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Abstract

Medical coding (MC) is an essential pre-
requisite for reliable data retrieval and report-
ing. Given a free-text reported term (RT) such
as “pain of right thigh to the knee”, the task
is to identify the matching lowest-level term
(LLT) –in this case “unilateral leg pain”– from
a very large and continuously growing reposi-
tory of standardized medical terms. However,
automating this task is challenging due to a
large number of LLT codes (as of writing over
80 000), limited availability of training data for
long tail/emerging classes, and the general high
accuracy demands of the medical domain. With
this paper, we introduce the MC task, discuss
its challenges, and present a novel approach
called XTARS that combines traditional BERT-
based classification with a recent zero/few-shot
learning approach (TARS). We present exten-
sive experiments that show that our combined
approach outperforms strong baselines, espe-
cially in the few-shot regime. The approach
is developed and deployed at Bayer, live since
November 2021. As we believe our approach
potentially promising beyond MC, and to en-
sure reproducibility, we release the code to the
research community.

1 Introduction

Medical coding (MC) is the process of classifying
textual descriptions of medical events into stan-
dardized alphanumerical terms and codes. An ex-
ample textual description is “pain of right thigh
to the knee” that would need to be classified as
an instance of “unilateral leg pain” in the Med-
DRA (MSSO, Retrieved Jun 24, 2021) ontology
(see Table 1 for more examples).

MC allows the consistent documentation of med-
ical records, enabling the analysis of clinical trials,

for example facilitating safety data retrieval or de-
tection of adverse drug reactions. Medical codes
are also used by health plan, medical billing, and
health care providers to make decisions for exam-
ple about prior authorization requests and claims,
impacting how much a patient will pay for medical
care in some countries. At Bayer, around 55 000
terms per month need to be manually coded via a
“four-eye concept” (proposing/accepting) by highly
specialized medical coders, a costly process we
seek to (partially) automate.
Problem Statement. However, automating MC
faces several challenges: First, the number of tar-
get classes is very large and continuously growing,
with over 80 000 as of writing. Second, available
training data is limited and imbalanced, with few
training examples in particular available for long
tail and emerging classes. Third, language is non-
canonical and domain-specific, with frequent mis-
spellings, non-standard abbreviations, irrelevant
text, and specialized vocabulary. Forth, as is stan-
dard in the medical domain, very high accuracy
requirements apply (see Section 2).

Conceptually, this task may be phrased in two
ways: (1) as a standard large-scale multiclass classi-
fication task that takes as input a reported term and
outputs a distribution over all classes (Chalkidis
et al., 2020), or (2) as a matching task that takes
as input both a reported term and a candidate class
label and makes a binary prediction whether the
class matches the term. The latter allows the model
to leverage additional information conveyed by
the natural language class labels (i.e. allowing the
model to learn that the semantics of the class de-
scription “unilateral leg pain” and the text “pain
of right thigh to the knee” overlap) and has thus
been shown work well in few-shot learning set-
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Reported term (RT) Lowest level term (LLT) name Preferred term (PT) name
on and off lethargy lethargy lethargy
scattered indeterminate subcentime-
ter pulmonary nodules

lung nodule pulmonary mass

ckd-unknown etiology chronic kidney disease chronic kidney disease
elective left fem-pop bypass graft femoropopliteal artery bypass peripheral artery bypass
osteomyelitis of the left metatarsal osteomyelitis of the foot osteomyelitis
right foot second toe gangrene gangrene toe gangrene
worsenin renal function renal function aggravated renal impairment
oliguric acute kidney injury/ckd acute oliguric renal failure acute kidney injury
urinary tract infection [enterobacter
cloacae]

urinary tract infection bacterial urinary tract infection bacterial

skin defect [no split] skin disorder skin disorder
haemangioma th12 spinal haemangioma haemangioma of bone
pain of right thigh to the knee unilateral leg pain pain in extremity

Table 1: Sample medical coding data. Reported terms (RT) are short, free-form medical event descriptions that need
to be classified into the most suitable lowest level term (LLT), from a total of over 80 000 standardized LLTs. Each
LLT belongs to a preferred term (PT), i.e. a less granular category of classes. For instance “cdk-unknown etiology”
should be normalized to “chronic kidney disease”.

tings (Halder et al., 2020). It suffers however from
scalability issues that prevent practical application
to large-scale classification problems.
Contributions. With this paper, we present a novel
approach that addresses the above challenges by
integrating a classic BERT-based classification ap-
proach (Devlin et al., 2019) into a recently pro-
posed few-shot classification approach (Halder
et al., 2020). The main idea is to leverage a stan-
dard classifier to predict a set of candidate labels
which are then separately evaluated by the few-shot
learner. We argue that this architecture allows both
components to leverage their respective strengths.
To summarize, our contributions are as follows:

• We present and discuss the MC task, and dis-
cuss its challenges in particular with regards
to industry application.

