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Abstract

Pretrained Transformer based models finetuned
on domain specific corpora have changed the
landscape of NLP. However, training or fine-
tuning these models for individual tasks can be
time consuming and resource intensive. Thus, a
lot of current research is focused on using trans-
formers for multi-task learning (Raffel et al.,
2020) and how to group the tasks to help a
multi-task model to learn effective representa-
tions that can be shared across tasks (Standley
et al., 2020; Fifty et al., 2021). In this work,
we show that a single multi-tasking model can
match the performance of task specific mod-
els when the task specific models show similar
representations across all of their hidden layers
and their gradients are aligned, i.e. their gradi-
ents follow the same direction. We hypothesize
that the above observations explain the effec-
tiveness of multi-task learning. We validate
our observations on our internal radiologist-
annotated datasets on the cervical and lumbar
spine. Our method is simple and intuitive, and
can be used in a wide range of NLP problems.

1 Introduction

Since the seminal work by (Vaswani et al., 2017),
Transformers have become the main architecture
for almost all Natural Language Processing (NLP)
tasks. Self-supervised pretraining of massive lan-
guage models like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020) has allowed practition-
ers to use these large language models with lit-
tle or no finetuning to various downstream tasks.
Multi-task learning (MTL) in NLP has been a very
promising approach and has shown to lead to per-
formance gains even over task specific fine-tuned
models (Worsham and Kalita, 2020; Raffel et al.,
2020; Aribandi et al., 2021). However, apply-
ing these large pre-trained Transformer models to
downstream medical NLP tasks is quite difficult.
Medical NLP has its unique challenges ranging
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from domain specific corpora, noisy annotation
labels and scarcity of high quality labeled data.
Despite these challenges, a number of researchers
and practitioners have successfully finetuned these
large language models for various medical NLP
tasks. However, there is not much literature that
uses multi-task learning in medical NLP to classify
and extract diagnoses from clinical text (Peng et al.,
2020; Crichton et al., 2017). Moreover, there is al-
most no work in predicting spine pathologies from
the radiologists’ notes (Azimi et al., 2020).

In this article, we are interested in extracting
information from radiologists’ notes on the cer-
vical and the lumbar spine. In a given note, the
radiologist discusses the specific, and often multi-
ple pathologies, present in the medical images and
grade their severity. Extracting relevant patholo-
gies from these reports can facilitate the creation
of structured databases that can be used for a num-
ber of downstream use-cases, such as cohort cre-
ation, quality assessment and outcome tracking.
Single-task learning for information extraction in
medical NLP has enjoyed much success in deep
learning (Kanakarajan et al., 2021).

However, an ultimate NLP system for a com-
plete understanding of the medical report must be
able to perform many diverse information extrac-
tion and classification tasks simultaneously and
efficiently. Such a system can be enabled by MTL,
where one model shares weights across multiple
tasks and makes multiple inferences in one forward
pass. Such networks can not only be trained with
limited resources, but are more scalable and deploy-
able when compared to several single-task models.
Moreover, the shared features within these MTL
networks can induce more robust regularization and
boost performance. Thus there is a lot of interest in
the academic and industry research communities to
understand when multi-task learning improves per-
formance over single-tasking models (Crawshaw,
2020), and how to group a diverse set of tasks to
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posterior element hypertrophy. No
central canal or neural foraminal
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sac. Mild left neural foraminal
stenosis due to disc bulge and
annular tear. No significant central
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Stenosis: Normal
Nerve: Normal

Figure 1: Figure showing how a report looks as it goes through our pipeline.

encourage the model to learn a representation that
can be shared across tasks (Standley et al., 2020;
Fifty et al., 2021; Bingel and S@gaard, 2017; Zamir
et al., 2020). Some of the aforementioned works,
most notably in (Shui et al., 2019), define a notion
of task similarity via the Wasserstein distance and
show that a small Wasserstein distance between
tasks aids in MTL.

