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Introduction

Articulating mathematical arguments is a fundamental part of scientific reasoning and communication.
Across many disciplines, expressing relations and interdependencies between quantities (usually in an
equational form)is at the center of scientific argumentation. One can easily find examples of mathema-
tical discourse across different scientific contributions and textbooks. Nevertheless, the application of
contemporary models for performing inference over mathematical text still needs to be explored despite
its importance.

Creating methods and models that can understand mathematical text and discourse will pave the path
toward developing systems capable of complex mathematical inference, leading to automated scientific
discovery in fields that depend on mathematical knowledge. However, there are still technical gaps that
need to be addressed, such as the availability of datasets and evaluation tasks, techniques for the joint
interpretation of different modalities present in the mathematical text (equational and natural language),
the understanding of unique aspects of mathematical discourse and multi-hop models for mathemati-
cal inference. The Workshop on Mathematical Natural Language Processing (MathNLP) represents a
community-building venue for addressing these challenges by connecting experts at the intersection of
Mathematics and Natural Language Processing.

The first edition of MathNLP received a total of 12 submissions, accepting 7 of them for publication in
the proceedings. In addition, MathNLP welcomed a total of 4 oral presentations from papers accepted to
appear in Findings of EMNLP 2022.

We would like to thank our keynote speakers for their contribution to the program and the members of
the program committee for their valuable and high-quality reviews. All submissions have benefited from
their expert feedback. Their timely contribution was the basis for accepting an excellent list of papers
and making the first edition of MathNLP a success.

Deborah Ferreira, Marco Valentino, Andre Freitas, Sean Welleck, Moritz Schubotz.
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Keynote Talk: LLMs-as-a-Service: Harnessing the power of
Foundation Models for Challenging Reasoning Problems

Ashwin Kalyan Vijayakumar
Allen Institute for Artificial Intelligence

Abstract: AI systems built on top of foundation models achieve state-of-the-art performance on a wide
range of tasks making them the one of the most versatile and dependable AI technology. However, even
for these systems, hard reasoning problems — ones that require mathematical and algorithmic reasoning
in addition to more general skills like language understanding, commonsense reasoning and computer
vision — pose a significant challenge. First, I will discuss the successes and limitations of state-of-
the-art LLMs on hard reasoning problems like fermi problems and challenging math word problems
— encouraging the broader AI community to address this challenge in AI reasoning. Next, I propose
“LLMs-as-a-Service”, a compositional and neuro-symbolic strategy to develop the next generation of
AI solutions that achieve best-of-both-worlds — harness the capacity of powerful foundational models
while at the same time overcoming their shortcomings in producing well-reasoned, consistent answers.

Bio: Ashwin Kalyan is a scientist connecting AI, innovation and research. He led and contributed to
research projects and technologies that have resulted in new perspectives of integrating AI systems with
practice (e.g. neuro-symbolic approaches for program synthesis, novel decoding strategies for language
models) that have impacted industry practices in addition to the wider research community. Curren-
tly, he is a researcher at the Allen Institute of Artificial Intelligence where he investigates the abilities
and limitations of foundation models, especially in the context of hard reasoning problems that require
mathematical and algorithmic reasoning. He has authored 20+ publications in top-tier AI conferences
(e.g. NeurIPS, ICML, CVPR, ACL, EMNLP) and was recognized by the prestigious JP Morgan PhD
Fellowship. He obtained his PhD from Georgia Institute of Technology and prior to that, B.Tech from
National Institute of Technology Karnataka. He started the “student researcher” program at AI2, a re-
search apprenticeship initiative that nurtures scientific talent by providing aspiring researchers (including
undergraduate and PhD students) a peek into cutting-edge AI research. He serves as the technical ad-
visor for Youth for Creativity and Excellence (YCEF), a privately funded non-profit organization that
promotes scientific, cultural and creative pursuits in India.
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Abstract

How language models process complex input
that requires multiple steps of inference is not
well understood. Previous research has shown
that information about intermediate values of
these inputs can be extracted from the activa-
tions of the models, but it is unclear where
that information is encoded and whether that
information is indeed used during inference.
We introduce a method for analyzing how a
Transformer model processes these inputs by
focusing on simple arithmetic problems and
their intermediate values. To trace where infor-
mation about intermediate values is encoded,
we measure the correlation between intermedi-
ate values and the activations of the model us-
ing principal component analysis (PCA). Then,
we perform a causal intervention by manipu-
lating model weights. This intervention shows
that the weights identified via tracing are not
merely correlated with intermediate values, but
causally related to model predictions. Our find-
ings show that the model has a locality to cer-
tain intermediate values, and this is useful for
enhancing the interpretability of the models.

1 Introduction

Recent language models (LMs) can solve complex
input such as math word problems (Saxton et al.,
2019; Geva et al., 2020). To obtain the correct out-
put from such complex (latent structured) inputs,
it is necessary for multiple steps of inference via
intermediate values. However, how LMs process
their inputs and capture latent structure is still not
well understood. In previous studies, Linzen et al.
(2016) and Tran et al. (2018) showed that the neu-
ral models can capture some implicit hierarchical
structure, but it is unclear where that information
is encoded. Shibata et al. (2020) observed that in
LMs trained with Dyck language and showed some
activations are highly correlated with the depth of
their syntactic tree. However, even if such features
can be extracted, there is no guarantee that it is used

by the model (Elazar et al., 2021; Lovering et al.,
2021). Given these considerations, to better under-
stand LM predictions for latent structured inputs,
it is necessary to: (a) To find where information
about intermediate values of the latent structured
inputs is encoded. (b) To evaluate the impact of the
features when the model makes predictions.

In this work, we introduce a method for analyz-
ing the relationship between internal representa-
tions in Transformer (Vaswani et al., 2017)-based
models and intermediate values of latent structured
inputs by using simple math problems. We choose
them as a formal language because their intermedi-
ate values of the latent (tree) structure are clear and
continuous, and it is easy to investigate their rela-
tionship to the internal representation of the model.
The intermediate value of (154− 38)− (290− 67)
can be clearly defined as 154, 290, 154− 38 =116,
and so on. we take up a Transformer model trained
to solve math equations. An overview of our exper-
iments is shown in Fig. 1. First, we search which
directions of internal representations are highly cor-
related with intermediate values in equations by
PCA (tracing) to find where the information about
intermediate values is encoded. We find some di-
rections correlate very well with the intermediate
values. Second, we observe how the model pre-
diction changed when we manipulate the weights
along its direction (manipulation) to conduct a
causal intervention. The result of this experiment
suggests that some directions of them are indeed
used by the model.

These two results show that a Transformer model
has a locality to certain intermediate values, and it
could help enhance the interpretability of the mod-
els. Our contributions are as follows: (a)We show
that intermediate values of equations are encoded
in particular directions in internal representation.
(b)We show that some features representing inter-
mediate values are used during inference.

1



𝑎	 −	(𝑏	 − 	𝑐) =?

105 − (293 − 131)
203 − (610 − 225)

567 − (661 − 725)

Trained model

① PCA

③ Inference

568 – (215 - 328)

281

568 – (215 - 328)

281

Manipulated model

568 − (215 − 328)

281

④Model 
predictions 
change as 
intended

② correlation 
with intermediate 
values

Activation space

𝑝!!

𝑝"!

② Move activation along 𝑝!!

0.8
0.7

0.4

0.9

0.4

0.1

layer=2

layer=1

Tracing (Section 3.1)

Manipulation (Section 3.2)
① PCA

568 − (215 − 328)

Trained model

681

layer=2

layer=1

Figure 1: An overview of our methods. We find which directions obtained by PCA are correlated with intermediate
values of the equations and how the model prediction changes when the weights of their directions are manipulated.
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Figure 2: The relationship between p3i,2 and Rj
i = bi in

the equation a− (b− c). The correlation is very high.

2 Related Work

Intermediate values. Previous work has exam-
ined the representation of intermediate values in
neural models. Linzen et al. (2016), Bowman et al.
(2015) and Tran et al. (2018) found that LMs cap-
ture implicit hierarchical structures to some extent,
e.g., when performing logical inference over for-
mal languages. Closest to this work are Shibata
et al. (2020), who trained LMs on the Dyck lan-
guage and observed hidden units that are highly
correlated with nesting depth. In contrast to their

work, we analyze representations of more complex
inputs, i.e., equations, and also manipulate these
representations to understand the impact of corre-
lated activations on model predictions.

Numeracy Geva et al. (2020) have shown that
they can reach the state-of-the-art performance of
numerical reasoning by using large pre-trained LM.
Several studies have shown that a Transformer
model can solve more complex problems such as
linear algebra and elementary mathematics to some
extent (Charton, 2021; Saxton et al., 2019). Based
on their findings, we use simple mathematical equa-
tions as problems that can be solved by a Trans-
former model in this study.

