooooo", censored violating text, and replaced
words with emojis.

3.3 Adversarial Text Normalizer

The text normalizer is an isolated correction unit
that can be placed in front of models to target
character-level attacks for various NLP tasks. The
normalizer is designed to be used as a preprocess-
ing step prior to text tokenization. For optimal
computational efficiency, the operator is written
in torchscript, and can process approximately 77
examples per second on a server with an Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz processor.
This operator was incorporated into the PyTorch
model as a customizable data transform. The algo-
rithm relies on sophisticated string manipulation
as a targeted defense against known adversarial at-
tacks, and is easily scaled up to support additional
attacks as the adversarial environment progresses.

Currently, the text normalizer supports removing
three overarching categories of text attacks:

1. Character insertion: addition of characters
such as punctuation marks, whitespaces,
Unicode characters, emojis, and more to

separate characters in a word with the
intent to disrupt proper tokenization. This
category includes augmentation methods
such as insert_punctuation_chars,
insert_whitespace_chars, and

insert_zero_width_chars.

2. Character replacement: substitution of
standard Latin characters with visually similar
characters from other languages or Unicode
characters with the intent of obfuscation.
This category includes augmentation meth-
ods such as replace_fun_fonts,

and

replace_similar_unicode_chars.

replace_similar_chars,

3. Censorship of violating words: replacement
of letters in violating words with punctuation
characters to avoid explicit content. For in-
stance “kill" could be censored as “k***",
“kM", “k#*!" and more.

To undo the effects of a character insertion at-
tack such as insert_punctuation_chars,
the text is first split by whitespaces to identify
‘words’. For each word, we then determine how
many extraneous punctuation characters have been
inserted, ignoring punctuation marks at the begin-
ning and end, as such additions do not segment
the word to disrupt tokenization. If the amount of
punctuation characters is below a set threshold or
the word resembles a URL, we do not modify the
word and add it to our normalized string. Other-
wise, we replace the superfluous punctuation with
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spaces, strip the string of excessive whitespace, and
concatenate consecutive single character entities
together.

For character replacement attacks, we predefined
multiple mappings between Unicode characters and
their keyboard character pairs, and performed a
string search method to reverse the replacement.

As for censorship attacks, a list of common user-
censored toxic terms were identified prior based on
flagged user content. For each toxic term, a regex
for the censorship pattern was defined such that the
first and last letters of the word remain constant
but any of the letters in between can be replaced
by punctuation characters - maintaining the same
length as the original, uncensored word. For every
match found, we replace the censored string with
its uncensored pair accordingly.

4 Evaluation

In this section, we examine the performance of
Hate Speech and Natural Language Inference (NLI)
models with respect to the original, the augmented,
and normalized datasets to evaluate the efficacy of
the text normalizer. All evaluations were conducted
using Dynabench (Ma et al., 2021), in which AWS
ECR models are deployed as endpoints and Batch
Transform jobs are run on AWS Sagemaker to get
dataset predictions. We roughly spent 38.36 CPU
hours on model inference (no GPUs were used).

4.1 Hate Speech

To assess performance on adversarial hate speech
data, we evaluated on five models from the Learn-
ing from the Worst (LFTW) (Vidgen et al., 2021)
paper that were previously retrained on varying
amounts of "rounds" of adversarial hate speech
data collection.

4.1.1 Learning from the Worst

We first evaluate on the test set from Learning
from the Worst. Figure 1 showcases these re-
sults. Overall, the text normalizer maintains or
improves initial performance on all augmented
datasets and the baseline. Across all models, nor-
malizing the insert_zero_width_chars,
replace_similar_unicode_chars, and
replace_fun_fonts augmentations resulted
in the most significant performance gains, with a
maximum of a 32.18 % increase. In between, nor-
malizing insert_punctuation_chars and
insert_whitespace_chars had increases
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Figure 2: This figure showcases the results of evaluating
Hate Speech models against the baseline, augmented,
and normalized HateCheck datasets. The model scores
in this graph are the averaged scores across all five
LFTW models. To see the raw evaluation results, view
Table 5 in the Appendix.

of at most 11.95%. For the LFTW R3 model, nor-
malizing the whitespace text resulted in a 1.27%
loss in performance. This may be due to the fact
that not every whitespace character in the AugLy
augmentation is removed by the normalizer. As
expected, other augmentations that aren’t covered
by the normalizer did not see any substantial gains
or losses in performance. To view the raw model
scores, see Table 4 in the Appendix.