This work is an extension of our earlier work (Se-
hanobish et al., 2022) where we used parameter
efficient MTL models to extract information from
cervical spine. In that work, we defined tasks as
a conditional distribution over the classes, and we
attributed our success of MTL to smaller Wasser-
stein distance between tasks. However, computing
Wasserstein distance is expensive and suffers from
the curse of dimensionality (Cuturi, 2013), which
requires the number of samples to be significantly
larger than the dimension of the representation (768
for many transformer models) in order for the dis-
tance to be accurately estimated. This prevents us
from being able to estimate Wasserstein distance
for some of our minority classes, which have about
200 examples. Even for majority classes where we
have about 5k samples, our work suffers from large
error rates. Thus, to alleviate the above drawbacks,
in this work, we sought to use methods that are
applicable to small data regimes that lie in high
dimensional space.

Inspired by the work of (Yu et al., 2020; Chen
et al., 2020) and (Kornblith et al., 2019), we hy-
pothesize if the single-task models show similar
representations across their hidden layers and the
task specific gradients are aligned (see Definition
1 in Section 4.2), the multi-task model can match
or outperform the task-specific, single-task models.
We validate this hypothesis on two multi-task set-
tings on our internal datasets: (a) Four of the most
common pathologies in the cervical spine - cen-

tral canal and foraminal stenosis, disc herniation
and cord compression, and (b) Three pathologies
in the lumbar spine - central canal stenosis, disc
herniation and nerve root impingement.

In this work, we (a) extend our novel pipeline to
extract and predict the severity of various patholo-
gies in the lumbar and cervical spine at each mo-
tion segment, (b) compute Central Kernel Align-
ment (CKA) and show similarity between the trans-
former layers trained for individual tasks on a given
dataset, (¢) compute dot products between the gra-
dients of the task specific loss functions with re-
spect to various parameters and show that most of
the gradients flow along a similar trajectory and
(d) show how to leverage that information into a
simple MTL framework allowing us to achieve sig-
nificant model compression during deployment and
also speed up our inference without sacrificing the
accuracy of our predictions.

2 Datasets

We use an internal dataset consisting of radiolo-
gists’ MRI reports on the cervical and the lumbar
spine. Our dataset is heterogeneous and is diversely
sampled from a large number of different radiology
practices and medical institutions; the cervical MRI
data consists of 1578 reports from 97 different radi-
ology practices detailing various pathologies of the
cervical spine and our lumbar MRI data contains
2004 reports from 170 different practices.

We annotate the cervical reports with the 4 fol-
lowing pathologies: spinal stenosis, disc herniation,
cord compression, and neural foraminal stenosis,
and the lumbar reports with the 3 pathologies: disc
herniation, spinal stenosis, and nerve impingement.
Each of these pathologies is accompanied by an
indication of severity. In the cervical reports, the
three categories for the central canal stenosis are
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based on gradation; none/mild are not clinically
significant, moderate and severe definitions involve
cord compression or flattening. The moderate ver-
sus severe gradation refers to the varying degrees
of cord involvement. For disc herniation and cen-
tral canal stenosis, the categories are based on a
continuous spectrum and it is a standard practice
in radiology for any continuous spectrum to be
bucketed in mild, moderate and severe discrete
categories. Cord compression severity is binary:
compression/signal change versus none. This is
because both cord compression and signal change
can cause symptoms, and are therefore clinically
relevant. Foraminal stenosis is treated as a binary
task as well: severe versus non-severe, as severe
foraminal stenosis may indicate nerve impinge-
ment, which is clinically significant. Similar con-
siderations are taken into account when annotating
the lumbar reports. The splits and the details of
each category can be found in Table 1. The data dis-
tribution is highly imbalanced, and about 25% of
these reports are OCR-ed, which leads to additional
challenges stemming from bad OCR errors.