3 Experiments

We conduct two types of experiments. First we
trace the representation of intermediate values in
the model. As a result we find directions in activa-
tion space that are highly correlation with interme-
diate values. Then we manipulate activations along
these directions and observe if model predictions
change as expected.

As neural math problem solving model, we train

2
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Figure 3: Correlations between each principal component and intermediate values, for all layers. Each cell represents
the absolute value of the correlation coefficient between the weights of k-th principal component (column) and the
intermediate values (row). The orange line shows the contribution ratio of each principal component.

a 6-layer Transformer using the settings by Sajjad
et al. (2021) on synthetic data. We generate 200k
equations involving up to five steps of addition or
subtraction of integers between 1 and 1000, e.g.,
(154 − 38) − (290 − 67). Following Geva et al.
(2020) inputs are split into digits, e.g., “123” is to-
kenized into 1,##2,##3. Model predictions are
obtained via linear regression on the final layer’s
[CLS] token representation. After training on 190k
equations we evaluate the model on 10k equations
and obtain a regression score of R2 = 0.9988, i.e.,
the model solves the equations almost perfectly.

3.1 Tracing intermediate values

Method. We describe our method for tracing the
representation of intermediate values in model acti-
vations. First, we reduce the dimensionality of
the activations at each model layer. Let hlj be
the layer activations of the j-th word in a hidden
layer l. Given an input of length n, we concate-
nate all token representations in layer l, obtaining
the layer representation H l = hl1 ⊕ hl2 ⊕ · · · ⊕ hln
and fit a PCA to obtain the top 10 principal com-
ponents plk, k ∈ [1, ..., 10]. Applying this PCA to
instance i yields the 10-dimensional representation
pli,k. Our hypothesis is that the intermediate val-
ues are encoded by one or more of the principal
components. Intuitively, we assume that a princi-
ple component encodes an intermediate value if
the magnitude of model activation in this direc-
tion correlates with the magnitude of the interme-

diate values. To test this hypothesis, we measure
the correlation corr(Rji , p

l
i,k) between the value

of the intermediate values Rji and the magnitude
of principal component k in the representation
pli,k. Finally, we obtain most-correlated direction
p̂lk(R

j) := argmaxk(corr(R
j
i , p

l
i,k)). If this cor-

relation is high, we conclude that the intermediate
value is encoded in that direction.

Results. We trace intermediate values for the
equation pattern a− (b− c). For example, Fig. 2
shows a strong correlation of 0.973 between the
intermediate value b and its most-correlated direc-
tion p32. After measuring the correlation of each
intermediate value and each of the top 10 princi-
pal components, we plot all correlations in Fig. 3.
Overall, most-correlated directions show high cor-
relations with intermediate values with moderate
contribution ratio up to the 3rd layer, which we take
as evidence that the model encodes intermediate
values along these directions.

3.2 Manipulating intermediate values

Method. So far, we found correlations between
intermediate values and directions in activation
space. However, such correlations do not necessar-
ily mean that these directions determine model pre-
dictions. To test if the directions we found actually
influence model predictions, we perform causal
interventions by manipulating activations. Con-
cretely, we manipulate activations along principal

3
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Figure 4: The results of manipulation. The weights of the shaded areas do not appear in the dataset.

components and observe changes in model predic-
tions, as shown in Fig. 1. Formally, we transform
layer representation H l (see §3.1) into H l′, by in-
creasing or decreasing its projection onto the prin-
cipal component plk by a factor of r:

H l′ ← H l + (r − 1)
(
plk

⊤
H l

)
plk (1)

Intuitively, increasing r moves H l along plk.
If a most-correlated direction p̂lk(R

j) indeed en-
codes the intermediate value Rj , it should be pos-
sible to manipulate activations in a way that corre-
sponds to changing Rj . For example, if the model
prediction given the input 43− (50− 20) changes
from the 13 to 19, this difference is consistent with
changing the first input term from 43 to 49. By ma-
nipulation factors r of a particular most-correlated
direction, observing model predictions, and calcu-
lating corresponding intermediate values, we ob-
tain data for fitting a function from intermediate
values to manipulation factors r. That is, we learn
to manipulate activations in a way that corresponds
to changing a particular intermediate value. To as-
sess the fidelity of this manipulation, we change
input terms and compare actual activation changes
along the most-correlated direction p̂lk(R

j) to the
factor r predicted by our fitted function.

Results. Using the input 617− (555− 602) and
the intermediate value b = 555 as example, we find
its most-correlated direction p̂32(b), as described
in §3.1. By manipulating activations along p32,
model predictions change from the original 664 to
results ranging from ca. 200 to 1000, as shown
in Fig. 4(a). Calculating intermediate values b
that are consistent with these model predictions,
we obtain Fig. 4(b). By axis inversion we ob-
tain a function from b to predicted manipulation
factors r for component p3i,2. We compare these
predicted component weights to the actual com-
ponent weights observed under changed inputs
{(617− (i− 602))|(100 ≤ i < 1000)} (Fig. 4(c)).
Predicted and the actual weights of the most-
correlated direction agree well (corr. 0.986, R2

score 0.687), which we take as evidence that p̂32(b)
encodes the intermediate value b and determines
model predictions accordingly. Conversely, manip-
ulation identifies most-correlated directions that are
correlated but less used in prediction. The most-
correlated direction p̂42(b) has a high correlation
of 0.81 with b, but predicted component weights
show much less agreement with actual weights
(corr. 0.802, R2 score −1.06× 104, Fig. 4(d)).

In conclusion, this case study showed how ma-
nipulations in activation space can find a causal
connection to intermediate values.
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Abstract

In this paper, we revisit math word prob-
lems (MWPs) from the cross-lingual and mul-
tilingual perspective. We construct our MWP
solvers over pretrained multilingual language
models using the sequence-to-sequence model
with copy mechanism. We compare how the
MWP solvers perform in cross-lingual and mul-
tilingual scenarios. To facilitate the comparison
of cross-lingual performance, we first adapt the
large-scale English dataset MathQA as a coun-
terpart of the Chinese dataset Math23K. Then
we extend several English datasets to bilingual
datasets through machine translation plus hu-
man annotation. Our experiments show that the
MWP solvers may not be transferred to a dif-
ferent language even if the target expressions
share the same numerical constants and opera-
tor set. However, it can be better generalized
if problem types exist on both source language
and target language.

1 Introduction

How to use machine learning and NLP techniques
to solve Math Word Problems (MWPs) has at-
tracted much attention in recent years (Hosseini
et al., 2014; Kushman et al., 2014; Roy et al., 2015;
Ling et al., 2017; Wang et al., 2017a, 2018; Amini
et al., 2019). Given a math problem expressed in
human language, a MWP solver typically first con-
verts the input sequence of words to an expression
tree consisting of math operators and numerical
values, and then invokes an executor (such as the
eval function in Python) to execute the expression
tree to obtain the final numerical answer. Figure 1
shows an example math word problem, the correct
expression tree, and the final answer.

Despite the relatively simple syntax of these
expression trees, building MWP solvers is not a
trivial task, and researchers have proposed vari-
ous methods to tackle the different challenges of
this problem such as statistical methods (Kushman

Problem: A chef needs to cook 9 potatoes. He has 
already cooked 7. If each potato takes 3 minutes to 
cook,  how long will it take him to cook the rest?

Mult

Sub 3

9 7

Expression: (9 - 7) * 3

Expression Tree: 

Answer: 6

Figure 1: Example of an MWP and its expression tree.

et al., 2014; Roy et al., 2015), parsing-based meth-
ods (Shi et al., 2015) and generation-based meth-
ods (Wang et al., 2018; Xie and Sun, 2019). How-
ever, an aspect that has been largely overlooked is
cross-lingual and multilingual MWP solving, i.e.,
whether a MWP solver trained on one human lan-
guage can still work on another human language,
or whether a MWP solver trained on multiple hu-
man languages together is more effective than a
solver trained on only one language. We believe
this is an interesting aspect to study for the fol-
lowing reasons. First, in cognitive science, people
have long studied the relationship between humans’
numerical processing abilities and language abili-
ties, and found that on the one hand, the two are
largely independent (Xu and Spelke, 2000), but on
the other hand, “acquiring and mastering symbolic
representations of exact quantities critically de-
pends on language and instruction" (Van Rinsveld
et al., 2015). It is therefore also intriguing to study
whether machines separately acquire arithmetic
and language abilities. Second, with pre-trained
large-scale multilingual language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), which presumably project differ-
ent human languages into a common embedding
space, we have seen some success in cross-lingual
NLP tasks such as XNLI (Conneau et al., 2018) and
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MLQA (Lewis et al., 2020) in both zero-shot and
few-shot settings (Wu and Dredze, 2019; Conneau
et al., 2020). It is therefore reasonable to expect
that for MWP solving, there is the possibility of
transferring machine’s capability of MWP solving
from one language to another by leveraging these
pre-trained multilingual language models.