• We present a novel and straightforward ap-
proach called XTARS(eXtreme Task-Aware
Representation of Sentences) to address this
task by combining strengths of large-scale
classification and few-shot learning.

• We conduct an extensive experimental evalu-
ation that shows that our proposed approach
outperforms very strong baselines. We also
evaluate ensemble learning setups and discus
results in different confidence brackets.

• Since we believe this approach to be useful
beyond the task of MC, and to ensure repro-

ducibility, we make available our implementa-
tion to the research community.1

The presented approach is deployed since
November 2021 at Bayer and is used to generate
coding proposals for all clinical trial studies run-
ning at the time of writing.

2 Task and Data Sources

The MC input is the textual description of a medi-
cal event, known as reported term (RT). The goal
of MC is to associate a given RT to the most appro-
priate term from a given ontology.

2.1 MedDRA as target ontology
We leverage the MedDRA (MSSO, Retrieved
Jun 24, 2021) ontology, which is organized in a
multi-level hierarchy with coarse- and fine-grained
classes. The more fine-grained level of the hierar-
chy is the lowest level term (LLT), of which approx-
imately 80 000 distinct classes exist as of writing.
A more coarse-grained level is the preferred term
(PT), of which approximately 26 000 currently ex-
ist in MedDRA. Table 1 shows a number of ex-
amples for RTs and their corresponding MedDRA
LLT and PT names.

MedDRA undergoes frequent releases that in-
clude changes to the number of classes or their
definitions. As we are required to always use the
most current version of MedDRA, our approach
needs to be robust with regards to such changes.

1https://github.com/Bayer-Group/
xtars-naacl2022

177

https://github.com/Bayer-Group/xtars-naacl2022
https://github.com/Bayer-Group/xtars-naacl2022


Data # of samples # of classes samples from classes with ≤10
samples (%, label cardinality)

samples from classes with ≤5
samples (%, label cardinality)

All 293 645 26 893 21.0% 4.96 12.2% 2.81
Train+Val 285 070 26 692 21.1% 4.95 12.3% 2.81
Test (all) 8 575 4 436 18.0% 5.06 10.0% 2.80

Test (top-80%) 6 860 3 495 12.7% 5.84 5.5% 3.11
Test (btm-50%) 4 287 3 126 29.5% 4.71 18.0% 2.72
Test (btm-25%) 1 715 1 455 39.1% 4.05 28.0% 2.55

Table 2: Summary statistics of the medical coding dataset comprising coded and autocoded data, and company
synonyms. Augmented data is excluded. Uncertainty from one PubMedBERT model is used for test set splits.

2.2 Training data
We use a number of proprietary data sources to
train and evaluate our proposed approach. The first
is coded data, which are RTs manually linked to
LLTs by human experts. The second is autocoded
data where a simple rule-based system automat-
ically linked those RTs which either are or con-
tain an LLT verbatim. The system has high preci-
sion but low recall, with the majority of samples
(∼55%) out of autocoder scope, and passed to hu-
mans for manual coding. In addition, we use a
dataset of company synonyms consisting of pairs of
medical text descriptions and corresponding LLT.
These synonyms are created and maintained by the
company MC department. These synonyms define
concepts that are more specific than LLTs.
Final training dataset (Table 2). We collect data
from these sources for all Bayer active clinical tri-
als as of October 2021. Data processing and aug-
mentation steps are outlined in the Appendix. The
final dataset is split into training, validation and
test splits.

Summary statistics are presented in Table 2. We
observe that in the entire training data set, only
26 893 classes are observed, meaning that a signifi-
cant portion of MedDRA LLT codes have no train-
ing data at all. We further note a significant data im-
balance: among the observed classes, 21 187 (78%)
have less than 10 samples, with roughly 21% of all
samples coming from those classes. We split the
test data into three distinct splits that have different
uncertainty, as quantified by the predictive entropy
(see Section 4.1). Top-80% indicates the 80% more
certain data from the test set while btm-50% and
btm-25% contain the least certain 50% and 25% of
the test set respectively.