Dataset  Pathology Training Label Distribution  Test Label Distribution

None/Mild : 1885 None/Mild : 1068
Disc Moderate : 1998 Moderate :1588
Severe : 456 Severe :332

None/Mild : 3787
Moderate : 350
Severe : 202

Lumbar

None/Mild : 2411
Moderate : 304
Severe : 273

Stenosis

Normal : 3790
Abnormal : 549

None/Mild : 2731
Disc Moderate : 2699
Severe : 797

None/Mild : 5488
Moderate : 561
Severe : 178

Normal : 2376
Abnormal : 612
None/Mild : 401
Moderate : 378
Severe : 101
None/Mild : 793
Moderate : 68
Severe : 19
Normal : 806
Abnormal : 74
Normal : 789
Abnormal : 91

Nerve

Cervical

Stenosis

Normal : 5702
Abnormal : 525
Normal : 5262

Neural Foraminal Stenosis Abnormal : 965

Cord Compression

Table 1: Table showing statistics of our datasets

For a given report, each task is to predict the
severity of a pathology for each motion segment -
the smallest physiological motion unit of the spinal
cord (Swartz et al., 2005). Breaking information
down at the motion segment level in this way en-
ables pathological findings to be correlated with
clinical exam findings, and can inform future treat-
ment interventions.

Every report is tagged by annotators with labels
for relevant pathologies and severities, along with
span information indicating which part(s) of the
report mentions each pathology. For example, in
a report for the lumbar spine, the sentence “L1-
L2: There is no disc herniation. No spinal canal

or foraminal narrowing" would be given normal
or O class for each of the 3 pathologies (central
canal stenosis, disc herniation and nerve root im-
pingement). Similarly in a cervical spine report,
the sentence ““ C2-3: Normal; no disc herniation
or bulge. No central canal stenosis or neuroforami-
nal narrowing" would be given a normal or 0 class
for all the 4 pathologies. An example of a full
radiology report can be found in Appendix A.

3 Workflow

In this section, we will briefly describe our pipeline.
The reports are first de-identified according to
HIPAA regulations. Next, a Spacy (Honnibal et al.,
2020) parser is used to break the report into sen-
tences.

A BERT based NER model which we call the
report segmenter is then used to identify the mo-
tion segment(s) referenced in each sentence, and
all the sentences containing a particular motion
segment are concatenated together. This report seg-
menter has been shown to achieve an F1 score of
.9 on our internal datasets, and the same model is
common across both the lumbar and the cervical
datasets. More details about the NER model and
the hyperparameters used to train it can be found in
Appendix B and C. All pathologies are predicted
using the concatenated text for a particular motion
segment. Finally, the severities for each pathology
are modeled as multi-label classification problem,
and a pre-trained transformer is finetuned using the
text for each motion segment.

For more details about our pipeline and data
processing, please see Appendix B. Figure 1 breaks
down how a report looks as it is processed through
our spine pipeline.

4 Similarity of Representations between
Task Specific Models

In this section we will describe our methodology
to understand the similarity between the represen-
tations of various single task models. For all the
experiments in this section, we use the PubMed-
BERT (Gu et al., 2020) as the backbone.

4.1 Central Kernel Alignment

We use the linear Central Kernel Alignment (CKA),
introduced in (Kornblith et al., 2019). CKA is a
scalar similarity index that can be used to compare
representations within and across neural networks.
(Linear) CKA can be defined by the following:
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Figure 2: CKA between activation matrices between different finetuned single-task models. The top 2 rows are
single-task models trained to predict specific pathologies from cervical dataset and the bottom row for the lumbar
dataset. The y-axis is chosen to be between the min and the max values, i.e. in the interval (.86, 1.0)

Given IV examples and two activation outputs on
these examples, Ry € RYV*% and Ry € RV*d2,

R/ R
CKA(R1, Rp) = — 17y QHTF (1
|R) Ral|rl|Ry Rollr
where || - || ¢ is the Frobenius norm.