In this paper, we conduct an empirical study to
understand to what extent MWP solvers can work
in cross-lingual and multilingual settings. Specif-
ically, we ask the following questions: (1) Cross-
lingual setting: Given a model trained with mono-
lingual dataset, can the model solve MWPs over
another language? (2) Multilingual setting: Can
combining datasets of different languages further
boost the performance for each language? (3) Can
we identify some critical factors that may affect the
results in (1) and (2)?

In order to empirically answer the questions
above, we need multilingual MWP datasets, which
are limited currently. We first use large scale
datasets like Math23K (Wang et al., 2017b) and
MathQA (Amini et al., 2019) as monolingual
MWPs resource and further adapt MathQA to have
the same operator set and expression style with
Math23K. To better evaluate the models with paral-
lel corpus, we extend some existing MWP datasets
by translating them from English into Chinese. We
then conduct three sets of experiments on the con-
structed datasets. We find that: (1) a cross-lingual
MWP solver finetuned on one language cannot
work on a second language, even if they are sharing
the same decoding vocabulary, (2) a multilingual
MWP solver may not boost performance for all the
training languages but can improve those problems
of similar types if one training language is close
to the evaluation language, (3) combining (1) (2),
we think for multilingual MWP solvers, despite
language similarity, the performance relies heavily
on domain similarity (problem types).

Our work makes the following contributions: (1)
To the best of our knowledge, we are the first to
study cross-lingual and multilingual MWP solv-
ing, and we empirically demonstrate that cross-
lingual MWP solving is still difficult, but multi-
lingual MWP solving is to some extent effective.
(2) We discover that multilingual MWP solving is
mostly effective for questions with similar prob-
lem types. (3) Our constructed datasets can help
other researchers to further study cross-lingual and
multilingual MWP solving.

2 Related work

Solving Math Word Problems (MWPs) has been
attracting researchers since the emergence of arti-
ficial intelligence. STUDENT(Bobrow, 1964) is a
rule-based math word problem solver which con-
tains a pipeline that consists of heuristics for pattern
transformation. Many researchers start with the
fundamental problem types like addition and sub-
traction (Hosseini et al., 2014) or those that have
only one single operator (Roy et al., 2015). Roy and
Roth (2015) look at problems that require multi-
steps using two or more operators. The question
types of MWPs are also expanding. Rather than
focusing on problems that need only one variable,
Kushman et al. (2014) propose a dataset ALG514
which includes problems with a system of equa-
tions. With the development of deep learning,
there has been a demand for large-scale datasets
with more variations. Dolphin18K (Huang et al.,
2016) is a large-scale dataset that is more than 9
times of the size of previous ones, and contains
many more problem types. Math23K (Wang et al.,
2017a) contains math word problems for elemen-
tary school students in Chinese language and is
crawled from multiple online education websites.
MathQA (Amini et al., 2019) is a new large-scale,
diverse dataset of 37k multiple-choice math word
problems in English and each problem is annotated
with an executable formula using a new operation-
based representation language. HMWP (Qin et al.,
2020) contains three types of MWPs: arithmetic
word problems, equations set problems, and non-
linear equation problems.

Various approaches have been proposed to solve
MWPs. Template-based approaches (Kushman
et al., 2014; Zhou et al., 2015; Upadhyay et al.,
2016; Huang et al., 2017) are widely adopted as
numbers appeared in the expressions are usually
sparse in the representation space and the expres-
sions may fall into the same category. More re-
cently, the community is also paying more atten-
tion to train a math solver by fine-tuning pretrained
language models. For example, EPT (Kim et al.,
2020) adopts ALBERT (Lan et al., 2020) as the
encoder for its sequence-to-sequence module.

The monolingual performance gains achieved re-
cently have not been evaluated from cross-lingual
and cross-domain perspectives. Therefore, we de-
cide to revisit MWPs using current SOTA pre-
trained multilingual language models to construct
a competitive math solver and conduct experiments
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over various bilingual evaluations.

3 Preliminaries

3.1 The MWP Solver Task

We first formally define the task of building MWP
solvers. Given a math word problem with n words
W = (w1, w2, . . . , wn), and k numerical values
N = (n0, n1, . . . , nk), the model needs to gener-
ate a flattened tree representation using operators
from permitted operator set O and numerical val-
ues from constants C and N . The generated tree
should be able to be evaluated via some compiler
and executor to return a numerical value.

3.2 Solution Framework

A MWP solver needs to generate executable code
for a target programming language to be evaluated
by an executor compiled for the programming lan-
guage.

Our MWP solver is built upon a sequence-to-
sequence model with copy mechanism (Gu et al.,
2016). Specifically, we use a pretrained multilin-
gual model as the encoder to get contextualized
representations of math word problems. Due to the
word piece tokenizer, the encoded context is not
well-aligned to original input words. We choose to
map these word pieces back to input words through
mean pooling. Then we pass the mean pooled word
representations to a bidirectional LSTM. Finally,
we use a LSTM decoder with copy mechanism,
which takes in the last decoded word vector and in-
termediate reading states, to predict the next token
one by one. When the decoding finishes, we are
expecting to get a linear tree representation. We
attach the full model details in Section A.

Given the decoded tree representation, we first
convert the generated linear tree representation into
a piece of python expression with basic operators
(+,-,*,/,**), then use the built-in function eval in
Python to execute the generated code.

3.3 Existing Datasets

We use two large-scale datasets for this cross-
lingual research. One is Math23K (Wang et al.,
2017a) in Chinese and the other is MathQA (Amini
et al., 2019) in English. Although the two datasets
are similar in size and question types, there are still
differences in terms with permitted operators and
annotations.

Dataset Problem Types Size

AddSub (Hosseini et al., 2014) Add 395
Sub

SingleOp (Roy et al., 2015) Add 562
Sub
Mult
Div

MultiArith (Roy and Roth, 2015) (Add, Sub) 600
(Sub, Add)
(Add, Mult)
(Add, Div)
(Sub, Mult)
(Sub, Div)

Table 1: Datasets which are focusing on specific prob-
lem types.

Math23K The dataset Math23K (Wang et al.,
2017a) contains math word problems for elemen-
tary school students in Chinese (zh) and is crawled
from multiple online education websites. The
dataset focuses on arithmetic problems with a
single-variable and contains 23,161 problems la-
beled with structured equations and answers.

MathQA The dataset is a new large-scale, di-
verse dataset of 37k multiple-choice math word
problems in English (en). Each question is an-
notated with an executable formula using a new
operation-based representation language (Amini
et al., 2019). It covers multiple math domain cate-
gories. To make MathQA a comparable counterpart
with Math23K, we choose to filter those solvable
problems with shared permitted operators from
MathQA to create an adapted MathQA dataset.

Other datasets focusing on specific problem
types These datasets are smaller in size but more
focused on specific problem types. We follow the
dataset naming conventions from MAWPS (Koncel-
Kedziorski et al., 2016).

Specifically, AddSub (Hosseini et al., 2014) cov-
ers arithmetic word problems on addition and sub-
traction for third, fourth, and fifth graders. Its prob-
lem types include combinations of additions, sub-
tractions, one unknown equation, and U.S. money
word problems. SingleOp (Roy et al., 2015) is a
dataset with elementary math word problems of
single operation. MultiArith (Roy and Roth, 2015)
includes problems with multiple steps which we
listed all the seven types in Table 1. These datasets
are all in English (en). We will illustrate how we
extend them into bilingual datasets in Section 4.2.
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4 Cross-lingual and Multilingual MWP
Solvers

In this work, as we are focusing on the cross-lingual
and multilingual properties of MWPs, we need to
train separate MWP solvers using different datasets.
Our cross-lingual MWP solver will be trained us-
ing one language but evaluated using another. Our
multilingual MWP solver can be trained on all
languages available and evaluated separately. To
suffice these goals, it would be better if the prob-
lems in different languages have comparable prop-
erties. Since we are using pretrained multilingual
language models as the sequence embedder of the
encoder, all the languages can be projected into
a shared representation. However, the candidate
datasets also need to share a common operator set
and numerical constants to make the decoding pro-
cess consistent. But some of the categories from
MathQA do not exist on Math23K or one of the
operators is not in our permitted set. Therefore, we
need to adapt MathQA as a counterpart of Math23K
sharing the same decoding vocabulary, including
operators and constants.

4.1 Adaptation of MathQA

We adapt MathQA by doing the following:
1) We notice that the annotated formulas in

MathQA are function calls of predefined func-
tions which can be converted into a tree using an
abstract syntax tree (AST) parser.