3 Method

We frame the MC task as multiclass classification,
where each LLT name is treated as a distinct class.

Since each LLT belongs to exactly one PT, the PT
is then obtained directly from MedDRA. We there-
fore disregard the label hierarchy in MedDRA, as
this results in a simpler model to train and deploy,
and it makes the model less dependent on topologi-
cal changes of the underlying MedDRA ontology2.
Method overview. As outlined in Section 1, our
approach builds on and combines two existing ap-
proaches: (1) a default large-scale multiclass pre-
diction approach based on BERT, and (2) a few-
shot classification approach. In this section, we first
discuss these two baseline approaches and their ad-
vantages and drawbacks (Sections 3.1 and 3.2). We
then present our XTARS approach in Section 3.3.

3.1 Baseline 1: Multiclass Classification with
BERT Ensembles

Our first baseline follows the standard multiclass
classification approach based on BERT (Devlin
et al., 2019): we add a single softmax classifier
as “prediction head” over the text embedding re-
trieved from the CLS-token of a pre-trained BERT
model. The language model and prediction head
are jointly fine-tuned using standard parameters
(see Appendix for details) to output a distribution of
prediction scores for all classes given a single input
text. Such approaches have been applied to large-
scale multi-label text classification for biomedical
data, showing results comparable to more complex
and bespoke approaches (Chalkidis et al., 2020).
Deep ensembles. However, deploying a single
model is not advisable for a production setting due
to the underspecification problem (D’Amour et al.,
2020). Models that perform equally well on their
training domain can produce widely different re-
sults in their deployment domain, especially under
dataset shift. This can result in instabilities when

2Moreover, Chalkidis et al. (2020) showed that using label
hierarchy information in large-scale multilabel classification
is on-par or even inferior to transfer learning approaches.
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models are deployed in a real-world setting. This is
particularly problematic for MC, where consistency
is an essential requirement.

To mitigate the underspecification problem we
use deep ensembles (Lakshminarayanan et al.,
2017). The main idea is to train different mod-
els which only differ by a random perturbation
(usually the random seed) and then average across
these models to increase prediction stability, and
possibly performance. As a further advantage, deep
ensembles have also shown to produce reliable un-
certainty estimates (Lakshminarayanan et al., 2017;
Fort et al., 2020), on par with Bayesian deep learn-
ing approaches (Gal and Ghahramani, 2016).

3.2 Baseline 2: TARS Few-Shot Classification

Traditional machine learning algorithms do not
have access to the natural language definition of the
label, but rather to a discrete representation known
as encoding (e.g., one-hot encoding). This repre-
sentation does not preserve any semantic informa-
tion present in the natural language definition. As a
result, the model can learn the class meaning only
indirectly, via the samples associated to a given
label during learning.

In the few-shot setting, the lack of label semantic
is a clear drawback. Inspired by natural language
inference, Task-Aware Representation of Sentences
(TARS, Halder et al. (2020)) include label seman-
tic by concatenating the input text (e.g., RT) with
labels (e.g., LLT name), and then predicting True
if the label is the correct one, and False otherwise
(negative classes or samples). They showed that
TARS reaches strong results in few-shot and zero-
shot settings, but only evaluated on data sets with
comparatively small label sets.
Limitations with regards to medical coding. For
MC, TARS is confronted with severe scalability
issues due to the very large number of classes in
MedDRA: During prediction, a distinct forward
pass through the model needs to be made to sep-
arately evaluate each label candidate. This proce-
dure requires K predictions, where K is the num-
ber of possible labels. When K is very large (e.g.,
K ∼ 80 000 for MC with MedDRA), calculating
predictions becomes computationally prohibitive.

In addition, the large-scale classification sce-
nario complicates the training procedure. TARS
employs a hard-negative sampling technique to
sample a set of neg plausible negatives for each
labeled data point, sampling with a probability pro-

portional to the cosine similarity between the cor-
rect label and the given label. Since the similarity
is used as drawing probability for negative labels,
in large-scale classification (as in MC), the model
will often see negative labels that are “too easy”.
This hinders learning with ultra-fine-grained labels.