It is widely believed that similar representa-
tions lead to similar performances on downstream
tasks (Nguyen et al., 2021). In this work, we com-
pare the representations learned by various single
tasking models. For two single task models trained
on a specific part of a spine, the CKA between
the matrix of activations for each layer of the cor-
responding models is computed. For illustration
purposes, we collect all the CKA values for various
activation matrices in a given layer and plot them
in a box plot, as shown in figure 2. We observe that
for various tasks on both cervical and lumbar spine,
all layers of the task specific models learn similar
representations.

Additional results on comparing models from
the tasks from the lumbar dataset and the cervical
dataset can be found in Appendix D.

However, the high value of CKA may also
be attributed to the following factors : (i) larger
and deeper networks converge to similar solu-
tions (Morcos et al., 2018) and (ii) CKA values
do not change drastically when models start from
pretrained weights and are only trained for a few
epochs (Mirzadeh et al., 2021).

Thus in addition to the above analysis of the
activations with the CKA, in the next subsection

we look at the gradient level information to un-
derstand the trajectory of the task specific learned
activations.

4.2 Gradient Alignment

There has been a lot of work in understanding the
task specific gradients in the context of MTL. Given
tasks 11, - - - T}, (for example, they can be classifi-
cation tasks), one can define n loss functions ETj
for each task 7). In our work, all loss functions
are cross-entropy losses. Then the task specific
gradients are defined to be ng ETj where 0; are
the parameters of the task specific model. More
specifically, it is shown in (Chen et al., 2018), that
MTL is competitive with single task learners when
the norms of the task specific gradients have similar
magnitudes. However in (Yu et al., 2020; Javaloy
and Valera, 2021), the authors show that the direc-
tion of the gradient flow is more important than
the magnitude for the success of MTL. More pre-
cisely, Theorem 1 in (Yu et al., 2020), shows that
the multitask objective converges to the optimum
of one of the tasks or a sub-optimal minima in the
presence of conflicting gradients. Furthermore, au-
thors in (Javaloy and Valera, 2021) use a synthetic
toy example to show the difficulties of optimiz-
ing a multi-task loss in the presence of conflicting
gradients.

Inspired by the above works, we define the fol-
lowing:

Definition 1 Two gradient vectors g; and g; are
aligned if g; - g; > 0, i.e. the vectors are pointing
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in the same direction.

To show that the gradients get more aligned as
models are trained, we store the gradients for all
the parameters for all the mini-batches after every
epoch. We then compute the dot products between
the corresponding gradients for two tasks. We ob-
serve that as the task specific models gets trained,
an overwhelming proportion of these gradients are
aligned (see Table 2). To illustrate our findings,
we take the proportion of these aligned parameters
in a given layer and plot them using a box plot in
Figure 3. Finally, we compute the proportion of
weights across all layers for which the gradients
are aligned which we call the Average Proportion
of Aligned Gradients (APAG).

1 1

APAG = — — 0(g;-g) 2
J\flayers]\/*headsZ Z (g g]) (2)

layers heads

where 6(x) is the Heaviside step function. This
is a scalar value that summarizes the box plot and
we show the progression of alignment of the gradi-
ents as training progress and the end of the training
(Table 2 and Table 6 in Appendix D respectively).
Note that, in the above formula, the token embed-
ding layer is included in the computation and it is
assumed to have 1 head.

Dataset ~ Task Comparisons  Epoch 1 Epoch2 Epoch3 Epoch4
Cord-Stenosis 46 .67 75 .81
Cord-Disc 37 52 .69 74

Cervical - Cord-Foraminal .49 61 77 83
Disc-Stenosis 51 .62 .69 18
Disc-Foraminal A7 .59 .65 73
Foraminal-Stenosis .54 .66 72 79

Lumbar  Disc-Stenosis 44 53 .59 .68
Nerve-Stenosis S1 .57 .66 73
Disc-Nerve A48 .55 .63 71

Table 2: Results showing the Average Proportion of
Aligned Gradients between various task specific models
at various epochs.