4.1.2 HateCheck

In addition to evaluating on the LFTW test
set, we also evaluated on an out-of-distribution
dataset, HateCheck. Figure 2 displays these
results. The trends observed in the LFTW test
set overall have agreement with the HateCheck
results. However, in this case, there were no
losses in performance for normalized augmen-
tations covered by our method. The largest
performance gain was 48.89% by normalizing
insert_zero_width_unicode_chars,
and the smallest performance gain was 6.1% by
normalizing insert_punctuation_chars.
To see the raw evaluation results, please review
Table 5 in the Appendix.
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Figure 3: This figure contains the results of evaluating
ANLI models against the baseline, augmented, and nor-
malized rounds 1-3 test sets. The model scores in this
graph are the averaged scores across all five models. To
see the raw evaluation results, view Tables 6, 7, and 8
in the Appendix.

4.1.3 Red Team Attacks

Lastly, we evaluated the LFTW models on the
Red Team dataset tasked to bypass the text nor-
malizer. The baseline scores across all models
averaged at 39.52% and the normalized scores
averaged at 41.32%. In comparison to the
synthetically-augmented text, applying the normal-
izer resulted in a less drastic increase in perfor-
mance. This difference can be attributed to the
fact that a significant amount of the data was at-
tacked similarly to replace_similar_chars
and simulate_typos, two augmentations not
covered by our defenses. To view the raw model
scores, see Table 3 in the Appendix.

4.2 Natural Language Inference

To validate our results in another problem space,
we evaluated on five Natural Language Inference
(NLI) models previously trained on a collection
of adversarial and benign NLI datasets. We eval-
uated the models on the baseline, augmented, and
normalized ANLI test sets from rounds 1-3.
Overall, the results from the ANLI experiments
align with the previous insights discussed in the
Hate Speech task. The replace_fun_fonts,
insert_zero_width_chars, and

replace_similar_unicode_chars
attacks were the most performant, fol-
lowed by insert_punctuation_chars,
insert_whitespace_chars, and fi-
nally the non-covered attack types. The
largest gain, 29.1%, was made by normalizing
insert_zero_width_unicode_chars in
the ANLI R1 test set. To view the raw model
scores, see Tables 6, 7, and 8 in the Appendix.

5 Discussions

Retraining models on adversarial data has been
proposed as a mitigation method for adversarial
attacks (Vidgen et al., 2021; Nie et al., 2020). Its
benefits are that it’s relatively simple to implement,
shown to be effective (Goodfellow et al., 2015),
and doesn’t affect model throughput once deployed.
However, if a new adversarial attack were to be
discovered on a system, the turnaround time for
deploying a robust model can be quite long. A
developer would need to (1) gather and annotate or
systematically generate the attacked data (2) retrain
the model (3) redeploy the model. Steps (1) and (2)
could be highly nontrivial depending on the attack
type and model size. In addition, there can also be
a significant monetary and environmental cost in
retraining a large model (Wu et al., 2021).

On the other hand, text normalization allows a
developer to move fast. Instead of collecting data,
an engineer would simply need to write one addi-
tional function to reverse said attack and test it. In
addition, it’s lightweight and there is no need to
retrain, as this is a text preprocessing step. How-
ever, text normalization cannot handle every attack
type. Text normalization is best suited to mitigate
character-level attacks that do not change the se-
mantic meaning of the text, i.e. syntactic attacks.

Another important consideration is that text nor-
malization does affect real-time performance. A
balance must be found between intelligently mit-
igating attacks and compute. In our use case, we
limited the normalizer to sophisticated string ma-
nipulation, as anything more would result in too
much compute. Hence, it becomes less feasible
to build defenses that require knowledge or under-
standing of words, etc.

Thus, we recommend the best way to mitigate
adversarial attacks is to use a combination of text
normalization and retraining. Specifically, retrain-
ing should be used for semantic adversarial attacks,
and adversarial text normalization for syntactic ad-
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versarial attacks. Despite all the models evaluated
on being retrained on adversarial data, they were
still vulnerable to character-level text attacks. How-
ever, together with the text normalizer, we were
able to increase performance and even return to
baseline performance at times. This study is meant
to show that text normalization in general is a vi-
able approach to mitigating syntactic text-based
attacks. This is certainly not the final method, and
we hope researchers extend this work to support
multilingual text.

6 Conclusion

We proposed a new method to mitigate text-based
adversarial attacks, called the Adversarial Text Nor-
malizer. We evaluated the performance of models
retrained on adversarial data with and without the
ATN. Our experiments show that text normaliza-
tion and retraining should be used together in order
to maintain baseline performance against a broad
range of adversaries.
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Impact Statement

Risks from the Work

Our work is meant to reduce risk to online dis-
course by enabling NLP models to function ro-
bustly in an adversarial setting. We acknowledge
that releasing this work might enable stronger at-
tacks against some systems, but we believe it is im-
portant to discuss these defenses publicly for two
reasons. First, other practitioners and researchers
can benefit from our findings in building stronger
defenses. Second, the history of security and cryp-
tographic research clearly demonstrates that robust

systems are built only when they go through ongo-
ing attack/defend iteration cycles. To that end, we
hope that our work informs the next steps in build-
ing robust NLP systems. As with any NLP system
and computer technology, we acknowledge robust-
ness may be at odds with safety when the models
defended with our mechanism are themselves used
for nefarious purposes.

