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Abstract

Pixel-level autoregression with Transformer
models (Image GPT or iGPT) is one of the
recent approaches to image generation that has
not received massive attention and elaboration
due to quadratic complexity of attention as it
imposes huge memory requirements and thus
restricts the resolution of the generated images.
In this paper, we propose to tackle this problem
by adopting Byte-Pair-Encoding (BPE) origi-
nally proposed for text processing to the im-
age domain to drastically reduce the length of
the modeled sequence. The obtained results
demonstrate that it is possible to decrease the
amount of computation required to generate
images pixel-by-pixel while preserving their
quality and the expressiveness of the features
extracted from the model. Our results show
that there is room for improvement for iGPT-
like models with more thorough research on
the way to the optimal sequence encoding tech-
niques for images.

1 Introduction

Modern deep learning includes a broad scope of
problems with varying difficulty. To solve these
tasks a paradigm of pre-training is widely used
in some domains, to the greatest extent in com-
puter vision (CV) and natural language process-
ing (NLP). Whilst unsupervised or self-supervised
pre-training is more dominant in the NLP domain,
CV models are mainly trained using large amounts
of labeled data. Authors of iGPT (Chen et al.,
2020) have attempted to prove that given appro-
priate conditions (namely flexible architecture and
significant amount of computation) it is possible
to pre-train a model that will reach state-of-the-art
performance on several CV downstream tasks even
with unlabeled data. They have achieved it using
an autoregressive pixel-level image generation as
an unsupervised training objective for training a
Transformer (Vaswani et al., 2017) model.
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The approach of pixel-by-pixel generation ex-
ploited in the iGPT paper simply models an image
as a continuous sequence of pixels and models
the probability distribution of the next pixel con-
ditioned on all previous ones. Flattening images
results in sequences of an enormous length, for
example, such representation of a 128x128 RGB
image will require 49152 tokens, which is infeasi-
ble for RNNs as well as for Transformer models
where complexity is quadratic with respect to the
sequence length.

Despite there being numerous ways of optimiz-
ing attention operation in Transformer authors of
the iGPT model have deliberately chosen dense
attention due to it being domain agnostic and not
imposing any additional biases on the data. In
our work, we continue research in this direction
concentrating on the optimization of the image-to-
sequence representation mechanism rather than the
attention mechanism or the Transformer architec-
ture itself.

In the presented paper we try to adopt a tok-
enization approach widely used in the NLP domain:
Byte-Pair Encoding (BPE) to the image domain to
mitigate the main issue of the original iGPT paper.
These methods allow to significantly squeeze input
sequences thus reducing the amount of computa-
tion required for training and inference. Following
the methodology of the original paper, we also test
the ability of the Transformer model pre-trained on
image generation to be used as a feature extractor
that competitively performs on downstream tasks,
namely, image classification on CIFAR datasets .

The main contributions of this paper are as fol-
lows:

* We propose a novel method of image-to-
sequence tokenization that allows pre-train
image models on a generative objective with
lower computational complexity.

"The code is available at https://github.com/
razzant/bpe-iGPT
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* We study the dependence between the size of
BPE vocabulary and the amount of computa-
tion required for a forward pass.

* We show that pre-training with image-BPE
increases the capacity of the model allowing
it to learn more meaningful representations.

* We conduct several experiments measuring
the model’s performance on downstream
tasks.