2) To be consistent with Math23K, which cov-
ers only basic arithmetic operators like addi-
tion (Add), subtraction (Sub), division (Div),
multiplication (Mult) and exponentiation (Pow),
we keep only functions in MathQA that can
be expressed in such operators. For example,
volume_sphere(r) from MathQA equalizes to
4
3πr

3 and is adapted using the method shown
in Figure 2. Formulas containing operators not
used in Math23K, like sine and permutation, are
not considered in this work. A full list of adapted
operators can be found in Table 6 of Appendix A.

3) Upon constructing the trees using permitted op-
erators, we evaluate each sample to verify its cor-
rectness against its ground-truth answer. Those
cases that fail to get the correct answer are not
considered in this work.
After the adaptation, we get the adapted MathQA

dataset of solvable problems with comparable sizes
and question types to Math23K. For Math23K, we
further sample a development set of size 1000 from

divide

volume_sphere

subtract

add

volume_sphere

const_2

4 0.5

4

Div

Mult

Sub

Add

2

4 0.5

Pow Mult

3 Div const_pi

4 3

Mult

4

Pow Mult

3 Div const_pi

4 3

AST parsing

Adaptation

 MathQA: divide(subtract(volume_sphere(add(4, 
0.5)), volume_sphere(4)), const_2)

 Tree: (Div (Sub (Mult (Pow (Add 4 0.5) 3) (Mult 
(Div 4 3) const_pi)) (Mult (Pow 4 3) (Mult (Div 4 3) 
const_pi))) 2)

Figure 2: Adaptation of MathQA to Math23K. The part
highlighted with dashed lines shows the adaptation of
the function volume_sphere.

Math23K MathQA

w/o Pow w/ Pow w/o Pow w/ Pow

Train 21,107 21,161 15,302 16,645
Dev 995 1,000 2,263 2,479
Test 999 1,000 1,532 1,653

Table 2: Statistics of different splits for Math23K and
the adapted MathQA.

its training set. Considering the operator Pow has
only several training and evaluating instances on
Math23K, we separate them with others to make a
fairer adaptation of MathQA to Math23K. We show
the statistics of both Math23K and the adapted
MathQA in Table 2. In this work, all the exper-
iments will be conducted on the dataset marked
with w/o Pow.

4.2 Zero-shot Cross-lingual Evaluation
Datasets

To test cross-lingual transferability of MWP
solvers, we make use of problem-type-specific
datasets discussed in Section 3.3 as evaluation
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Dataset AddSub SingleOp MultiArith

Problem Types addition, subtraction single operation multi-step

En Keith has 20 books . Ja-
son has 21 books . How
many books do they have
together ?

Lisa flew 256 miles at 32
miles per hour. How long
did Lisa fly?

A chef needs to cook 9 potatoes. He has
already cooked 7. If each potato takes
3 minutes to cook, how long will it take
him to cook the rest?

Zh 基思有20本书。杰森
有21本书。他们总共有
多少本书？

丽莎以每小时32英里的
速度飞行了256英里。
丽莎飞了多长时间？

厨师需要煮9个土豆。他已经煮
了7个了。如果每个土豆煮3分钟，
剩下的他要煮多久？

Size 395 562 600

Table 3: Examples from each dataset used for zero-shot cross-lingual evaluation.

datasets, including AddSub (Hosseini et al., 2014),
SingleOp (Roy et al., 2015) and MultiArith (Roy
and Roth, 2015). To extend these datasets for cross-
lingual evaluation, we use online machine transla-
tion APIs to translate them into Chinese and further
manually refine the translations to be more native.
For each dataset, we list an example in Table 3, in
both English (En) and Chinese (Zh).

5 Template-based Contrastive Training

Math word problems can be categorized by ex-
pression templates if we replace numerical values
of expressions with a special token. Such tem-
plates have been adopted for supervision in other
math solver approaches like (Wang et al., 2018) and
(Xie and Sun, 2019). Different from these meth-
ods, we don’t use templates directly for supervision
but make an assumption that problems sharing the
same template are closer with each other from the
point view of arithmetics, regardless of the surface
forms of languages and descriptions.

To make use of this assumption, we introduce
inter-language template-base contrastive training
into our training process. Specifically, we first
group math word problems based on their tem-
plates. During training, we pair each problem with
a random sample from a different language sharing
the same template.

As the representation learned by the encoder
in Section A is M, we use its maxpooling with
normalization as the latent representation for each
problem and its positive sample, denoted as z and
z+ respectively. Then, we conduct a batch-level
contrastive training similar to SimCLR (Chen et al.,
2020) and use the NT-Xent loss (the normalized
temperature-scaled cross entropy loss) as the fol-

lowing:

L = − log
exp(⟨z, z+⟩/τ)

exp(⟨z, z+⟩/τ⟩+∑N−1
j=1 exp(⟨z, z−j ⟩/τ)

,

(1)

where ⟨·, ·⟩ is the inner product of the two vectors
and the batch size is N .

It’s worth noting that the distribution of tem-
plates is highly skewed. In our experiments, we
further consider two settings: (1) CL, contrastive
learning, when a problem doesn’t have a candidate
with the same template from another language, it
contrasts with itself. (2) CL + TC, contrastive
learning with template constraint, we only use
those problems which have at least one sample
from another language.

Our contrastive learning approach differs with
that of Li et al. (2022) in the following ways: (1)
our method is focusing on cross-lingual setting that
each pair of examples come from different lan-
guages, (2) we use batch-level contrastive training
in consist with SimCLR.

There are also other works making use of latent
representations of math word problems to enhance
generalization ability of math solvers. For example,
Liang and Zhang (2021) designed a teacher mod-
ule to make the latent vector to match the correct
solution rather than its variations.

6 Experiments

6.1 Experiment Setup
Evaluation metrics: The model is expected to
be a math problem solver, so the generated expres-
sions should be executable by a specific compiler
and executor. During evaluation, each problem is
counted as solved if the absolute error rate for the
executed value and the target value is lower than
a predefined threshold. In our experiments, we
choose 1e−4 as the threshold. The final evaluation
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Model

Test Zero-shot

Math23K MathQA AddSub SingleOp MultiArith

zh en zh en zh en zh en

mBERT-zh 76.5 3.3 30.9 10.4 66.0 32.7 51.2 15.7
mBERT-en 0.5 77.9 2.8 6.1 5.0 10.5 5.0 3.2

XLM-R-xl 75.5 79.0 39.0 21.3 67.4 40.4 44.7 18.3
mBERT-xl 76.3 79.0 35.2 24.1 69.8 41.6 45.0 16.0

Table 4: Comparisons of different cross-lingual models over Test set and zero-shot datasets.

metric is the accuracy of solved problem against
all the problems.

Methods to be compared: We empirically com-
pare the following cross-lingual: (1) mBERT-zh
is using original multilingual BERT (Devlin et al.,
2019) but trained over Math23K only; (2) mBERT-
en is using original multilingual BERT (Devlin
et al., 2019) but trained over the adapted MathQA
only, and multilingual methods: (1) mBERT-xl is
using original multilingual BERT (Devlin et al.,
2019) but trained by mixing Math23K and the
adapted MathQA; (2) XLM-R-xl is using XLM-
R (Conneau et al., 2020) but trained by mixing
Math23K and the adapted MathQA.

Other experiment settings: We choose to use
multi-lingual BERT (mBERT) (Devlin et al., 2019)
for cross-lingual training. We train our models
using one Nvidia 2080ti and a batch size of 160.
The learning rate is set to 3e−5 with a scheduler
supporting polynomial decay. The training lasts for
at most 150 epochs and will stop after 30 epochs if
no improvement is observed.1

6.2 Results

We list experiment results of all the methods in
Table 4.

Cross-lingual MWP Solver The first research
question we want to answer is to what extent
a MWP solver trained on one language can
work on another language, with the help of pre-
trained multilingual language models. Table 4
shows that the MWP solvers trained using either
Math23K ( mBERT-zh) or MathQA (mBERT-en)
have achieved impressive performance when tested
in the same language. However, the performance
over a different language drops drastically and is

1https://github.com/VisualJoyce/
AnDuShu

almost negligible. In a word, the MWP solver is
almost non-transferable when it is trained on one
language but evaluated over a second with the same
operator set.

Multilingual MWP Solver The second research
question we want to answer is whether training a
MWP solver on multiple languages helps improve
its effectiveness compared with training on a single
language. We can see that mixing two languages to
train can give us a more language-agnostic model
as the performance on Test split of both languages
are competitive with monolingual cases. What’s
more, on the newly extended bilingual datasets,
there are consistent improvements for most of the
datasets, especially for the English language.

Considering the difficulty of problems, these
bilingual evaluation datasets are closer to
Math23K (primary school) than to MathQA (GRE
or GMAT). Adding that mBERT-zh is also doing
better than mBERT-en on English language, we
suspect domain similarity is more important than
language for MWP solvers.