To summarize: The task specific models not only
show similar representations but they arrive at these
representations by moving in a similar direction af-
ter starting from the pretrained weights. We would
also like to point that we observe similar behavior
when we run our experiments with the BERT (De-
vlin et al., 2019) and the Clinical BERT (Alsentzer
et al., 2019) models.

5 Results on Multi-Task Models

In this section, we give empirical evidence on the
success of MTL for our datasets. The results shown
in this section are from our test set.

For our classification task, the PubMedBERT
model is used as the backbone. This BERT model
is finetuned on the the cervical tasks resulting in
4 task-specific BERT sequence classifier models
which provides our baseline results. For the lumbar
dataset, the PubMedBERT model is finetuned on
the 3 classification tasks resulting in 3 task-specific
BERT sequence classifier models.

Now, instead of finetuning the task specific mod-
els for extracting various pathology information
from the cervical spine dataset, 4 classifier heads
(i.e. 4 linear layers) are added to a single PubMed-
BERT model to create an output layer of shape
[3, 3,2, 2], where the first 3 outputs correspond to
the logits for the stenosis severity prediction, the
next 3 for the disc severity, the next 2 for the cord
severity and the final 2 logits for the foraminal
severity. For the lumbar dataset, 3 classifier heads
are added to the PubMedBERT model to create
an output layer of shape [3, 3, 2], where the first
3 outputs correspond to the logits for the stenosis
severity prediction, the next 3 for the disc severity,
and the final 2 logits for the nerve severity.

For the experiments, with both the datasets, a
dropout of .5 is added to the BERT vectors before
passing them to the classifier layers. Each of these
classifier heads is trained with a cross entropy loss
with the predicted logits and the ground truth tar-
gets. All the losses are added up which allows
the gradients to backpropagate through the whole
model and train these classifier heads jointly.

The results for our experiments are shown in
Table 3 for the lumbar dataset and Table 4 for the
cervical dataset.

Backbone Model Disc Stenosis Nerve
BERT Baseline
; c p
BASE (single tasker) 78+ .03 .79+.02 .8+.03
Multi-Tasking .77 +£.02 .78 +.01 .79+.02
CLINICAL Baseline )
BERT (single tasker) 81+.03 .83+.02 .82+.03
Multi-Tasking .83 +.02 .8+£.04 .81+.02
MSR PubMedBERT D3 g4 03 83403 81+.04
(single tasker)
Multi-Tasking .84+.01 .84+ .03 .86+.04

Table 3: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Lumbar Dataset.

For fair comparisons, we also conduct experi-
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Figure 3: Box Plot showing the proportion of aligned gradients between various task specific models, after training.
The top 2 rows are single tasking models trained to predict specific pathologies from the cervical dataset and the
bottom row for the lumbar dataset. The y-axis is chosen to be between the min and the max values, i.e. in the

interval (.38, .725).

ments with the BERT base and the Clinical BERT
models as well. We notice that the PubMedBERT
produces slightly better results than both the Clin-
ical BERT and the BERT base. We believe this
is due to the fact that the vocabulary for PubMed-
BERT is tailored for clinical text, unlike that of
Clinical BERT, which uses the same vocabulary as
that of BERT.

Backbone Model Stenosis Disc Cord Foraminal
BERT Baseline ;
BASE (single tasker) 62+.03  .64+£.03 .70£.03 .79+.03
Multi-Tasking  .62+.02 .65+.03 .72+.02 .78+ .01
CLINICAL Baseline . . .
BERT (single tasker) 64+.05 66+.02 .71+£.02 .824.01
Multi-Tasking .63 +£.02 .67+.01 .75+.01 .79+.03
MSR PubMedBERT DOl 6o 03 654 04 7305 84+.01
(single tasker)
Multi-Tasking .67 +£.01 .69+4+.01 .72+ .04 .83+.03

Table 4: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Cervical Dataset.

The hyperparameters and other training and im-
plementation details can be found in Appendix C.