2 Related Work

Autoregressive approaches have proven to be
very efficient in the NLP domain both in a pre-
training and a variety of natural-language gener-
ation tasks (Radford et al. (2019), Raffel et al.
(2020)). However, in the CV domain, it has been
quite a challenge due to the high dimensionality
of the data. One of the effective ways to tractably
model a joint distribution of pixels in an image
is to cast it as a product of conditional distribu-
tions. It was adopted in several models such as
fully visible sigmoid belief networks (Neal, 1992)
or NADE (Larochelle and Murray, 2011).
Recurrent Neural Networks (RNN) are powerful
models that offer a compact, shared parametriza-
tion of a series of conditional distributions. Authors
of PixelRNN (van den Oord et al., 2016) have ap-
plied this architecture to an image domain. The au-
thors suggested two types of convolutional LSTM
layers to compute all the states along one of the spa-
tial dimensions (rows or diagonals of the image).
Moreover, instead of LSTM blocks a convolutional
layer with a mask to avoid seeing the future context
was used. This method was called PixelCNN and
got further development such as Pixel CNN++ (Sal-
imans et al., 2017). A small receptive field was an
obvious disadvantage of these approaches that was
overcome with the emergence of Transformers.
Transformer-based (Vaswani et al., 2017) mod-
els are extremely successful in natural language
generation and understanding fields. GPT-2 (Rad-
ford et al., 2019) demonstrated human-level per-
formance in text generating and zero-shot tasks
via prompt engineering. There were numerous at-
tempts to use GPT architecture for image genera-
tion, which can be divided into two groups: discrete
feature-based regression (e.g. DALLE Ramesh
et al. (2022)) or pixel-level regression (iGPT Chen
et al. (2020)). The latter type of model is not fairly
popular, as processing the 1D-sequence of flattened
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RGB-image pixels is too memory-expensive due to
the length of the context and attention mechanism.
To deal with this problem authors resize images to
a low resolution (like 322 x 3, 482 x 3, 962 x 3 or
1922 x 3) with further clustering (R, G, B) pixel
values using k-means with k¥ = 512 obtaining the
resulting context length 322 or 482. However, the
iGPT model demonstrated decent results in low-
resolution image generation and downstream tasks
over contextualized features. To measure model
performance linear probe method was used. The
method consists of training multi-class logistic re-
gression on embeddings from a model with frozen
weights on an image classification task. During pre-
training on ImageNet authors also used VQVAE as
a downsampler instead of RGB-clustering to keep
the context of 482 length.

On the other side, there are numerous methods
for sequence length compression in the NLP do-
main — different tokenization techniques, which
exploit the pre-computed merge dictionaries for op-
timal encoding of words or byte groups. One of the
most efficient methods is Byte-Pair-Encoding (Shi-
bata et al., 1999). The idea of this algorithm is
to find the most frequent pair of consecutive two-
character codes in the text and then substitute an
unused code for the occurrences of the pair. This
method has become a good trade-off between vo-
cabulary size and the length of the sequence fed
to the model. In GPT models special modifica-
tion of this algorithm is used which works at byte-
level (Wang et al., 2020) — this is one more step
towards optimal sequence squeezing.

3 iGPT with BPE Image Tokenization

Our BPE-enabled iGPT model relies on the GPT-
2 model originally designed for text processing.
More specifically we use embedding size d =
1024, number of layers L = 36 and number of
heads in the multi-head attention m = 8 result-
ing in 484 million trainable parameters throughout
all experiments. Due to limited computational re-
sources, we have not conducted experiments with
the BERT pre-training objective and used only lin-
ear probing as an evaluation approach.

In our experiments, we provide results for
prompted image generation and linear probe on CI-
FAR10 and CIFAR100 datasets with pre-training
on ImageNet (Deng et al., 2009) dataset. Also
we demonstrate unconditional image generation
on CelebA dataset (Liu et al., 2015) aligned with



MTCNN framework (Zhang et al., 2016).

3.1 Converting Images to Texts

To train byte-level BPE tokenizer we convert im-
ages to text format by assigning each pixel value a
corresponding char symbol separating each row of
the original image with \n symbol in the resulting
text file. Since every pixel has an assigned value
from O to 255 we can quantize them into 10 discrete
buckets using integer division by 26. Now since
every pixel has a value from O to 9 for the grey-
scale setting we can replace each number with the
corresponding digit character. However, for RGB
images we need to represent values from all three
channels in one symbol, that is why we concate-
nate their values resulting in one number in the
range from 0 to 999, and convert this number into
a character using the standard chr function.

For example RGB pixel [150, 112, 255] will be
converted to a char in the following way:

1. RGB pixel: [150, 112, 255]

2. Quantization: [150, 112, 255]// 26 =[5, 4, 9]
3. Concatenation: [5, 4, 9] — 549

4. To char: chr(549) =(

3.2 Decoding Images from Tokens

Since an output of the model can have lines of var-
ious lengths we bring them to the required fixed
resolution by either upsampling or downsampling.
Then in the case of grey-scale images, each char-
acter is directly translated to the corresponding
quantized pixel value while for the RGB scenario
we use the python ord function, inverse to the chr
method used during encoding.