Template-based Contrastive Training The last
section of Table 5 shows how contrastive learning
affects performance. Firstly, adding contrastive
learning can further boost performance on the test
set of both languages. There’s a significant in-
crease (3 points) for Math23K. However, in zero-
shot evaluation settings, performance over English
drops consistently. We suspect this might be caused
by the diversity of templates on MathQA is much
larger than that of Math23K.

Therefore, we further conduct a template-
constrained experiment that ensures each template
can be found on both languages. Due to the number
of training cases are reduced, performance of the
test sets also drop by a large margin. However, En-
glish problems over zero-shot setting benefit most
from this experiment, which further verifies that

12

https://github.com/VisualJoyce/AnDuShu
https://github.com/VisualJoyce/AnDuShu


Model

Test Zero-shot

Math23K MathQA AddSub SingleOp MultiArith

zh en zh en zh en zh en

mBERT-xl 76.3 79.0 35.2 24.1 69.8 41.6 45.0 16.0

mBERT-xl + CL 79.4 79.4 39.5 19.2 62.6 29.9 46.2 10.8
mBERT-xl + CL + TC 72.4 49.5 44.8 19.2 67.4 44.5 45.5 17.3

Table 5: Performance of template-based contrastive training models over Test set and zero-shot datasets.

math word problems depend closely on the prob-
lem types of the training set.

7 Conclusion

In this paper, we revisit the math word problems
using a generation-based method constructed over
pretrained multilingual models. To assist analy-
sis of cross-lingual properties of math solvers, we
adopt two large-scale monolingual datasets and
further adapts MathQA into the same annotation
framework with Math23K. We also reuse earlier
smaller datasets and upgrade them into bilingual
datasets by machine translation and manual check-
ing. Our experiments show that the MWP solvers
may not be transferred to a different language even
if the target expressions have the same operator
set and constants. But for both cross-lingual and
multilingual cases, it can be better generalized if
problem types exist on both source language and
target language. Problems considered to be easy by
humans may still be hard for a math solver trained
over the same language but from a different domain.
This tells us that for math word problem solvers,
it might be beneficial to consider balancing differ-
ent question types and permitted operators during
training.
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A Method

In this section, we construct a generation-based
MWP solver using a sequence-to-sequence model
with copy mechanism. Our whole model can be vi-
sualized in modules through Figure 3. The detailed
illustration for each module is given as following:

Encoder Our encoder is built upon a pretrained
multilingual transformer, either BERT or XLM-
R. Suppose our input word wi is tokenized into
word pieces (xi1, xi2, . . .) and let hij ∈ Rdh de-
notes the hidden vector produced by the pretrained
model representing xij . We use average pooling
to get the representation for the word wi, denoted
as hi. Then we feed this contextualized represen-
tation of the math word problem into a two-layer
bidirectional LSTM. The output of this biLSTM is
the encoder hidden states for decoding, denoted as
M = (m0,m1, . . . ,mn).

Decoder We use a LSTM cell as the decoding
cell to predict the next token. For each decoding
step t, the cell will accept the embedding for pre-
vious word as input and output a decoder state
st ∈ Rds . Most of the numerical values in MWPs
do not exist in the target vocabulary. Therefore, we
need copy mechanism (Gu et al., 2016) to facilitate

generation of numerical values during decoding.
The copy scores are calculated as follows,

uti = σ(m⊺
iWc)s

t (2)

where Wc ∈ Rdh×ds . However, the embedding
of a copied token will be identical to an out-of-
vocabulary token. To better capture the information
from last decoding step, we use the copy score
to further derive a state of selecting from source
tokens, which is called Selective Read.

qt = softmax(ut) (3)

bt =
∑

i

qtimi (4)

We use a bilinear attention to attentively read
information from M, getting the context vector ct,
which is called Attentive Read.

vti = σ(m⊺
iWas

t + b) (5)

dt = softmax(vt) (6)

ct =
∑

i

dtimi (7)

where Wa ∈ Rdh×ds .
From the problem definition, the target vocabu-

lary is V = O ∪ C. The generation score for the
next token is given by:

pt = W⊺
ds
t + b (8)

where Wd ∈ Rds×|V|.
The state updating process for the decoding cell

takes in a fused information of last word embed-
ding et ∈ Rde , selective read state bt and attentive
read state ct.

st+1 = f(Ws[e
t,bt, ct], st) (9)

where Ws ∈ Rds×(de+dh+dh).
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Figure 3: Sequence-to-sequence model with copy mechanism.

Adapted Operators Filtered Operators

add,subtract,multiply,
rectangle_area,divide,
speed,power,negate,inverse,
square_area,sqrt,
square_edge_by_area,
cube_edge_by_volume,
volume_cube,surface_cube,
square_perimeter,
rectangle_perimeter,
stream_speed,triangle_area,
triangle_perimeter,surface_sphere,
volume_sphere,rhombus_area,
quadrilateral_area,volume_cylinder,
circle_area,volume_cone,circumface,
diagonal,volume_rectangular_prism,
original_price_before_loss,
original_price_before_gain,
p_after_gain,
square_edge_by_perimeter,negate_prob

floor,choose,min,tangent,sine,
reminder,lcm,factorial,gcd,max,
permutation,
triangle_area_three_edges,
surface_cylinder,rhombus_perimeter,
surface_rectangular_prism,
speed_in_still_water,log

Table 6: Operators that are adapted in MathQA.
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Abstract

The ability to extrapolate, i.e., to make predic-
tions on sequences that are longer than those
presented as training examples, is a challeng-
ing problem for current deep learning mod-
els. Recent work shows that this limitation
persists in state-of-the-art Transformer-based
models. Most solutions to this problem use
specific architectures or training methods that
do not generalize to other tasks. We demon-
strate that large language models can succeed
in extrapolation without modifying their archi-
tecture or training procedure. Our experimental
results show that generating step-by-step ratio-
nales and introducing marker tokens are both
required for effective extrapolation. First, we
induce a language model to produce step-by-
step rationales before outputting the answer to
effectively communicate the task to the model.
However, as sequences become longer, we find
that current models struggle to keep track of
token positions. To address this issue, we inter-
leave output tokens with markup tokens that
act as explicit positional and counting sym-
bols. Our findings show how these two com-
plementary approaches enable remarkable se-
quence extrapolation and highlight a limitation
of current architectures to effectively generalize
without explicit surface form guidance. Code
available at https://github.com/MirelleB/
induced-rationales-markup-tokens

1 Introduction

The lack of compositional generalization of neu-
ral networks has been a long-standing limitation
known for decades (Fodor and Pylyshyn, 1988;
Schmidhuber, 1990; Marcus, 1998, 2018; Lake and
Baroni, 2018; Liška et al., 2018; Keysers et al.,
2019). This is often associated with their fail-
ure to extrapolate, i.e., the ability to work on se-
quences that are longer than those presented as
training examples. Modern architectures such as
the Transformer (Vaswani et al., 2017), which is
the core component of state-of-the-art NLP models,

GPT-3 Finetuned
on thousands of examples

"run around left thrice"

Answer: LEFT RUN 1 LEFT RUN 2 LEFT 
RUN 3 LEFT RUN 4 LEFT RUN 5 LEFT 
RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT 
RUN 9 LEFT RUN 10 LEFT RUN 11

        (missing LEFT RUN 12)

Frozen GPT-3 

A few in-context examples with
explanations and markup tokens

+
"run around left thrice"

Explanation: "run around left" corresponds to 4 
LEFT RUN commands. Because of the word 
"thrice", "run around left thrice" results in 3 x 4 
= 12 LEFT RUN commands.
Answer: LEFT RUN 1 LEFT RUN 2 LEFT RUN 3 
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN 
7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10 LEFT 
RUN 11 LEFT RUN 12

(a) (b)

Figure 1: Answers produced by a GPT-3 model on the
“length” split of the SCAN dataset when (a) fine-tuned
on thousands of examples vs (b) induced via a few in-
context examples to generate explanations and markup
tokens (in yellow).

perform poorly on this class of problems (Bhat-
tamishra et al., 2020; Nogueira et al., 2021; Wang
et al., 2021; Pal and Baral, 2021; Welleck et al.,
2021; Bogin et al., 2022; Finlayson et al., 2022;
Mittal et al., 2021). In Figure 1-(a), we illustrate
how recent large language models such as GPT-3
fail at this task, even when fine-tuned on thousands
of examples.

