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Abstract

Current virtual assistant (VA) platforms are be-
holden to the limited number of languages they
support. Every component, such as the tok-
enizer and intent classifier, is engineered for
specific languages in these intricate platforms.
Thus, supporting a new language in such plat-
forms is a resource-intensive operation requir-
ing expensive re-training and re-designing. In
this paper, we propose a benchmark for eval-
uating language-agnostic intent classification,
the most critical component of VA platforms.
To ensure the benchmarking is challenging and
comprehensive, we include 29 public and inter-
nal datasets across 10 low-resource languages
and evaluate various training and testing set-
tings with consideration of both accuracy and
training time. The benchmarking result shows
that Watson Assistant, among 7 commercial
VA platforms and pre-trained multilingual lan-
guage models (LMs), demonstrates close-to-
best accuracy with the best accuracy-training
time trade-off.

1 Introduction

Virtual assistant (VA) platforms that enable cus-
tomers to train and deploy their chatbots have
seen growing demand in recent years. This has
attracted significant interest from both industry and
academia to develop new machine learning (ML)
models and datasets for these task-oriented dialog
systems. In a dialog system, intent classification
as the core component identifies user intent of a
user’s utterance so that the system can respond ap-
propriately by triggering dialog nodes in predefined
dialog trees.

Although there has been a lot of exploration
around implementing intent classification models
for English, not much work has been extended to
low-resource languages. Due to the vast number of
world languages, it is not trivial for an enterprise
VA platform to support its global customers.

∗Equal contributions from the corresponding authors.

Figure 1: Training time vs. accuracy on Leyzer (Pol-
ish) dataset for all models. Full train set and test set
are used. All methods, except WA and RASA, are
trained using GPU. WA offers the best trade-off be-
tween training time and accuracy.

.

Currently, VA platforms usually take the follow-
ing two methods to handle unsupported languages:

• Use without modification: VA platforms usu-
ally include language-specific components for
each supported language, such as language
models (LMs), tokenizers, part-of-speech tag-
gers. Directly applying them to unsupported
languages could dramatically hurt the perfor-
mance. Several preprocessing steps, such
as contraction handling, stemming, lemma-
tization, can produce unpredictable behavior
when used with an unsupported language.

• Using translation: Translating unsupported
language to the supported ones is an intuitive
solution. However, low-quality translation
can result in classification errors. Also, there
is additional round-trip time and cost when
including a translation component. In enter-
prise scenarios, this may lead to the deployed
solution being more expensive.

While we see an increasing need to develop such
a framework for non-English languages, develop-
ing a language-agnostic modeling paradigm that
can serve a large number of languages carries im-
portant business applications as language-specific
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solutions are difficult and expensive to maintain.
In addition to the above challenge, there are

two more considerations while developing such
language-agnostic VAs. Firstly, due to the high cost
of curating training data for multiple languages,
real-world intent detection models usually must be
able to train and perform well on few-shot training
datasets. Secondly, the training time is also a crit-
ical factor to be considered. Given a commercial
VA platform, authoring an assistant for a specific
domain still takes dozens of hours, and the whole
process involves hundreds to thousands of times of
iteration. As model training is called in each itera-
tion, keeping training time in the range of seconds
is crucial.

In this paper, we conduct a comprehensive and
robust evaluation of several modeling approaches
across multiple low-resource languages in real-
world settings and focus on their accuracy, train-
ing time, and computation requirements. We
benchmark two commercial VA platforms, includ-
ing IBM Watson Assistant (WA)1, RASA2, 3 and
five representative multilingual LMs with different
model sizes and architectures.

To benchmark the models on as many low-
resource languages as possible, we include 9 public
datasets from the research community across 5 lan-
guages and curate 20 real-world datasets from a
commercial VA platform across 7 languages and 9
domains in the evaluation. We also create the few-
shot version of these datasets to evaluate the mod-
els’ performance on small datasets. Additionally,
after observing the close accuracy results among
the models, we follow Arora et al. (2020) and Qi
et al. (2021) to create the TF*IDF and jaccard based
difficult testing set to differentiate them better. 4

Overall, our benchmark generates about 1000
data points, including accuracy and training time
in default, few-shot training, and difficult testing
settings. While LaBSE (Feng et al., 2020) pro-
duces the highest accuracy in almost all settings,
along with all other LMs, their training time is
too long to be used in commercial production. On
the contrary, Watson Assistant achieves the best
accuracy-training trade-off by achieving the com-

1https://www.ibm.com/products/watson-assistant
2https://rasa.com
3We do not include other commercial VA providers due to

the benchmarking prohibition in their terms of use.
4The difficult test sets inherit the same licenses and terms

of original datasets. https://github.com/posuer/benchmark-
multilingual-intent-classification

petitive accuracy and consistent short training time
of less than one minute. Figure1 demonstrates this
comparison on one of the benchmarking datasets.