6 Deployment

We deploy our spine pipeline system on an AWS
p3.2x machine with a single NVIDIA V100 GPU.
Reports are passed through the pipeline daily and
first go through the report segmenter which tags

sentences belonging to our set of motion segments.
Post-processing is done per report to aggregate sen-
tences belonging to each motion segment group and
to filter out any reports that do not contain motion
segments. Each grouping of motion segments is
individually classified through our MTL model to
predict a severity class per pathology. Both the re-
port segmenter and the multi-tasking model are pro-
cessed in batch mode with latencies of 31ms/report
and S6ms/report, respectively. Compared to single
pathology models, we observe a 3x improvement in
latency per study when using the MTL pathology
model. The spine pipeline is routinely evaluated
in an offline setting for studies that do not produce
any motion segment groupings or fail to capture
any sentences for a given motion segment, per re-
port. Our current deployment only supports the
lumbar reports and we are in the process of extend-
ing our deployment to also support the cervical
pathologies.

7 Conclusion and Future Work

In this work, a simple multi-tasking model is pre-
sented that is competitive with task specific mod-
els. Instead of training and deploying task specific
models, only one model is trained and deployed.
This allows us to save significant costs during train-
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ing and faster inference during deployment while
achieving significant model compression, without
any loss in the quality of performance. Our work
opens the possibility of using multi-tasking models
to extract information over various different body
parts, allowing users to leverage large transformer
models using limited compute resources.

Our novel pipeline is one of the very few works
that attempts to extract pathologies and their sever-
ities from a heterogeneous source of radiologists’
notes on lumbar and cervical spine MRIs at the
level of motion segments. These findings suggest
that our approach may not only be more widely
generalizable and applicable, but also more clini-
cally actionable.

We believe our analysis with CKA and gradi-
ent alignment sheds more light on the success of
MTL. This insight has led to our process change
from single-task BERT based models to a more
cost-effective MTL system. Our analysis is widely
applicable for other datasets and tasks.

It is tempting to ask if one can use one multi-task
model for both the lumbar and the cervical datasets.
This is a work in progress and we have found strong
similarity between single task models in the two
datasets (most notably between the lumbar disc and
the cervical disc models and the lumbar stenosis
and the cervical stenosis models). However, un-
like in the above analysis, we see low CKA scores
between various other task specific models which
may make MTL difficult (see Appendix D). We
are in the process of using our analysis, along with
insights borrowed from (Standley et al., 2020; Yu
et al., 2020) to either group tasks from the two
datasets or align different task-specific gradients to
create an efficient learner.

The biggest drawback of our work is the limited
amount of data on which our observations are ver-
ified. We are actively addressing this issue as we
annotate more reports concerning various patholo-
gies in different body parts.

Ethical Considerations

Because of legal and institutional concerns arising
from the sensitivity of clinical data, it is difficult for
the NLP community to gain access to relevant data
except for MIMIC (Johnson et al., 2016). Despite
its large size (covering over 58k hospital admis-
sions), it is only representative of patients from a
particular clinical domain (the intensive care unit)
and geographic location (a single hospital in the

United States). Such a sample is not representative
of either larger population of patient admissions or
other geographical regions/hospital systems. We
have tried to address the second issue by collecting
data across multiple practices in the US. However,
it is impossible to predict whether our models will
generalize to the entire patient population with-
out actually evaluating on all the different radiol-
ogy practices. Thus we have to be extra careful
about out-of-distribution data since the actionable
insights we generate from our models can be poten-
tially faulty and can lead to severe consequences.
Finally, we recognize the need to minimize ethi-
cal risks of Al implementation which can include
threats to privacy and confidentiality, informed con-
sent, and patient autonomy. We strongly believe
that stakeholders should be encouraged to be flexi-
ble in incorporating Al technology, most likely as
a complementary tool and not a replacement for a
physician. Thus, we develop our workflows, anno-
tation guidelines and generate actionable insights
by working in conjunction with a varied group of
radiologists and medical professionals.
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A Example of our Dataset