Architectures and training methods that tar-
get this specific problem are often developed
based on synthetic tasks whose creation rules are
known (Das et al., 1992; Li et al., 2019b; Russin
et al., 2019; Andreas, 2020; Liu et al., 2020a; Chen
et al., 2020; Herzig and Berant, 2021; Shaw et al.,
2021; Zhu et al., 2021). Thus, they resort to tech-
niques such as augmenting the training data or bias-
ing the model’s architecture to internally represent
these rules. However, improvements obtained on
one compositional generalization benchmark do
not transfer to others (Furrer et al., 2020), i.e., they
lose their ability to be used as competitive general-
purpose models in real tasks, as these can seldom
be solved with a small set of rules.

We study the behavior of Transformer models
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and demonstrate that this problem is not due to
an intrinsic limitation of their training algorithm.
We show that inducing autoregressive models to
rationalize before making a prediction (Wang et al.,
2022; Zelikman et al., 2022) is not enough to ex-
trapolate on long sequences: to solve it, we intro-
duce markup tokens (Nogueira et al., 2021; Kim
et al., 2021). The two general approaches together
allow the models to achieve remarkable extrapo-
lation generalization without requiring changes to
the model or architecture. These findings provide
evidence that general-purpose models have the abil-
ity to both improve their effectiveness and inter-
pretability at the same time. The need to markup
tokens also suggests there are fundamental issues
that need to be addressed in the Transformer archi-
tecture, particularly the need for better positional
representations. Thus, our study confirms and sup-
ports recent results from previous work that posi-
tional embeddings used in current state-of-the-art
Transformer models cannot precisely track of token
positions or perform precise counting (Liu et al.,
2020b; Thawani et al., 2021; Press et al., 2022).

2 Related Work

A long list of architectures and training methods
attempt to improve the extrapolation capabilities
of deep learning models. For instance, some are
specifically designed to solve only a handful of
tasks (Singh, 1992; Kaiser and Sutskever, 2015;
Kalchbrenner et al., 2015; Price et al., 2016; An-
dreas et al., 2016, 2017; Trask et al., 2018). Pre-
trained word embeddings find it difficult to extrap-
olate to unseen numbers in training (Wallace et al.,
2019). Alternatives to improving the extrapola-
tion ability of neural models include building neu-
ral models with a pre-training corpus of numeri-
cal text (Geva et al., 2020) or using scientific no-
tation to represent numbers (Zhang et al., 2020).
Likewise, better numerical and compositional skills
can be achieved by supplementing input texts with
pre-computed numerical calculations (Andor et al.,
2019) or explicitly assuming rules or mathematical
equations from natural language texts (Liu et al.,
2019; Li et al., 2019a; Zou and Lu, 2019a,b; Shi,
2020; Qiu et al., 2021). Many of these models are
capable of adding numbers larger than those seen
during training. In contrast, more general-purpose
architectures fail to extrapolate on numerical tasks
(Joulin and Mikolov, 2015; Dehghani et al., 2018;
Schlag et al., 2019).

Our work derives from recent findings that show
that inducing the model to generate explanations
in natural language leads to better performance in
a wide variety of tasks (Recchia, 2021; Fernandes
et al., 2022; Wang et al., 2022; Zelikman et al.,
2022; Nye et al., 2022; Katz et al., 2022; Zhou
et al., 2022; Khot et al., 2022). In particular, the
work proposed by (Zhou et al., 2022) achieves
state-of-the-art results in the extrapolation of tasks
involving symbolic manipulation, compositional
generalization and numerical reasoning. Tasks are
solved via few-shot learning applied to a large lan-
guage model (e.g. text-davinci-002) in two main
steps. The first step consists of reducing the ques-
tion into sub-questions, then, in the second phase, a
new interaction is made with the model, now solv-
ing sequentially the sub-questions generated in the
previous step.

The results shown in Zhou et al. (Zhou et al.,
2022) corroborate our intuition that explanations
alone are not enough to achieve extrapolations. By
inducing the model to generate explanations and
markup tokens, we provide evidence that compo-
sitional generalization can be achieved without
sacrificing the general applicability on other tasks,
which is often a feature that is lost with architec-
tural modifications.

However, a limitation of Zhou et al.’s and our
method is that both require a programmatic post-
processing step: Zhou et al. use a python script
to convert the model output (e.g., 3*["LEFT"]),
which is in python notation, into the expected for-
mat of the final answer (e.g., LEFT LEFT LEFT);
in our method, we programmatically remove the
markup tokens from the final answer. We argue
that the need to call an external script exposes a
limitation in the current Transformer architecture,
namely, that it cannot handle long sequences of
repeated tokens.

3 Methodology

In this section, we describe our proposed method
for inducing explanations and markup tokens us-
ing in-context learning with a few examples. We
first create a prompt ic||oc that concatenates in-
context training examples ic with a test exam-
ple oc. The ic examples consist of N triples
of “Instruction”, “Explanation” and “Output”, i.e.,
ic = {(i∗1, e∗1, o∗1), ..., (i∗N , e∗N , o∗N )}. The test ex-
ample oc is made of only the “Instruction” field.
When we feed ic||oc to a language model, it should
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Example 1: 
Instruction: add the numbers E 4 D 1 C 6 B 5 A 4 and D 1 C 8 B 5 A 3 

Explanation:
This first number goes until position E, whereas the second goes until position D. The first number is the longest, so we sum
digits in positions A, B, C, D, E. 

We sum the digits in position A, which are A 4 and A 3. That is 4 + 3, which equals to 7. Because 7 is less than or equal to 9,
this results in carry 0 and A 7. 

This carry 0 is summed with digits in position B, which are B 5 and B 5. That is 0 + 5 + 5, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0.

This carry 1 is summed with digits in position C, which are C 6 and C 8. That is 1 + 6 + 8, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5.

This carry 1 is summed with digits in position D, which are D 1 and D 1 .That is 1 + 1 + 1, which equals to 3. Because 3 is
less or equal than 9, this results in carry 0 and D 3.

This carry 0 is summed with digits in position E, which are E 4 and E 0. That is 0 + 4 + 0, which equals to 4. Because 4 is
less than or equal to 9, this results in carry 0 and E 4.
Output: E 4 D 3 C 5 B 0 A 7

(...)

Example 6: 
Instruction: add the numbers D7 C7 B8 A5 and D1 C7 B1 A7 

Input

Explanation:
This first number goes until position D, whereas the second goes until position D. Both numbers have equal length, so we
sum digits in positions A, B, C, D.

We sum the digits in position A, which are A 5 and A 7. That is 5 + 7, which equals to 12. Because 1 2 is greater than 9, this
results in carry 1 and A 2. 

This carry 1 is summed with digits in position B, which are B 8 and B 1. That is 1 + 8 + 1, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0. 

This carry 1 is summed with digits in position C, which are C 7 and C 7. That is 1 + 7 + 7, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5. 

This carry 1 is summed with digits in position D, which are D 7 and D 1. That is 1 + 7 + 1, which equals to 9. Because 9 is
less than or equal to 9, this results in carry 0 and D 9. 

Output: D 9 C 5 B 0 A 2

Model output

Figure 2: Example of a few-shot prompt and model com-
pletion for the addition task. First, a prompt composed
of in-context (ic) samples are given, which are formed
by {input, explanation, output} triplets concatenated
with an out-of-context (oc) test example that has only
the "instruction" field. The model then completes the
“explanation” and “output” fields from the test example
as a result.

generate the remaining “Explanation” and “Output”
fields for oc. Figure 2 illustrates the input prompt
given to the model and the (correct) output given
by the model.

We also interleave the tokens ic and oc with
markup tokens that help the model to precisely
identify the tokens in the input and output se-
quences (see Figure 1-(b) for an example). These
tokens support the model in three ways: 1) They act
as a form of working memory to indicate progress
being made. 2) They act as sub-prompt anchors to
inform the start of a known pattern. 3) They im-
plicitly model a stopping condition should a certain
amount of progress be reached. We programmati-
cally include these markups in each test input and
remove them from the output answers before com-
paring them with ground-truth ones.

Due to its few-shot nature, our method can be
adjusted for different tasks. Likewise, our approach
does not require any additional modifications to the
language model such as pretraining or changes to
the loss function.

4 Experimental Setup

We evaluate our method in two tasks that require
extrapolation: 1) the length split of the SCAN
data (Lake and Baroni, 2018) and 2) the addition
of two numbers. In all experiments, we used the
text-davinci-002 model, available via a paid
API provided by OpenAI. We report the accuracy
of the test set.

4.1 SCAN

The SCAN synthetic dataset translates simple navi-
gation commands into a sequence of actions (e.g.,
the input jump thrice results in the output JUMP
JUMP JUMP). These commands are generated from
the composition of a specific grammar, combining
“primitive” commands such as jump, walk, look,
run and turn; “modifiers” (left, right, around,
opposite); repetition symbols like twice/thrice;
“combiners” (and/after) that group two action se-
quences.