2 Related Work

Multilingual Intent Classification A line of work
has studied commercial conversational AI services
(Braun et al., 2017; Arora et al., 2020; Liu et al.,
2019) and pretrained LMs (Casanueva et al., 2020;
Larson et al., 2019; Arora et al., 2020; Bunk et al.,
2020; Qi et al., 2021) on intent classification task in
English. Li et al. (2020) built a benchmark on their
proposed multilingual dataset, but only evaluated
two multilingual pretrained LMs. Comparing to
previous work, we conduct a comprehensive bench-
marking study by evaluating seven conversational
AI services or LMs on 9 public datasets and 20
internal datasets covering 10 languages.

Resource Efficiency When applying a VA sys-
tem in a production environment, the training cost
of the model is an important consideration. Most of
the prior work only focuses on the accuracy of mod-
els but does not evaluate the training time they re-
quire given the same training resources. Casanueva
et al. (2020) only compare three models. In our
work, we compared the training time of the 7 mod-
els in addition to their accuracy.

Few-shot Training Li et al. (2020) and
Casanueva et al. (2020) conducted zero-shot or
few-shot training to resemble the training process
of a commercial VA system, but did not conduct a
comprehensive evaluation.

3 Benchmarking

In this section, we firstly introduce the three bench-
marking settings in our experiments, and then de-
scribe the VA platforms and models we evaluate.
Lastly, we present and analyze the results.

3.1 Experimental Settings

Standard Training This corresponds to the stan-
dard benchmark setting where we train on the full
train set and evaluate on the full test set.
Few-shot Training In a real production environ-
ment, the dialog system is usually fine-tuned for
specific topics with scarce labeled data. Therefore,
we propose a few-shot setting where we create five
few-shot subsets by sampling 5, 15, and 30 exam-
ples per intent class from each of the datasets.
Testing with difficult examples In experiments
with the standard train/test splits in the data, we
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observe that most models can achieve high accu-
racy. One of the possible reasons could be that
the semantic and lexical distribution of test and
train set are very similar. To better evaluate and
compare the performance of the models, we create
difficult test subsets with selected examples from
the original test set.

We use a similar setup as described in Arora et al.
(2020) and Qi et al. (2021) to create two difficult
test subsets, TF*IDF and jaccard, for each of the
datasets. Specifically, we firstly concatenate all
tokenized training examples and transform them
into a vector space of TF*IDF scores (Salton and
McGill, 1986) (count scores for jaccard), then use
the initialized TF*IDF (or jaccard) vectorizer to
transform each testing example and calculate the
cosines distance (or jaccard score). For each intent
class, 5 farthest testing examples are selected to
build the difficult subset.

3.2 Models

In this work, we benchmark 7 different intent clas-
sification models or services. Among them, 5 are
multilingual pre-trained LMs, and the remaining 2
are commercial VA platforms, IBM Watson Assis-
tant and RASA.

Watson Assistant provides language-specific
models for 13 popular languages, and a language-
agnostic model that responds to all other languages.
We focus on the latter for the experiments in the
paper. We use public API to train and evaluate the
model. For training time, we measure the round-
trip latency from sending the training request until
we receive the status that the model is trained and
available for serving.

RASA is an automated dialogue framework that
allows incorporating various text processing tools
and pre-trained LMs. In our experiment, we follow
the default setting that feeds count-based features
to an intent classifier, DIET (Bunk et al., 2020).
We fine-tune the model with each of the dataset for
100 epochs.

We also evaluate following multilin-
gual pretrained LMs: multilingual BERT
(mBERTbase-cased) (Devlin et al., 2018) , Distil-
mBERTbase-cased

5 (Sanh et al., 2019), XLM-Rbase
(Conneau et al., 2019), USE-Multilingual (USE-

5https://huggingface.co/distilbert-base-multilingual-
cased

Mlarge)6 (Yang et al., 2019), and LaBSE7 (Feng
et al., 2020).