'Findings: Osseous structures of the lumbar spine are intact. \nNo fractu
res detected. \nThe conus medullaris is unremarkable. \nNo concerning par
aspinal mass is identified. \nThere is a levoscoliotic curvature to the 1
umbar spine. \nT12-Ll through the L2-L3 levels: Unremarkable L3-L4: There
is a small disc bulge. \nThere is mild disc space narrowing. \nNo stenosi
s. L4-L5\n: Left paracentral disc herniation causing posterior displaceme
nt of the left LS nerve root. \nThere is mild left lateral recess stenosi
s. \nSpinal canal and neuroforamen are patent L5-S 1: \nSmall disc bulge.
\nNo stenosis. \nImpression: 1. \nLeft paracentral disc herniation at L4-
L5 level causing posterior displacement of the left LS nerve root and mil
d left lateral recess stenosis. \n2. \nSmall disc bulges at the L3-L4 and
L5-S] levels without stenosis. \n3. \nLevoscoliotic curvature to the lumb
ar spine. \n4. \nNo fractures identified. '

Figure 4: An example of a report from our Lumbar
Dataset.

In this section, we will show some examples of
lumbar and cervical reports from our dataset.

There is mild reversal of cervical lordosis. The vertebral body heights are maintained. No
marrow signal abnormalities are identified. Cerebellar tonsils extend up to 2 mm below the
foramen magnum on the right. There is no significant crowding at the foramen magnum.
Findings are felt most consistent with benign cerebellar tonsillar ectopia Visualized portions
of the posterior cranial fossa and brainstem are otherwise unremarkable. The spina cord is
normal in caliber and signal intensity within the imaged field-of-view. Paravertebral and
paraspinal soft tissues are grossly unremarkable. C1-C2: Intact dens. No spinal canal
stenosis. C2-C3: Maintained disc space with mild disc degeneration. No spinal canal
stenosis or neural foraminal narrowing. C3-C4: Maintained disc space with mild disc
degeneration. Mild disc bulging that impresses on the anterior thecal sac. No significant
spinal canal stenosis or neural foraminal narrowing. C4-C5: Maintained disc space with mild
disc desiccation. Uncovertebral degenerative changes. No significant spinal canal or
neuroforamina

Figure 5: An example of a report from our Cervical
Dataset.

B More Details about our Workflow

In this section, we give a more detailed description
of our novel workflow. Our main goal is to detect
pathologies at the motion segment level from radi-
ologists’ MRI reports. The motion segments in the
cervical reports that we are interested in are C2-C3,
C3-C4, C4-C5, C5-C6, C6-C7 and C7-T1 and the
motion segments of interest in the lumbar reports
are L1-L.2, L2-L.3, L3-L4, L4-L5 and L5-S1. We
first make sure that the reports are de-identified
and then use a Spacy (Honnibal et al., 2020) parser
to break the report into sentences. Then each sen-
tence is tagged by annotators and they are given
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Single Tasking Models

Multi-Tasking Models

Single Tasking Models Multi-Tasking Models

Hyperparameter Type on Cervical Dataset on Cervical Dataset on Lumbar Dataset on Cervical Dataset NER
Epochs 5 12 6 11 5

Batch Size 16 16 16 16 16
Sequence Length 512 512 512 512 256
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate 2e-5 3e-5 2e-5 3e-5 le-5
Weight Decay le-4 le-4 le-4 le-4 le-3
Gradient Clip 2 5 2 5 2

Early Stopping Yes Yes Yes Yes Yes
Learning Rate Scheduler Linear Linear Linear Linear Linear

Table 5: Hyperparameters used for all our experiments

labels of various pathologies and their severities
if the sentence mentions that pathology. To de-
tect pathologies at a motion segment level, we use
our BERT based NER system to tag the locations
present in each sentence. Our BERT based NER
model is a binary classifier model (Location Tag vs
the Other Tag). It is is trained on both lumbar and
cervical MRI reports that can predict the location
tags in those reports. Our NER model achieves an
F1 score of .9.