To construct the prompt, we generated nine in-
context training examples, each made of three parts:
an instruction, an explanation, and the desired out-
put. The “Instruction” is a sequence of commands
while the “Explanation” is a description, in natural
language detailing the steps to generate the output.
The “Output” corresponds to the expected answer
to the instruction. In addition, in the output field,
we inject markup tokens to delimit the end of a
repeating sequence or sub-instruction. Therefore,
to indicate each repetition of a given action, we
use positive integers and at the end of a sequence
of actions, we use the separator ||. For example,
for the input: jump twice and walk twice, we
generate the output JUMP 1 JUMP 2 || WALK 1
WALK 2.

The target outputs of training examples have up
to 22 actions. The test examples were drawn from
the “Length” split provided by the authors.* This
set has 3,920 examples whose target output varies
between 24 and 48 actions. The instruction (input)
of each test example is appended to the in-context
training examples and the model is prompted to
generate the “Explanation” and “Output” fields.
Thus, since training examples are shorter than test
ones, we are able to assess the compositional gener-
alization of the model while extrapolating to larger
unseen sequences. Due to the cost of using the
GPT-3 API (approximately 0.10 USD per example),

*https://github.com/brendenlake/SCAN
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Method Acc.

Specialized Architectures
Syntactic Attn. (Russin et al., 2019) 15.2
CGPS (Li et al., 2019b) 20.3
T5-base DUEL (Zhu et al., 2021) 45.0
LANE (Liu et al., 2020a) 100.0
NSSM (Chen et al., 2020) 100.0
SBSP (Herzig and Berant, 2021) 100.0
NQG (Shaw et al., 2021) 100.0
Synth (Nye et al., 2020) 100.0

General-purpose Architectures
T5-base (Furrer et al., 2020) 14.4
T5-Large (Furrer et al., 2020) 5.2
T5-3B (Furrer et al., 2020) 3.3
T5-11B (Furrer et al., 2020) 2.0
GPT-3 Ada - fine-tuned 13.9
GPT-3 Curie - fine-tuned 6.4
GPT-3 Davinci - fine-tuned 8.2
Least-to-Most (Zhou et al., 2022) 99.7
—
Ours (rationales only) 2.5
Ours (markups only) 22.5
Ours (rationales + markups, inverted prompt) 30.0
Ours (rationales + markups) 95.2

Table 1: Results on the “length” split of the SCAN
dataset.

we evaluated the model on 400 randomly sampled
examples from the test set.

4.2 Addition Task

Extrapolation abilities can also be tested with arith-
metic tasks. For this, we built a prompt for the ad-
dition operation, where we present five in-context
training examples with two numbers up to 5 digits
and ask the model to generate the explanation and
answer for a test set example made of numbers with
4 to 14 digits. We evaluate the model on 400 test
samples automatically generated by the “balanced
sampling” method from Nogueira et al. (Nogueira
et al., 2021), which ensures that the set will have a
roughly equal proportion of answers with d-digit
numbers, with d ∈ [4, 14].

We use a template similar to SCAN’s to feed the
in-context examples to the model. We manually
generate the explanations for the training examples
and inject markup tokens in the instructions and the
target output. In the expected output, these tokens
are used during the explanation steps. We illustrate
in Figure 2 an example of a prompt followed by a
completion of the model.
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Figure 3: Test set accuracy in the addition task vs num-
ber of digits in the ground-truth answer.

5 Results

In Table 1 we show the results for the length split of
the SCAN dataset. We see that specialized models
like LANE, NSSM, and SBSP solve the composi-
tional generalization proposed by SCAN, whereas
generic architectures such as T5 (Raffel et al., 2020)
or GPT-3 (Brown et al., 2020) fine-tuned on the task
have poor performance.

We also show results for GPT-3’s Ada (300M
parameters), Curie (6B parameters) and Davinci
(175B parameters) models fine-tuned on all 16,990
training examples of the SCAN dataset for 3
epochs. In these cases, we do not use in-context
examples, explanations, or markup tokens. Our
methodology of providing prompts with detailed
explanations was shown to be more effective than
finetuning on thousands of examples.

The same behavior is also observed in the ad-
dition task, as seen in Figure 3. Our approach
with explanations and markup tokens (rationale +
markup) shows that even with as few as 5 examples,
the model can perform the task of adding numbers
with more than 5 digits, reaching a performance of
around 60% in numbers with up to 14 digits and
an average accuracy of 73% considering all 400
examples in the test set.

We also investigated the performance of fine-
tuning a general-purpose model on this task. We
trained a T5-base with 100K samples on numbers
with 2 to 5 digits per 10 epochs without adding
explanations. We observe that the model reaches
100% accuracy with numbers of up to 5 digits, but
fails to add numbers with more than 6 digits.
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Instruction: look left thrice and run around left thrice

Markup-only

Output: LEFT LOOK 1 LEFT LOOK 2 LEFT LOOK 3 || LEFT RUN 1 LEFT RUN 2 LEFT RUN 3
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10
LEFT RUN 11 LEFT RUN 12

Rationale-only

Explanation: Because of the word "and", the instruction can be divided in two sub-
instructions: 1) "look left thrice" and 2) "run around left thrice" 
1) "look left thrice" results in 3 LEFT LOOK commands.  
2) "run around left thrice" results in 3 x 4 = 12 LEFT RUN commands.

Output: LEFT LOOK LEFT LOOK LEFT LOOK LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT

Figure 4: Model output differences between the markup-
only and rationale-only approaches.

5.1 Ablation: Rationale-only vs. markup-only

We also investigate the impact of using explanation
and markup tokens in isolation. We compare two
scenarios: prompts without explanation (markups-
only) and without markup tokens (rationales-only).

In Table 1, we see that the rationale-only and
markup-only approaches have significantly lower
test accuracy, demonstrating that it is not enough to
explain how to solve the task, but it is also impor-
tant to inject markup tokens. We believe that these
tokens help the model generate repeated sequences
of tokens.

In Figure 4, we provide qualitative evidence of
this hypothesis: Without markup tokens, the model
correctly generates the explanation but fails to fin-
ish the action sequence, therefore entering a loop.

5.2 Ablation: Inverted prompt

We also experimented with reversing the order in
which the "explanations" and "outputs" fields are
presented to the model. Therefore we provide the
expected output first and then the explanation. The
idea of this experiment was to verify if the order
explanation followed by the output has an impact
on the generation of the answer. In Table 1 we
see that the performance drops from 95.2 to 30%
(rationales + markups - inverted prompt). This
empirical result agrees with the literature in terms
that the model possibly processes the explanation
before determining the final output.

6 Conclusion

In this work, we show how step-by-step ratio-
nales and positional markup tokens enable general-
purpose architectures to extrapolate to sequences
that are significantly longer than those provided
as training examples. Rationales before the an-
swer break down the problem into small exe-
cutable chunks and markup tokens track the work-
ing progress as the output is generated. Importantly,
we show how these methods are complementary
and, when used together, enable remarkable extrap-
olation results on two synthetic tasks.

However, we note the use of markup tokens as
a limitation of current models and subword tok-
enizers. Future models should be able to count
tokens and keep track of individual tokens in long
sequences without resorting to additional support-
ing tokens. As our qualitative analysis shows, most
failure cases are due to one or two tokens generated
incorrectly. We see the ability to automatically ver-
ify these errors, as proposed by Cobbe et al. (Cobbe
et al., 2021), as a promising direction to improve
the extrapolation capabilities of current models.

Acknowledgments

This research was partially funded by grants
2020/09753-5 and 2022/01640-2 from Fundação
de Amparo à Pesquisa do Estado de São Paulo
(FAPESP). This work is also supported by grant
EP/V025708/1 from the Engineering and Physical
Sciences Research Council. We also thank Google
Cloud for credits to support this work. R Lotufo
is partially supported by CNPq (The Brazilian Na-
tional Council for Scientific and Technological De-
velopment) under grant 310828/2018-0.

References
Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler.

2019. Giving BERT a calculator: Finding opera-
tions and arguments with reading comprehension. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5949–5954.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-

21

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676


icy sketches. In International Conference on Ma-
chine Learning, pages 166–175. PMLR.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural net-
works for question answering. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1545–1554.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,
and Denny Zhou. 2020. Compositional generaliza-
tion via neural-symbolic stack machines. Advances
in Neural Information Processing Systems, 33:1690–
1701.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Sreerupa Das, C. Giles, and Gordon Sun. 1992. Learn-
ing context-free grammars: Capabilities and limita-
tions of a recurrent neural network with an external
stack memory.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Universal
transformers. In International Conference on Learn-
ing Representations.

Patrick Fernandes, Marcos Treviso, Danish Pruthi, An-
dré FT Martins, and Graham Neubig. 2022. Learning
to scaffold: Optimizing model explanations for teach-
ing. arXiv preprint arXiv:2204.10810.