For mBERT, Distil-mBERT, XLM-R, and
LaBSE model, we add a softmax classifier on top
of the [CLS] token and fine-tune all layers. We use
AdamW (Loshchilov and Hutter, 2018) with 0.01
weight decay and a linear learning rate scheduler.
We choose a batch size of 32, epochs of 30 8, max
sequence length 128 and learning rate warmup for
the first 50 iterations, peaking at 0.00005.

For USE-M, we train a softmax layer on top of
the sentence representation and fine-tune all layers
for 100 epochs. A learning rate of 0.01 and batch
size of 32 are used for all train set variants. All
models are trained or fine-tuned with a single CPU
core or a single K80 GPU.

4 Benchmarking Datasets

Based on the availability and quality of public in-
tent classification datasets, we propose our bench-
mark consisting of 9 public datasets across 5 lan-
guages, including Hindi, Polish, Russian, Thai &
Turkish, and 20 internal datasets across 7 languages
and 9 domains. A summary of dataset statistics and
preprocessing details are provided in Table 1.

MTOP (Li et al., 2020) is an almost parallel mul-
tilingual dataset covering 6 languages and 11 do-
mains (e.g., weather, calling, alarm, etc.). English
utterances and annotations are generated by crowd-
sourced workers and annotators and then human
translated to other languages. We use the Hindi and
Thai subset of MTOP in our experiments.

Multilingual ATIS (MultiATIS) (Upadhyay
et al., 2018) contains airline travel inquiries in
Hindi and Turkish, which are manually translated
from the original English ATIS dataset. In our ex-
periments, utterances with more than one intent
label (concatenated by white space) are expanded
into multiple records, one for each intent label.

Leyzer (Sowański and Janicki, 2020) is a mul-
tilingual chatbot dataset which contains a large
number of intents and covers 20 domains such as
email, contacts, etc. This corpus is generated with a
grammar-based approach. We use the Polish subset
of Leyzer in our experiments.

6https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/1

7https://huggingface.co/sentence-transformers/LaBSE
8We experimented with both 30 and 40 epochs settings

and present the results of 30 epochs as it produced compatible
results with shorter training time.
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Public Datasets

Language Dataset Train Test Intent Types

Hindi
MTOP 11,251 2,789 113

MultiATIS 1,565 909 16

Polish Leyzer 6,366 991 168

Russian
Chatbot-ru 5,517 1,380 79

PSTU 1,082 271 7

Thai
MultiTOD 1,928 1,692 10

MTOP 10,622 2,765 110

Turkish
Chatbot-tr 761 191 24
MultiATIS 628 725 15

Internal Datasets

Language Domain Train Test Intent Types

Finnish COVID-19 1045 262 60

Greek COVID-19 198 50 15
Insurance 281 71 28

Norwegian Bokmål

banking 223 56 13
customer service 304 76 18

telco 317 80 19
utilities 176 44 10

Norwegian Nynorsk

banking 224 57 13
customer service 300 76 18

teleco 350 88 21
utilities 176 45 10

Polish general 795 199 43

Russian
banking 1364 342 92

COVID-19 1392 349 122
general 623 158 46

Swedish

banking 211 54 13
customer care 294 74 18

teleco 345 87 21
utilities 172 43 10

Turkish customer care 184 46 9

Table 1: Dataset Statistics. Prepossessing has been
done on all datasets (details in Datasets Section). Num-
bers reflect the actual size used in our experiment.

Multilingual Task Oriented Data (Multi-
TOD) (Schuster et al., 2018) contains annotated
utterances in English, Spanish, and Thai across the
topics like weather, alarm, etc. English utterances
are first produced by native English speakers and
labelled by annotators, then translated into Spanish
and Thai by native speakers of the target languages.

Chatbot-ru (Russian)9, PSTU (Russian)10, and
Chatbot-tr (Turkish)11 are three intent classifica-
tion datasets publicly released on Github. For each
of the three datasets, we split them into train and
test set in a stratified fashion, using intent type as
the class labels. Intents with only one utterance are

9https://github.com/Koziev/chatbot/blob/master/data/intents.txt
10https://github.com/Perevalov/pstu_assistant/blob/master/

data/data.txt
11https://github.com/zerocodenlu/chatbot-

tr/blob/master/data/nlu/intent_data.csv

discarded.
Internal Datasets To enable benchmarking with

real-world data and evaluate the models in more
languages, we curate 20 internal datasets in 8 lan-
guages across 9 domains from users of a virtual as-
sistant platform. Different from the public datasets,
these internal datasets are used in enterprise pro-
duction environment to train real-world virtual as-
sistants and serve customers in domains including
banking, COVID-19 and telecommunication. The
detailed size, domain and language information of
these datasets are listed in Table 1.