3.3 Proposed Approach: XTARS

We introduce changes to the TARS algorithm that
improve on negative sampling for training, and
address the complexity issues during predictions.
Our approach leverages a default BERT multiclass
classification model (see Section 3.1) that must first
be separately trained for MC.
Sampling hard negatives in large label sets. To
address the above-mentioned issue on sampling dif-
ficult negatives in very large label sets, we propose
two sampling techniques that we use jointly. The
first leverages predictions from the trained BERT
classification model. We use its top-5 predictions
(or top-4 if the correct class is in the top-5) as neg-
ative samples, as these are hard from the point of
view of a fully trained standard model.

The second modifies TARS’ cosine similarity-
based sampling using top-k and softmax rescaling:
After computing label similarities, we extract only
the top-k similar classes (out of all K classes) to
the correct label, and set all others to zero. We
choose k to be three times the number of nega-
tive samples to be drawn. Finally, we rescale the
top-k similarities via temperature-scaled softmax
with temperature T . Low (high) T will result in
more peaked (broad) distribution. This procedure
improves the quality of negative samples (Table 3,
cf. TARS (neg=10) and xTARS (neg=10)), and it is
faster (sampling probability vector of k instead of
K dimensions, with k � K) .
Limiting candidate labels during prediction. We
address the scalability issues in prediction by first
predicting a multiclass distribution with a default
BERT model (or deep ensemble). We select the
n top-scoring predictions to be used as label can-
didates for TARS. Through experimentation, we
found a good value of n to be 5. This leads to
a four-order of magnitude reduction in computa-
tional cost (5 vs 80 000) with only a small decrease
in accuracy. The obvious drawback is that XTARS
cannot predict correctly if the correct label is not
in the top-5 BERT candidates; however, the num-
ber of candidates can be increased so that a target
cumulative accuracy is reached.
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Model
LLT Accuracy [%] PT accuracy [%]

All top-80% btm-50% btm-25% All top-80% btm-50% btm-25%
PubMedBERT (PMB) (single) 74.90.5 83.90.3 57.30.9 42.11.4 88.90.2 95.80.1 79.80.3 66.50.6

BioBERT (BB) (single) 74.90.3 83.70.2 56.90.7 42.61.3 88.80.2 95.80.2 79.70.3 66.20.5

sciBERT (SB) (single) 74.90.1 83.50.1 57.10.5 43.80.7 88.90.1 95.80.1 79.80.2 66.70.4

TARS (neg=2 cos) 64.91.2 70.31.4 52.20.9 44.60.6 85.50.4 90.70.5 78.30.1 68.60.3

TARS (neg=10 cos) 62.60.8 67.80.9 50.80.4 43.80.7 85.10.1 90.30.1 78.00.3 68.70.2

XTARS (neg=10 cos) 64.90.9 70.41.1 51.90.8 44.50.5 86.10.4 91.40.4 78.70.4 69.30.3

XTARS (neg=top-5) 76.20.4 83.50.6 61.70.4 51.20.4 89.00.1 94.70.2 81.00.1 70.50.2

XTARS (neg=top-5+5 cos) 77.30.2 84.30.2 63.10.1 52.40.4 89.70.05 95.30.05 82.10.1 71.60.3

XTARS (neg=top-5+10 cos) 76.90.7 84.00.7 62.90.5 52.20.6 89.80.3 95.20.3 82.30.3 72.30.1

XTARS (neg=top-5+5 cos; T=1) 77.50.3 84.40.3 63.50.2 53.50.2 90.00.05 95.40.1 82.50.1 72.40.1

PMB (3 models) 77.8 85.7 61.2 49.2 90.6 96.7 82.6 71.2
BB (3 models) 77.9 85.2 61.5 51.0 90.7 96.5 83.0 72.0
SB (3 models) 77.9 85.3 61.5 50.8 90.5 96.3 82.5 70.9
PMB+SB+BB (3×3) 79.7 86.2 64.4 55.4 91.7 96.7 84.6 74.9
XTARS (PMB+SB+BB, 3×3) 80.4 86.4 64.7 56.1 91.6 96.8 84.8 75.5
PMB+SB+BB (3×5) 80.1 86.3 64.9 56.8 92.0 96.8 85.1 76.2

Table 3: Results on the test set. BERT (TARS and XTARS) models are fine-tuned with five (three) different random
seeds: average accuracy and standard deviation are reported. Unless otherwise specified, XTARS and TARS are
fine-tuned from PubMedBERT. If not specified, T = 0.01. m cos indicates that m negative samples are drawn via
the cosine similarity procedure (Sec. 3.3); top-5 means that the top-5 (or top-4, if the correct class is in the top-5)
BERT predictions are used as negative samples. XTARS ensemble is performed with XTARS (neg=top-5+5 cos;
T = 1). In bold the highest accuracy for a fixed number of models (i.e. 1, 3, 9).