Use of Scientific Artifacts

In this work, we made heavy use of the Dynabench
platform (Kiela et al., 2021; Ma et al., 2021) and
the models trained on data collected with it. We
worked closely with the creators of the platform
and the models, and they were always fully aware
of our intentions. The Dynabench platform has
been released under the MIT license: https:
//github.com/facebookresearch/
dynabench/blob/main/LICENSE. We
also used the Adversarial NLI, HateCheck, and
Learning from the Worst datasets. Each of those
do not contain identifying information and only
associate a pseudonymous annotator ID with each
example. We verified this manually by looking at
samples from the datasets. The HateCheck and
Learning from the Worst datasets contain offensive
language as part of the nature of the task they
were set up for. All datasets are in English and
were created by English-speaking authors and
annotators in the United States.

Humans Involved in the Research

We did not employ annotators or perform human
subject experiments. We engaged with a partner
team in a collegial capacity to expand our insights
into the adversarial text normalizer and we discuss
those findings here for the benefit of the broader
research community.
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Model Red Team Normalized

LFTW R1 32.41 35.95
LFTW R2 40.61 41.32
LFTW R3 39.88 41.32
LFTW R4 42.01 43.68
All LFTW 42.69 44.32

Table 3: Hate Speech Case Study Results by Model:
Red Team Dataset

Appendix
A Augly Augmentation Generation

To augment the hate speech and natural lan-
guage inference datasets, we chose random pa-
rameters for each augmentation for every piece
of text. The ranges we used for every parame-
ter are listed below. Since multiple AuglLy aug-
mentations accept as input the same parameters,
we do not break this down by augmentation type
(the same value was used across all augmenta-
tions). The following ranges were inputted into
random.uniform () and lists of options were
inputted random.choice ():

* aug_p: (0.3,1.0)

* aug_word_p: (0.3, 1.0)

* aug_char_p: (0.1,0.4)

* granularity: ["char", "word", "all"]
* vary_fonts: [True, False]

B Raw Data: Hate Speech and Natural
Language Inference Analyses

Here, we provide the full evaluation results with
exact numbers broken down by attack type and
model.
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Augmentation LFTWR1 LFTWR2 LFTWR3 LFTWR4 AINLFTW

baseline 57.79 70.03 81.20 81.09 80.27
normalized 58.04 70.08 81.24 81.21 80.27
insert_punctuation_chars 43.34 50.48 48.53 49.23 50.74
normalized 50.83 58.48 60.48 63.40 56.43
insert_whitespace_chars 43.05 51.97 53.65 46.89 45.84
normalized 48.83 52.97 52.38 52.50 52.05
insert_zero_width_chars 35.04 50.73 51.04 48.96 46.87
normalized 58.37 70.23 81.29 81.14 80.38
merge_words 56.47 68.74 77.67 78.27 77.30
normalized 56.67 68.83 77.73 78.30 77.10
replace_fun_fonts 42.23 50.08 55.75 51.10 50.43
normalized 58.11 70.67 80.42 80.01 78.91
replace_similar_chars 52.43 56.21 52.39 52.36 56.17
normalized 52.48 56.76 53.00 52.76 56.19
replace_similar_unicode_chars 47.65 56.16 56.26 58.06 59.34
normalized 58.20 70.15 80.25 80.04 79.08
simulate_typos 53.95 60.48 61.61 59.93 61.81
normalized 53.99 60.55 61.34 60.31 61.74
split_words 52.45 55.74 59.27 58.36 60.22
normalized 52.38 56.38 59.32 58.77 60.82

Table 4: Hate Speech Case Study Results: LFTW

Augmentation LFTWR1 LFTWR2 LFTWR3 LFTWR4 AllLFTW
baseline 36.48 47.78 49.23 49.35 49.45
normalized 36.45 47.73 49.29 49.37 49.47
insert_punctuation_chars 13.18 35.05 32.52 30.09 18.09
normalized 28.19 41.15 40.78 44.67 38.95
insert_whitespace_chars 11.19 15.72 29.63 15.41 14.96
normalized 20.60 34.48 45.57 33.01 32.57
insert_zero_width_chars 0.00 21.28 30.50 8.37 0.58
normalized 36.45 47.73 49.29 49.37 49.47
merge_words 37.03 47.99 48.72 49.16 49.15
normalized 37.32 47.92 48.75 49.17 49.08
replace_fun_fonts 16.38 27.04 32.68 27.43 21.95
normalized 36.12 46.32 48.83 49.29 49.38
replace_similar_chars 33.86 47.63 47.57 47.77 47.09
normalized 34.10 47.47 47.46 47.80 47.05
replace_similar_unicode_chars 22.61 39.35 41.07 42.68 40.06
normalized 36.42 47.26 49.12 49.29 49.45
simulate_typos 32.46 44.16 42.84 46.49 45.88
normalized 32.57 43.81 42.79 46.44 45.75
split_words 33.76 47.19 44.11 47.21 46.49
normalized 33.20 46.44 43.58 47.00 46.04