3.3 Encoding Efficiency

To evaluate the sequence squeezing effect of BPE
for images we calculate the squeezing factor — an
average ratio of the pixel-sequence length of an
image to the length of tokenized pixel sequence.
It can be seen from Figure 1 that the squeezing
factor grows logarithmically with the size of the
BPE vocabulary.

While larger vocabularies produce shorter input
sequences they also increase the number of train-
able parameters and the size of modeling distribu-
tion thus hindering the generation. Figure 2 shows
that the vocabulary size of 30 000 tokens gives
an optimal trade-off between the input squeezing
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Figure 1: Compression ratio. The dependency of

sequence squeezing factor from BPE vocabulary size for
RGB and grey-scale 112x112 images. The more tokens
contains BPE dictionary the shorter the sequences used
to represent an image.

and computational efficiency of the model. The se-
lected vocabulary allows us to reduce the length of
pixel sequences roughly by 9 times for grey-scale
images and by 4 times for RGB images, i.e. the
112x112 image can be represented by a sequence
of approximately a thousand tokens.
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Figure 2: Computational efficiency evaluation. iGPT
forward pass FLOPs for a 64x64 RGB image with differ-
ent tokenization strategies: BPE and original pixel-level
(No BPE).

4 Experiments

4.1 Examples of Generated Images

Faces generated by our BPE-iGPT model in
112x112 resolution are presented in the Figure 3
. It is worth noting that the authors of the orig-
inal iGPT provided only examples generated by
their largest model iGPT-XL (6.4 billion parame-
ters) in 32x32 resolution, however visual fidelity of
our samples remains on the same level. This sup-
ports our statement that image-BPE tokenization



allows for pre-train Transformer models on the data
of higher dimensionality with less computational
overhead.

Figure 3: RGB generated faces 112 x 112.

We have also tested the ability of our model to
image-conditional generation. We show examples
of image completion in Figure 4. Even though we
have not used any advanced sampling techniques
such as nucleus sampling, tuning for the temper-
ature, or beam-search all of the generated images
contain clearly recognizable objects.
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Figure 4: Image completions (64 x 64). Top row:
prompt fed to model, middle: the result of the gen-
eration, bottom: ground truth image.

4.2 Image Representations for Downstream
Tasks

Linear probe
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Figure 5: Effectiveness evaluation. Linear probe eval-
uation on CIFAR-10 for features extracted from every
layer.
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One of the common means to evaluate the repre-
sentations learned by pre-trained models is linear
probing on downstream tasks. To do so we train
a logistic regression model over the features ex-
tracted from the trained network and compare the
classification accuracy of the model pre-trained
using image BPE against raw pixel sequences. Fol-
lowing the approach presented in the iGPT paper,
we evaluate features extracted from every layer of
the network.

Figure 5 shows the results of classification on
CIFAR-10 and CIFAR-100 datasets. As can be
seen from the plot our findings are in the agree-
ment with the original paper: the best layers to be
used as feature extractors are situated around the
central layer. Another interesting finding is that
even the first layer of the model trained on BPE-
image contains representative features in contrast
to the model trained on pixel sequence where first
results better than random are obtained after several
layers. One of the possible explanations for this is
that some BPE-tokens represent the most common
sequences of pixels which means that they already
contain some semantic information in contrast to
raw pixel sequences.

Our finding is in the accordance with similar re-
search in the NLP domain. Authors of (Kharitonov
et al., 2021) show that the ability of Transformer
models to memorize training data is highly depen-
dent on the size of BPE vocabulary. In combination
with our results, this suggests that BPE tokeniza-
tion increases the capacity of models allowing them
to learn more information about the data from every
layer.

5 Conclusion

In this paper, we explored the use of the BPE tech-
nique originally proposed for textual data in the im-
age domain. It allows significantly squeeze the tok-
enized image sequence length mitigating the limita-
tions of the original iGPT model. We quantitatively
show that this method reduces the amount of re-
quired computation by an order of magnitude and
qualitatively verify that it does not affect the quality
of generated images. Moreover, applying BPE tok-
enization improves the representative ability of the
models trained on unlabeled data. Our results sug-
gest that the potential of image-to-sequence squeez-
ing is not fully unleashed yet and that there is room
for improvement of iGPT-like models.
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