Dataset Preprocessing We conducted follow-
ing preprocessing for above datasets. We firstly
transform all utterances in the train sets into lower
case and perform deduplication. After this process,
we use the original data without duplication for
experiments. Test sets of Leyzer and MultiATIS
contain utterances with intents unseen in the train-
ing data. We keep such utterances in the test sets
to ensure a fair comparison with others’ work on
these datasets.

5 Results and Analysis

Standard Training Setting Table 2 shows re-
sults of WA, RASA, and 5 pretrained LMs on 9
public datasets across 5 languages. We train on
the full train sets and report results on the full test
sets, measured by accuracy. In Table 3, we present
the results for internal datasets in the same setting.
Overall, LaBSE performs best among the 7 mod-
els on both public and internal datasets. However,
considering that fine-tuning large LMs, such as
LaBSE, requires significantly more computational
resources, WA makes a great trade-off by achieving
84.8% average accuracy that is only 4.5% lower
than LaBSE.

Few-shot Training Setting In table 4, we
present the accuracy of models trained on the full
set and three subsets consisting of 5/15/30 exam-
ples per intent type and evaluated on the full test set.
We obtain the accuracy per language by averaging
the accuracy of all datasets in that language.

Among the models, WA shows an advantage
over RASA and mBERT in the few-shot setting
of 5 examples per intent based on the average ac-
curacy across the 5 languages in Table 4. For all
models, we observe significant drop in accuracy
in 5 examples per intent train set compared to the
full train set, decreasing from about 80% to about
60% on average. This shows that the limitation in
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Models
Hindi Polish Russian Thai Turkish

Average
MTOP MultiATIS Leyzer Chatbot-ru PSTU MultiTOD MTOP Chatbot-tr MultiATIS

WA 90.7 87.6 69.1 81.5 79.7 96.6 89.8 80.6 87.2 84.8
RASA 88.5 88.3 64.0 66.7 75.3 96.6 89.5 81.7 88.3 82.1

mBERT 92.9 90.0 64.6 81.9 79.7 97.1 92.5 77.5 85.7 84.6
XLM-R 94.3 89.9 69.7 86.1 81.5 96.9 94.2 84.8 89.1 87.4
USE-M 75.4 81.6 59.3 84.5 80.8 97.4 93.5 83.2 84.8 82.3
LaBSE 94.4 91.6 74.8 87.2 83.8 97.4 94.5 87.4 92.6 89.3

Distil-mBERT 92.5 89.1 67.2 79.4 80.1 97.2 92.0 78.5 87.2 84.8

Table 2: Accuracy on 9 public datasets for WA, RASA, and 5 pretrained LMs. Each model is trained on full
train set and evaluated on full test set.

Models Finnish Greek Norwegian Bokmål Norwegian Nynorsk Polish Russian Swedish Turkish Average

WA 66.9 70.2 74.8 73.9 68.3 77.6 75.0 80.6 73.4
RASA 64.6 66.1 75.7 73.8 62.3 70.0 68.5 77.8 69.9

mBERT 71.9 65.1 74.6 73.1 84.4 78.3 78.6 75.0 75.1
XLM-R 75.8 84.2 86.6 82.0 79.4 79.4 85.9 75.0 81.0
USE-M 65.8 56.1 66.6 64.6 78.9 78.3 70.2 72.2 69.1
LaBSE 78.1 85.9 89.9 86.6 87.4 81.9 88.8 86.1 85.6

Distil-mBERT 69.6 71.2 73.8 67.4 80.9 76.1 73.4 72.2 73.1

Table 3: Macro accuracy over internal datasets for each language. Models are trained on the full train set of
each dataset and evaluated on the full test set. Averaged accuracy at the last row is the simple averaging.