4 Evaluation

We evaluate our proposed XTARS approach
against strong BERT and TARS baselines, both
in single-model and ensemble-model setups com-
mon to industrial application. Our evaluation tests
all approaches in the large-scale multiclass classi-
fication scenario of MC, and evaluates the impact
of our proposed negative sampling techniques. We
also specifically evaluate performance for certain
(top-80%) and uncertain samples (btm-50% and
btm-25%). The uncertain splits aim at evaluating
performance in the few-shot regime (Table 2)3.

4.1 Experimental setup

Language models and ensembles. We se-
lect the top-scoring pre-trained language models
for biomedical tasks from the BLURB leader-
board (Gu et al., 2020), namely bioBERT (Lee
et al., 2019), PubMedBERT (Gu et al., 2020), and
sciBERT (Beltagy et al., 2019). For each training
run, we train multiple models which differ only in
the random seed initialization, and then perform
model ensembling via averaging their classification
probabilities (see Appendix for more details).

3We split by uncertainty instead of class frequency because
the uncertainty estimation is also available at prediction time,
i.e. during industrial deployment of the model.

Estimation of uncertainty. To obtain principled
uncertainty estimates, we utilize the concept of pre-
dictive entropy which captures the average amount
of information contained in the predictive distri-
bution (Gal and Ghahramani, 2016). The larger
(smaller) the predictive entropy, the more uncertain
(certain) the prediction is. The maximum of the
predictive entropy is attained when all prediction
probabilities are equal, while it is zero when one
probability is equal to one and all the rest are zero.

4.2 Experimental results
Results for both LLT and PT are shown in Table
3. As expected, accuracy is higher across all ex-
periments for PT than for LLT, and lower for less
certain predictions. In more detail, we make the
following observations:
Strong single-model performance for XTARS.
The top 10 rows in Table 3 list the results for
single (e.g. non-ensemble) models. We note that
all three BERT models (PubMedBERT, BioBERT,
sciBERT) score roughly on-par. TARS underper-
forms BERT when all samples are considered, es-
pecially for LLT; gains are marginal even for very
uncertain samples (btm-25%). Inclusion of more
negative samples (Table 3, cf. TARS (neg=10 cos)
vs TARS (neg=2 cos)) does not improve results.

Our XTARS models on the other hand for
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the most part significantly outperform all single-
model baselines, reaching an LLT accuracy of 77.5
(↑3.6pp from the best single-model BERT) and a
PT accuracy of 90 (↑1.1pp).
Impact of different negative sampling tech-
niques. Further analyzing these results, we find
that XTARS top-k and softmax rescaling sampling
improves performance over TARS (Table 3, cf.
TARS (neg=10) and XTARS (neg=10)), but only
slightly. In contrast, inclusion of negative sam-
ples from the trained BERT classification model
strongly improves performance (↑11.3pp in LLT
accuracy), making XTARS outperform all BERT
models in the single-model setting. This indicates
that hard negatives are needed to learn effectively
with large label sets. Combining these two sam-
pling strategies further improves performance.
Impact of model uncertainty. XTARS improves
BERT performance overall, with stronger improve-
ments for uncertain samples (↑9.7pp for btm-25%),
which is the few-shot regime (Table 2). It also re-
duces the standard deviation for uncertain samples,
suggesting an increased stability on random seed
initialization w.r.t. BERT and TARS models in the
few-shot regime.
Ensemble results. Ensembling results in perfor-
mance gains for all models, with stronger gains
observed for BERT over XTARS. Model ensem-
bling improve accuracy overall, including uncertain
samples. Ensembling models from the same and
different language model are both beneficial. Gains
flatten with more models (cf. 3�9 vs 9�15).

5 Discussion and practical deployment

Our experimental evaluation shows that XTARS
strongly outperforms all other approaches in the
single-model setting, and even slightly outperforms
other approaches in the ensemble setting.