We then use an appropriate body part specific
rule based system to group all sentences to the
correct motion segment. If a sentence does not
explicitly have a motion segment mentioned in it,
we use a rule based method to assign the sentence
to one of the above mentioned motion segments or
to a generic category “No motion segments found".
Given the disparate source of our data and due to
typos and OCR errors, for example, L.23, L2L.3,
L@L3, L2_L3 all may refer to the motion segment
L2-L.3 and thus our systems are mindful of this
diversity of the clinical notes. Finally to use our
BERT based models for pathology detection on
the level of motion segments for a given report,
we concatenate all sentences for a given motion
segment and use the [CLS] token for the segment
that is used for the downstream classification task.

Since we are interested in predictions at the mo-
tion segment level, we do not use the sentences that
are grouped under "No motion segments found" to
train the classifier models, nor do we evaluate our
classifier models on those sentences.

C Hyperparameters and Other Training
Details

We create a validation set using 20% of the samples
of the training set where the samples are drawn via
stratified samples so the data distribution is main-
tained across splits. The hyperparameters used for

training the NER model and various classification
models can be found in Table 5.

PyTorch (Paszke et al., 2019) and the Hugging-
Face library (Wolf et al., 2020) is used to conduct
our experiments which are run on 1 NVIDIA V100
16GB GPU.

D Additional CKA Results and Gradient
Alignment Results

In this section, we present some additional results
on comparing representations between our various
models.

We present the average proportion of aligned
gradients (APAG) at the end of training in Table 6.
We also compute the cosine similarity between the
gradients. We then take the average of them for a
given layer, thus yielding a scalar value per layer.
This yields cosine similarity values which are over
90 % positive. For simplicity, we average those
numbers to produce a scalar value that measures
the cosine similarity between the gradients of two
models. Model level statistics can be found in
Table 6.

Average Proportion

Dataset of Aligned Gradients

Task Comparisons  Cosine Similarity

Cord-Stenosis .013 .89
Cord-Disc .005 .87
Cervical  Cord-Foraminal 011 91
Disc-Stenosis .012 .88
Disc-Foraminal .007 .87
Foraminal-Stenosis .005 .84
Lumbar  Disc-Stenosis .008 15
Nerve-Stenosis .01 .86
Disc-Nerve .002 .86

Table 6: Results showing the Cosine Similarity and
the Average Proportion of Aligned Gradients between
various task specific models after the end of training.

Given some similarities between certain label
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Figure 6: Box plot showing CKA scores between models trained on tasks on the lumbar and the cervical dataset.
The y-axis is chosen to be (0,.85). The figure shows the low CKA scores between the cord and the nerve models
and high scores between the stenosis models and the disc models.

spaces in the lumbar and the cervical dataset (partic-
ularly for the disc herniation and the central canal
stenosis labels), we believe that some task specific
models between tasks across datasets may show
similar representations. To validate this hypothesis,
we computed the CKA between lumbar stenosis
and the cervical stenosis models and the lumbar
disc and the cervical disc models. The natural
question is : what happens to the single tasking
models that are trained on label spaces that are se-
mantically different? Fig 6 shows low CKA scores
between the cord and the nerve models. This is an
active work in progress to be able to group simi-
lar tasks (Standley et al., 2020) to create a MTL
framework that works for both the cervical and the
lumbar spine. Another future direction is to use
realign gradients using the techniques in (Yu et al.,
2020). However to realign the gradients, one has
to save the entire computation graph after the back-
ward pass via loss.backward(retain_graph=True)
which becomes a bottleneck for large transformer
models. To mitigate this issue, one can use pa-
rameter efficient methods like adapters which we
have shown to work in these MTL settings in our
previous work (Sehanobish et al., 2022).

E Annotation Process

All data are annotated by our team of inhouse an-
notators with clinical expertise. All annotators are
trained for the given task and provided clear guide-
lines on the task and performance is measured pe-
riodically on a benchmark set and feedback is pro-
vided.
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