Table 5: Hate Speech Case Study Results: HateCheck
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Augmentation RoBERTa T5 BERT ALBERT DeBERTa

baseline 62.10 58.90 53.80 63.00 65.00
normalized 61.80 58.90 54.00 62.90 65.00
insert_punctuation_chars 32.40 3270  32.60 34.40 34.60
normalized 40.40 38.80 41.20 39.90 46.40
insert_whitespace_chars 36.40 38.50 40.20 33.60 33.20
normalized 38.00 39.80 39.50 34.60 35.10
insert_zero_width_chars 35.50 3430 53.80 31.90 36.20
normalized 61.80 58.70 54.00 62.80 65.30
merge_words 60.10 5720 48.00 58.30 59.90
normalized 60.00 57.30 48.10 58.50 59.70
replace_fun_fonts 40.00 50.10 36.40 62.30 39.10
normalized 60.50 58.50 51.80 63.10 64.00
replace_similar_chars 45.30 4420 39.60 44.00 44.70
normalized 43.80 43.80 40.50 43.80 44.60
replace_similar_unicode_chars 44.30 42.10 38.20 53.40 44.90
normalized 61.00 58.00 52.40 62.00 63.60
simulate_typos 46.70 4420 4290 45.00 48.10
normalized 46.80 4420 4290 44.90 47.70
split_words 45.50 4290 4140 44.30 46.60
normalized 45.80 42.80 41.60 43.70 47.10

Table 6: Natural Language Inference Case Study Results: ANLI R1

Augmentation RoBERTa T5 BERT ALBERT DeBERTa
baseline 46.50 46.80 44.80 46.50 44.50
normalized 46.20 46.80 44.90 46.60 44.40
insert_punctuation_chars 35.40 34.10 31.80 34.20 34.10
normalized 35.60 36.10 37.90 38.50 38.00
insert_whitespace_chars 35.30 36.70 35.50 33.90 34.40
normalized 33.60 36.50 35.80 34.80 35.30
insert_zero_width_chars 35.10 3420 44.80 33.40 34.10
normalized 46.30 46.70 44.90 46.60 44.30
merge_words 45.60 46.60 46.70 44.30 42.80
normalized 45.50 46.60 46.60 44.50 42.50
replace_fun_fonts 36.70 4220 3590 46.40 36.80
normalized 44.80 4590 44.80 46.30 44.00
replace_similar_chars 38.00 3790 37.50 39.60 38.80
normalized 38.20 37.60 36.20 39.40 38.60
replace_similar_unicode_chars 39.40 38.30 36.90 42.00 37.60
normalized 46.00 46.20 44.30 46.20 44.40
simulate_typos 38.40 39.10 39.00 37.70 39.40
normalized 38.30 38.90 39.30 37.70 39.70
split_words 38.00 38.30 36.80 37.40 39.50
normalized 38.30 38.20 36.10 38.40 39.80

Table 7: Natural Language Inference Case Study Results: ANLI R2
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Augmentation RoBERTa TS5 BERT ALBERT DeBERTa

baseline 45.58 4483  44.00 44.17 45.83
normalized 45.08 44.83  43.67 43.58 45.33
insert_punctuation_chars 35.17 33.50 34.58 33.67 35.17
normalized 35.75 36.58 33.92 33.92 36.00
insert_whitespace_chars 33.67 35.17 36.33 34.33 34.92
normalized 34.75 36.25 37.33 35.00 35.00
insert_zero_width_chars 34.42 3225 44.00 32.08 35.00
normalized 45.08 44.83 43.83 4375 45.33
merge_words 4342 4458 41.42 40.33 44.92
normalized 42.83 4458 41.42 40.00 44.42
replace_fun_fonts 38.08 4092 37.08 44.25 37.50
normalized 45.33 4492 4358 43.58 44.83
replace_similar_chars 40.00 37.08 3692 36.83 37.00
normalized 38.83 3742 3642 36.75 37.17
replace_similar_unicode_chars 38.67 38.00 36.17 41.17 37.67
normalized 44.58 45.00 43.08 43.58 44.67
simulate_typos 35.92 36.83 36.83 37.75 38.00
normalized 35.50 36.67 36.00 37.00 37.50
split_words 38.50 38.50 37.08 37.75 35.67
normalized 37.50 38.17 36.42 37.33 35.75

Table 8: Natural Language Inference Case Study Results: ANLI R3
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