For model deployment, however, other practical
considerations need to be taken into account than
just overall accuracy. One drawback of XTARS
is that it requires a fully trained multiclass clas-
sification BERT model before the model can be
trained. As our setup is a continuously running
system, and both MedDRA and our training data
are constantly expanded, we implemented an au-
tomated system for retraining models in regular
intervals. Here, we decided on the BERT ensem-
ble setup (3× 5) because of its high accuracy and
relatively low complexity.
Human verification in running system. After

deployment, we perform back-testing to estimate
real-world performance: predictions are compared
with the label given by the human coder. For a total
of 2 452 predictions from the live system, we found
a LLT accuracy of 90.9% with 80.3% coverage.

From an industry perspective, this accuracy sig-
nificantly improves coding efficiency. Human
coders are presented with a system proposal which
they can simply accept in many cases, leaving only
a small portion of data points in which coders need
to manually search for the best matching LLT code.
For the top-80% most certain samples, nearly all
models meet the regulatory requirements of 95%
PT accuracy for MC.

6 Related work

Large-scale text classification. The literature fo-
cuses on assigning multiple medical codes to the
unstructured portion of electronic health records
(patient notes or narratives) (Baumel et al., 2018;
Mullenbach et al., 2018; Rios and Kavuluru, 2018;
Shi et al., 2017; Xie and Xing, 2018; Kim and
Ganapathi, 2021). In our case, however, only text
snippets relevant to the coding process (i.e. RT)
are gathered during the clinical trial data collection
process. Each text snippet must be assigned to a
single code.

Zero/few-shot learning. Few-shot learning in NLP
has been performed mostly via meta-learning (Finn
et al., 2017). Meta-learning has been applied for ex-
ample in machine translation (Gu et al., 2018), sen-
timent analysis (Yu et al., 2018), and dialog intent
classification (Geng et al., 2019). However, these
approaches cannot perform zero-shot predictions.
Yin et al. (2019) propose to treat zero/few-shot
text classification as a textual entailment problem.
The input text acts as premise, and labels are used
as hypotheses. Halder et al. (2020) adopt a sim-
ilar idea. Literature on zero/few-shot learning in
large-scale text classification for biomedical data
is scarce (Chalkidis et al., 2020; Song et al., 2020).

Deployed systems for medical coding. Magi-
Coder is a rule-based system (Zorzi et al., 2017;
Combi et al., 2019) to obtain medical codes from
pharmacovigilance reports that scans the input text
for terms matching the ontology, and votes the best
match. They achieved an average precision (recall)
of 69% (70%) on an adverse drug reaction dataset
scraped from social media (Yang et al., 2012).
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7 Conclusions

In this paper, we introduced the MC task and dis-
cussed its challenges. We outlined a MC sys-
tem based on biomedical transformers deployed
in a production environment, and showed that en-
sembling improves performance. We introduced
XTARS, a zero/few-show learning approach, suit-
able for classification tasks with very large label
sets and long-tailed distribution of labels in data
points. The main limitation of XTARS is that it
requires a (well-performing) BERT model, thus in-
creasing model complexity. We report promising
results for XTARS in MC, and release our code
to the research community for application to other
tasks.
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A Appendix

A.1 Data processing and augmentation
The proposed algorithm maps reported terms (RTs)
to lower level terms (LLT) in the MedDRA on-
tology (see main text). This mapping is already
available for the coded and autocoded data, and
thus these data sources can be readily used.
Data augmentation. The dataset presents a large
amount of rare classes: more than 66% of the LLT
classes appear less than five times in the data. To
mitigate this problem, for each sample belonging to
rare LLTs, we perform data augmentation by gen-
erating two simulated samples (one word split and
one random character change, see Fig. 1). We de-
fine LLTs as rare if they have less than ten samples.
Data augmentation is performed with the nlpaug
package (Ma, 2019).
Data from MedDRA and its augmentation. For
the MedDRA ontology, we interpret each LLT as
RT. For each LLT in the ontology, we generate
three RTs: the LLT verbatim, plus two simulated
misspelled entries (one word split and one charac-
ter change), as depicted in Fig. 1. As label, we use
the original LLT. This procedure of adding all pos-
sible MedDRA LLT via simulated samples enables
the algorithm to make predictions encompassing
all possible LLTs, including the ones never encoun-
tered in the real (autocoded + coded) data.
Company synonyms. Each company synonym is
interpreted as RT, and the pair RT/LLT is added to
the dataset. We do not augment synonyms because
they are very similar to the corresponding LLT, and
the LLTs are already augmented directly from the
ontology.
Data preprocessing. Data preprocessing is mini-
mal: everything is lowercased and only unique RTs
are kept; if multiple RT/LLT pairs are present, the
most recent pair is kept.
Split into training, validation, and test set. The
last step is to split the data into training, validation,
and test set. The most recent 5% of coded data is
used as test set. From the remaining coded data,
a randomly sampled 10% of the coded data (ex-
cluding data augmentation) is used as validation