Hindi Polish Russian Thai Turkish Average
Models 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full

WA 50.4 60.7 76.0 89.1 60.1 67.2 69.6 69.1 51.3 64.6 71.8 80.6 63.3 77.4 82.9 93.2 61.9 72.5 76.5 83.9 57.4 68.5 75.4 83.2
RASA 29.6 46.3 61.2 88.4 47.1 58.9 61.0 63.9 32.7 44.6 51.3 71.0 43.6 62.3 73.2 93.0 43.4 64.0 69.0 85.0 39.3 55.2 63.1 80.2

mBERT 62.3 75.6 80.4 91.5 61.4 66.9 68.2 64.6 48.3 58.4 67.8 80.8 56.7 81.0 85.8 94.8 48.6 69.3 75.6 81.6 55.4 70.2 75.6 82.6
XLM-R 64.8 78.8 82.4 92.1 66.7 73.6 73.8 69.7 52.8 67.2 73.9 83.8 72.0 46.4 47.3 95.6 55.7 73.3 82.0 87.0 62.4 67.8 71.9 85.6
USE-M 24.6 37.3 48.3 78.5 60.0 62.2 61.0 59.3 63.5 67.6 72.8 82.7 81.2 87.5 89.8 95.4 75.2 80.8 84.6 84.0 60.9 67.1 71.3 80.0
LaBSE 74.8 85.0 89.5 93.0 69.9 75.3 74.9 74.8 60.2 69.5 74.7 85.5 73.9 88.1 91.3 96.0 66.7 81.1 84.6 90.0 69.1 79.8 83.0 87.8
Distil-
mBERT 54.9 69.4 78.4 90.8 57.6 65.1 65.5 67.2 32.9 57.4 68.8 79.7 54.3 78.8 84.7 94.6 46.3 63.8 74.8 82.9 49.2 66.9 74.4 83.0

Table 4: Few-shot setting on public datasets with full test set. Accuracy for each language is averaged over all
datasets for that language. Second row corresponds to 5, 15, 30 & all examples per intent in the train set.

Hindi Polish Russian Thai Turkish Average
Models full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf

WA 89.1 55.6 49.5 69.1 68.0 68.8 80.6 67.5 64.0 93.2 70.4 60.9 83.9 61.9 57.9 83.2 64.7 60.2
RASA 88.4 56.7 50.0 63.9 59.5 60.2 71.0 64.5 58.2 93.0 70.2 67.5 85.0 62.3 60.9 80.2 62.7 59.4

mBERT 91.5 67.8 62.4 64.6 65.7 66.5 80.8 76.5 73.1 94.8 77.8 71.3 81.6 59.4 52.8 82.6 69.4 65.2
XLM-R 92.1 68.3 62.6 69.7 71.1 70.6 83.8 78.8 76.4 95.6 80.7 76.2 87.0 72.0 67.1 85.6 74.2 70.6
USE-M 78.5 40.1 34.2 59.3 59.2 58.5 82.7 76.0 76.0 95.4 78.9 73.1 84.0 61.2 58.4 80.0 63.1 60.0
LaBSE 93.0 72.2 68.7 74.8 76.8 76.8 85.5 79.0 78.3 96.0 82.2 75.2 90.0 79.1 75.6 87.8 77.8 74.9

Distil-mBERT 90.8 63.1 57.0 67.2 66.2 65.5 79.7 69.7 70.4 94.6 78.3 72.1 82.9 59.2 55.2 83.0 67.3 64.0

Table 5: Difficult test accuracy comparison on public datasets. Accuracy for each language is averaged over all
datasets in the corresponding language. full, jaccard, and tf*idf refer to full, jaccard and tf*idf test sets accordingly.

Hindi Polish Russian Thai Turkish

Models Resource MTOP MultiATIS Leyzer Chatbot-ru PSTU MultiTOD MTOP Chatbot-tr MultiATIS

WA CPU 0.64 0.34 0.92 0.79 0.45 0.40 1.03 0.38 0.45
RASA CPU 66.49 8.32 36.34 35.99 15.48 7.11 73.61 2.12 3.08

mBERT GPU 175.89 24.70 98.11 83.17 16.44 29.12 160.35 11.45 9.50
XLM-R GPU 185.41 25.85 104.68 90.82 17.92 31.69 174.50 12.63 10.46
USE-M GPU 103.46 19.94 50.06 40.44 14.70 14.73 72.84 6.95 7.39
LaBSE GPU 207.02 28.77 116.80 101.58 19.98 35.48 195.59 14.01 11.62

Distil-mBERT GPU 90.02 12.55 50.75 44.11 8.73 15.46 85.34 6.09 5.04

Table 6: Training time. Macro averaged training time in minutes and resource types while training on full train
set and evaluating on full test set for each public dataset.
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5 ex/intent 30 ex/intent full
Models Time Acc. Time Acc. Time Acc.