data. The training data comprises all autocoded
data, all RT originating from the ontology, the com-
pany synonyms, and the remaining coded data (∼
85%), plus augmented data. Finally, we remove
from the training data the augmented samples if
their original sample is included in the validation
data. This is done to avoid target leakage due to
data augmentation, and enforce the independence
of the validation data.

Figure 1: From raw data sources to training, validation,
and test data via data processing and data augmentation
(BERT models).

Figure 2: From raw data sources to training, validation,
and test data via data processing and data augmentation
(TARS and XTARS models). Data coming from the
ontology is omitted for computational reasons.

For the XTARS experiments, we train only on
coded, autocoded, and synonyms (including aug-
mented data). We omit the ontology data for com-
putational reasons. Still, the XTARS model can in
principle predict for all LLTs in MedDRA (includ-
ing LLTs not included in the training set) because
the underlying BERT model is able to propose all
LLTs from MedDRA, and the XTARS model is
able to make zero-shot predictions. As validation
set, we only take 200 samples (instead of the full
validation set) because in the current implemen-
tation, all possible classes are passed to XTARS
for validation during training, resulting in a com-
putational cost of ∼ 80 000 prediction for each
validation sample. At prediction time, however,
only the top-5 candidate classes from the BERT
models are passed to XTARS, as outlined in the
main text.
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A.2 Biomedical language models
From the BLURB leaderboard (Gu et al., 2020),
we take the best performing language models for
biomedical tasks (as of July 2021):

• bioBERT(Lee et al., 2019) is a BERT model
trained on a biomedical corpus via a mixed
domain pre-training strategy. The starting
point is a standard BERT model pretrained on
general corpus such as Wikipedia and Book-
Corpus. From that, the pretraining process
is continued using biomedical text, namely
PubMed abstracts (PubMed) and PubMedCen-
tral (PMC) full text articles. We use BioBERT
v.1.1.

• PubMedBERT(Gu et al., 2020) is a BERT
model which - in constrast with bioBERT -
is pretrained exclusively on biomedical text;
specifically, it does not use the BERT weights
as initialization, and it builds the vocabulary
from scratch based on the biomedical text.
The training corpus is also PubMed and PMC.
A larger batch size w.r.t. bioBERT (8,192 vs
192) is used in the pretraining process.

• sciBERT(Beltagy et al., 2019) is a BERT
model which is also pretrained from scratch.
Differently from PubMedBERT (and
bioBERT), sciBERT is trained on a corpus
comprising both computer science (18%)
and biomedical papers (82%) from Semantic
Scholar (Ammar et al., 2018).

A.3 Details on model training
A.3.1 BERT models
Training is performed on the training set (see Fig.
1) for 20 epochs with Adam optimizer with a learn-
ing rate of 1e-4 and batch size of 512. Learning
rates of 1e-5 and 5e-5 were also evaluated, but yield
a lower performance. The same hyper-parameters
are used for each language model. Training a sin-
gle model takes approximately 7 h on 4 Tesla V100
GPUs. We select the model with the highest ac-
curacy on the validation (holdout) data, and we
evaluate the model on the test data.

A.3.2 TARS and XTARS models
Training is performed on the training set (see Fig.
2) for 5 epochs with Adam optimizer with a learn-
ing rate of 5e-5 and batch size of 32. Learning
rates of 1e-5, 3e-5, 7e-5, and 8e-5 were also eval-
uated, but yield a lower performance. The same

hyper-parameters are used for each language model.
Training a single model takes approximately 28 h
on 1 Tesla V100 GPUs. We select the model with
the highest accuracy on a subset of 200 samples of
validation (holdout) data due to computational cost.
We evaluate the model on the test data.

A.4 Results on the test set, split by class
frequency

Results split by class frequency are presented in
Table A1.