HINDI

MTOP
WA 0.44 45.7% 0.56 75.1% 0.64 90.7%
RASA 2.15 21.0% 10.90 54.6% 66.49 88.5%
mBERT 8.02 51.0% 33.44 82.1% 175.89 92.9%
XLM-R 8.45 68.4% 35.21 88.4% 185.41 94.3%
USE-M 6.80 18.4% 21.32 44.1% 103.46 75.4%
LaBSE 9.40 73.6% 39.22 88.8% 207.02 94.4%
Distil-mBERT 4.10 46.2% 17.08 78.5% 90.02 92.5%

MultiATIS
WA 0.37 55.1% 0.34 76.9% 0.34 87.6%
RASA 0.38 38.1% 1.35 67.4% 8.32 88.3%
mBERT 0.98 73.6% 3.85 78.8% 24.70 90.0%
XLM-R 1.03 61.1% 4.10 76.5% 25.85 89.9%
USE-M 2.91 30.8% 4.93 52.5% 19.94 81.6%
LaBSE 1.15 76.0% 4.55 90.2% 28.77 91.6%
Distil-mBERT 0.50 63.6% 1.98 78.4% 12.55 89.1%

POLISH

Leyzer
WA 0.44 60.1% 0.70 69.6% 0.92 69.1%
RASA 2.62 47.2% 12.83 60.8% 36.34 64.0%
mBERT 11.91 61.4% 43.71 68.2% 98.11 64.6%
XLM-R 13.08 66.7% 48.18 73.8% 104.68 69.7%
USE-M 7.62 60.0% 23.43 61.0% 50.06 59.3%
LaBSE 14.55 69.9% 53.32 74.9% 116.80 74.8%
Distil-mBERT 6.36 57.6% 23.18 65.5% 50.75 67.2%

RUSSIAN

Chatbot-ru
WA 0.34 52.4% 0.48 73.2% 0.79 81.5%
RASA 2.06 22.6% 10.57 42.8% 35.99 66.7%
mBERT 6.04 50.1% 28.53 70.2% 83.17 81.9%
XLM-R 6.64 52.9% 31.27 76.2% 90.82 86.1%
USE-M 4.82 67.6% 14.89 75.6% 40.44 84.5%
LaBSE 7.39 63.2% 34.91 79.6% 101.58 87.2%
Distil-mBERT 3.23 39.2% 15.16 68.9% 44.11 79.4%

PSTU
WA 0.29 50.2% 0.35 70.5% 0.45 79.7%
RASA 0.56 42.8% 3.27 59.8% 15.48 75.3%
mBERT 0.62 46.5% 3.16 65.3% 16.44 79.7%
XLM-R 0.70 52.8% 3.47 71.6% 17.92 81.5%
USE-M 2.64 59.4% 4.48 70.1% 14.70 80.8%
LaBSE 0.81 57.2% 3.89 69.7% 19.98 83.8%
Distil-mBERT 0.34 26.6% 1.69 68.6% 8.73 80.1%

5 ex/intent 30 ex/intent full
Models Time Acc. Time Acc. Time Acc.

THAI

MultiTOD
WA 0.40 77.3% 0.38 90.9% 0.40 96.6%
RASA 0.32 65.7% 1.18 90.1% 7.11 96.6%
mBERT 0.81 62.7% 4.18 92.1% 29.12 97.1%
XLM-R 0.90 82.2% 4.58 93.9% 31.69 96.9%
USE-M 2.66 90.0% 4.02 94.0% 14.73 97.4%
LaBSE 1.02 77.1% 5.12 94.3% 35.48 97.4%
Distil-mBERT 0.44 69.9% 2.23 91.2% 15.46 97.2%

MTOP
WA 0.41 49.3% 0.47 75.0% 1.03 89.8%
RASA 2.43 21.5% 11.61 56.2% 73.61 89.5%
mBERT 7.57 50.6% 31.67 79.6% 160.35 92.5%
XLM-R 8.30 61.8% 34.76 0.8% 174.50 94.2%
USE-M 5.55 72.5% 15.99 85.5% 72.84 93.5%
LaBSE 9.26 70.6% 38.66 88.3% 195.59 94.5%
Distil-mBERT 4.04 38.8% 16.90 78.1% 85.34 92.0%

TURKISH

Chatbot-tr
WA 0.42 56.0% 0.36 74.9% 0.38 80.6%
RASA 0.44 39.3% 1.41 67.5% 2.12 81.7%
mBERT 1.85 51.3% 7.45 73.3% 11.45 77.5%
XLM-R 2.03 60.7% 8.19 83.2% 12.63 84.8%
USE-M 2.92 72.8% 5.37 83.2% 6.95 83.2%
LaBSE 2.26 68.1% 9.12 83.8% 14.01 87.4%
Distil-mBERT 0.98 48.7% 3.96 72.8% 6.09 78.5%

MultiATIS
WA 0.35 67.7% 0.40 78.1% 0.45 87.2%
RASA 0.33 47.6% 0.78 70.5% 3.08 88.3%
mBERT 0.84 45.9% 2.77 77.9% 9.50 85.7%
XLM-R 0.93 50.8% 3.06 80.7% 10.46 89.1%
USE-M 2.68 77.7% 3.61 85.9% 7.39 84.8%
LaBSE 1.05 65.4% 3.40 85.5% 11.62 92.6%
Distil-mBERT 0.45 44.0% 1.47 76.8% 5.04 87.2%

MACRO AVERAGE

WA 0.38 57.1% 0.45 76.0% 0.60 84.8%
RASA 1.26 38.4% 5.99 63.3% 27.62 82.1%
mBERT 4.29 54.8% 17.64 76.4% 67.64 84.6%
XLM-R 4.67 61.9% 19.20 71.7% 72.66 87.4%
USE-M 4.29 61.0% 10.89 72.5% 36.72 82.3%
LaBSE 5.21 69.0% 21.35 83.9% 81.21 89.3%
Distil-mBERT 2.27 48.3% 9.30 75.4% 35.34 84.8%

Table 7: Training time (minutes) and accuracy on full test set for each public datasets. 5 ex/intent, 30 ex/intent,
and full refer to 5 examples per intent, 30 examples per intent, and full train set accordingly.
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training data brings a huge challenge for all models,
and the few-shot train sets provide a better testbed
for the ability to handle such situations, which is
crucial for real-world VA systems.

Difficult Test Setting In Table 2, we observe that
most models can achieve about 90% accuracy. To
better compare these models, we evaluate them on
the difficult test sets, jaccard and tf*idf. Results
are presented in Table 5. In this setting, we observe
a significant gap between the original test set and
difficult sets for all models. Among all the models,
mBERT performs the best as it shows the least
accuracy drop. However, WA still stands on top
considering the trade-off between training time and
accuracy, which will be further explained below.

5.1 Training Time vs. Accuracy Trade-off

We record the training time per dataset along with
the resource requirement and accuracy in Table 6.
Pretrained LMs require significantly longer training
time compared to WA. The detailed result of each
public dataset is in Table 7.

In Figure 1, we present a visualization of accu-
racy and training time for each model on the Leyzer
dataset. WA achieves comparable performance to
XLM-R but only requires less than 1 minute train-
ing time, compared to 104 minutes for XLM-R on
the Leyzer dataset. WA offers the best trade-off in
terms of accuracy vs. training time.

6 Conclusion

In this paper, we propose a robust evaluation frame-
work to benchmark 7 intent classification models
in multiple languages. On 9 public datasets and
20 internal datasets covering 10 languages. The
benchmark results show that while LaBSE pro-
duces the highest accuracy in almost all evaluation
settings, Watson Assistant achieves competitive
performance with much less cost of training time
and resource. The large LMs does not always out-
perform the models that only need CPUs. Through
our work, we hope to encourage more research and
development on language-agnostic chatbot solu-
tions.
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Marcin Sowański and Artur Janicki. 2020. Leyzer: A
dataset for multilingual virtual assistants. In Inter-
national Conference on Text, Speech, and Dialogue,
pages 477–486. Springer.

Shyam Upadhyay, Manaal Faruqui, Gokhan Tür,
Hakkani-Tür Dilek, and Larry Heck. 2018. (almost)
zero-shot cross-lingual spoken language understand-
ing. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6034–6038. IEEE.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan
Sung, et al. 2019. Multilingual universal sen-
tence encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307.

76

http://arxiv.org/abs/1810.13327
http://arxiv.org/abs/1810.13327