A.5 Machine learning solution architecture

Figure 3: Cloud architecture of the deployed medical
coding system outlined in the main text.

Designing and implementing machine learning
systems is challenging since they exhibit a different
behavior than traditional software systems (Scul-
ley et al., 2015). The cloud architecture of the
medical coding (MC) system outlined in the main
text (termed Holmes) is organized in separate yet
interconnected layers.

Serving layer. It is responsible for receiving RTs
from the MC platform, forwarding them to Holmes,
and returning the respective predictions.

Ingestion layer. Via the ingestion layer, the MC
platform sends all available data needed for model
training to Holmes.

Storage layer. In the storage layer we save all
data, solutions, and model versions that are re-
ceived or created by Holmes. It can be considered
as the hard-drive of Holmes.

Transformation layer. It handles all steps re-
quired to make the data received from the MC plat-
form ready for model training. It implements all
pre-processing steps, including data augmentation
and split into training, validation, and test data.
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Model
LLT Accuracy [%]

All k=0 k=1 k=2 k=3 k=5 k=10 k>=100
PubMedBERT (PMB) (single) 74.90.5 31.01.8 44.50.8 57.11.3 60.31.8 68.51.7 65.61.2 84.00.7

BioBERT (BB) (single) 74.90.1 29.21.9 41.81.5 53.51.5 60.02.6 65.92.6 62.51.1 84.40.4

sciBERT (SB) (single) 74.90.3 27.81.7 42.52.5 58.41.3 57.52.2 66.41.1 60.32.4 84.60.8

TARS (neg=2 cos) 64.91.2 44.01.2 52.31.9 58.21.2 56.11.3 55.01.9 58.51.7 69.83.0

TARS (neg=10 cos) 62.60.8 39.80.4 47.41.0 53.84.6 56.33.9 52.81.7 52.72.8 66.41.3

XTARS (neg=10 cos) 64.90.9 42.22.3 51.01.2 56.40.7 56.72.5 55.61.2 56.03.5 71.41.6

XTARS (neg=top-5) 76.20.4 37.01.1 48.71.0 57.71.2 64.62.2 67.81.7 63.62.2 83.90.7

XTARS (neg=top-5+5 cos) 77.30.2 37.90.2 47.43.1 59.32.0 67.42.0 68.92.5 63.61.7 84.80.3

XTARS (neg=top-5+10 cos) 76.90.7 38.51.1 48.80.4 59.30.5 66.10.8 68.81.1 63.31.1 84.60.9

XTARS (neg=top-5+5 cos; T=1) 77.50.3 37.30.9 48.10.2 59.70.9 64.81.1 67.82.4 65.60.7 84.90.3

PMB (3 models) 77.8 33.0 46.0 60.4 63.4 70.9 68.9 86.6
BB (3 models) 77.9 33.0 47.9 64.3 65.8 69.2 65.6 87.0
SB (3 models) 77.9 30.8 43.7 57.1 65.2 69.8 64.7 87.1
PMB+SB+BB (3×3) 79.7 34.8 49.8 63.2 63.4 73.8 70.6 88.2
XTARS (PMB+SB+BB, 3×3) 80.4 48.9 52.6 64.8 68.3 71.5 68.9 86.9
PMB+SB+BB (3×5) 80.1 36.2 48.8 64.8 67.1 73.8 68.9 88.5

Table A1: LLT accuracy on the test set. For details on the models, please see Table 3 in the main text. k refers to
the number of training samples, excluding augmented data. In this setting, BERT models can perform zero-shot
(k=0) predictions because the training set contains augmented samples from the ontology for all categories (see Sec.
A.1), even when no real samples are present in the training data (i.e. k=0).

Training layer. It performs model training with
data transformed by the transformation layer, and
saves the trained models to the storage layer.

Configuration layer. The entire architecture is
defined, configured, and created by the configura-
tion layer via infrastructure as code. This allows to
install the entire infrastructure via simple scripts.

Monitoring layer. It observes the system and
raises alerts if unusual behavior is detected, e.g.
requests from unknown IP addresses.

Orchestration layer. It schedules all tasks such
as model training or data processing in the right
order.

A.6 Graphical user interface of the medical
coding platform
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Figure 4: Screenshot of the medical coding platform where the coding solutions proposed by the algorithm described
in the main text are shown to medical coders for acceptance or rejection.
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