Matthew Finlayson, Kyle Richardson, Ashish Sabhar-
wal, and Peter Clark. 2022. What makes instruc-
tion learning hard? an investigation and a new chal-
lenge in a synthetic environment. arXiv preprint
arXiv:2204.09148.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. Advances in Neural Information Processing
Systems, 28:190–198.

Łukasz Kaiser and Ilya Sutskever. 2015. Neural GPUs
learn algorithms. arXiv preprint arXiv:1511.08228.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2015. Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

Uri Katz, Mor Geva, and Jonathan Berant. 2022. Infer-
ring implicit relations with language models. arXiv
preprint arXiv:2204.13778.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. In International Conference on
Learning Representations.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo
Kang, and Sung-Hyon Myaeng. 2021. Have you seen
that number? investigating extrapolation in question
answering models. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7031–7037.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873–2882. PMLR.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019a. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the

22

https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74


57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6162–6167.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019b. Compositional generalization for primi-
tive substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4293–4302, Hong Kong, China. Association
for Computational Linguistics.

Adam Liška, Germán Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint
arXiv:1802.06467.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020a. Compositional generaliza-
tion by learning analytical expressions. Advances in
Neural Information Processing Systems, 33:11416–
11427.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379.

Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-
Jui Hsieh. 2020b. Learning to encode position for
transformer with continuous dynamical model. In In-
ternational Conference on Machine Learning, pages
6327–6335. PMLR.

Gary Marcus. 2018. Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631.

Gary F Marcus. 1998. Rethinking eliminative connec-
tionism. Cognitive psychology, 37(3):243–282.

Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish,
Yoshua Bengio, and Guillaume Lajoie. 2021. Compo-
sitional attention: Disentangling search and retrieval.
CoRR, abs/2110.09419.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin.
2021. Investigating the limitations of transform-
ers with simple arithmetic tasks. arXiv preprint
arXiv:2102.13019.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2022. Show your work: Scratchpads for interme-
diate computation with language models. In Deep
Learning for Code Workshop.

Maxwell Nye, Armando Solar-Lezama, Josh Tenen-
baum, and Brenden M Lake. 2020. Learning compo-
sitional rules via neural program synthesis. Advances
in Neural Information Processing Systems, 33:10832–
10842.

Kuntal Kumar Pal and Chitta Baral. 2021. Investigating
numeracy learning ability of a text-to-text transfer
model. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 3095–3101.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Eric Price, Wojciech Zaremba, and Ilya Sutskever. 2016.
Extensions and limitations of the neural GPU. arXiv
preprint arXiv:1611.00736.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Paweł Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. arXiv preprint arXiv:2112.07610.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Gabriel Recchia. 2021. Teaching autoregressive lan-
guage models complex tasks by demonstration.
arXiv preprint arXiv:2109.02102.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Imanol Schlag, Paul Smolensky, Roland Fernandez,
Nebojsa Jojic, Jürgen Schmidhuber, and Jianfeng
Gao. 2019. Enhancing the transformer with explicit
relational encoding for math problem solving. arXiv
preprint arXiv:1910.06611.

Jürgen Schmidhuber. 1990. Towards compositional
learning in dynamic networks.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938.

Hongjie Shi. 2020. A sequence-to-sequence approach
for numerical slot-filling dialog systems. In Pro-
ceedings of the 21th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
272–277.

Satinder Pal Singh. 1992. Transfer of learning by com-
posing solutions of elemental sequential tasks. Ma-
chine learning, 8(3):323–339.

23

https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://arxiv.org/abs/2110.09419
https://arxiv.org/abs/2110.09419
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0


Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Andrew Trask, Felix Hill, Scott E. Reed, Jack Rae, Chris
Dyer, and Phil Blunsom. 2018. Neural arithmetic
logic units. In Advances in Neural Information Pro-
cessing Systems, pages 8035–8044.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? Probing numeracy in embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5310–5318.

Cunxiang Wang, Boyuan Zheng, Yuchen Niu, and Yue
Zhang. 2021. Exploring generalization ability of pre-
trained language models on arithmetic and logical
reasoning. In CCF International Conference on Nat-
ural Language Processing and Chinese Computing,
pages 758–769. Springer.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2021. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
arXiv preprint arXiv:2109.13986.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language
embeddings capture scales? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 292–299.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Wang Zhu, Peter Shaw, Tal Linzen, and Fei Sha. 2021.
Learning to generalize compositionally by transfer-
ring across semantic parsing tasks. arXiv preprint
arXiv:2111.05013.

Yanyan Zou and Wei Lu. 2019a. Quantity tagger: A
latent-variable sequence labeling approach to solving
addition-subtraction word problems. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5246–5251.

Yanyan Zou and Wei Lu. 2019b. Text2Math: End-to-
end parsing text into math expressions. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5330–5340.

24

https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53


Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP), pages 25 - 32
December 8, 2022 ©2022 Association for Computational Linguistics

Towards Autoformalization of Mathematics and Code Correctness:
Experiments with Elementary Proofs

Garett Cunningham
School of EECS
Ohio University

Athens, OH 45701
gc974517@ohio.edu

Razvan C. Bunescu
Department of Computer Science

UNC Charlotte
Charlotte, NC 28223

razvan.bunescu@uncc.edu

David Juedes
School of EECS
Ohio University

Athens, OH 45701
juedes@ohio.edu

Abstract

The ever-growing complexity of mathematical
proofs makes their manual verification by math-
ematicians very cognitively demanding. Auto-
formalization seeks to address this by translat-
ing proofs written in natural language into a for-
mal representation that is computer-verifiable
via interactive theorem provers. In this pa-
per, we introduce a semantic parsing approach,
based on the Universal Transformer architec-
ture, that translates elementary mathematical
proofs into an equivalent formalization in the
language of the Coq interactive theorem prover.
The same architecture is also trained to trans-
late simple imperative code decorated with
Hoare triples into formally verifiable proofs of
correctness in Coq. Experiments on a limited
domain of artificial and human-written proofs
show that the models generalize well to inter-
mediate lengths not seen during training and
variations in natural language.

1 Introduction

To the uninitiated, the notion of mathematical proof
represents simply an argument written by people
to convince others of mathematical truth. How-
ever, in a real sense, mathematical proof must have
formal underpinnings that go beyond the written
argument. Arguments that lack such underpinnings
might have fatal errors or even logical inconsisten-
cies (see, for example, Russell’s Paradox (Irvine
and Deutsch, 2021)). Nevertheless, mathematical
arguments written in natural language are the norm
and they have great value.

In Tymoczko (1979)’s well-known paper that dis-
cusses a somewhat controversial (at the time) proof
of the Four Color Theorem (Appel and Haken,
1977; Appel et al., 1977), he explores “what is a
mathematical proof?” He posits that all mathemati-
cal proofs must be (i) convincing, (ii) surveyable,
and (iii) formalizable. The first two points are for
the reader—proofs must be convincing to and com-
prehensible by mathematicians. For the third point,

he notes that, “Most mathematicians and philoso-
phers believe that any acceptable proof can be for-
malized. We can always find an appropriate formal
language and theory in which the informal proof
can be embedded and ‘filled out’ into a rigorous
formal proof.” For most mathematicians, this third
part is crucial for ensuring that subtle, but fatal,
errors in logic do not exist in mathematical proof.

Great progress has been made since the 1970’s
in fully formalizing significant mathematical re-
sults. For instance, the Feit-Thompson Theorem
(Gonthier et al., 2013; Gonthier, 2013) and the Four
Color Theorem (Gonthier, 2008) have been for-
mally verified using the proof assistant Coq (Bertot
and Castéran, 2013), and the Kepler Conjecture
(Hales, 2005; Hales et al., 2017) has been formally
verified using the proof assistants Isabelle and HOL
Light (Nipkow et al., 2002). Moreover, proof assis-
tants have demonstrated immense utility for soft-
ware verification, such as the full certification of a
C compiler (Leroy, 2009). Proofs demonstrating
the correct behavior of code share a similar struc-
ture to proofs in pure mathematics, where systems
like Hoare logic replace standard first-order logic.
Thus, Tymoczko’s criteria for mathematical proof
can be extended to the verification of programs.
For many experts, LaTeX provides an excellent
tool for satisfying the first two criteria. In addition,
carefully written LaTeX (Higham, 2020) provides
a rich structure for establishing the third criterion.

The vast majority of modern mathematics is ex-
pressed using natural language (NL), with the over-
whelming majority typeset in LaTeX. Fully for-
malizing mathematics using proof assistants is still
a difficult and time consuming task. This paper
takes some preliminary steps toward bridging this
gap by exploring how modern machine learning
techniques can be used to convert carefully writ-
ten LaTeX into equivalent, and formally verified
mathematics in Coq, a process referred to as auto-
formalization in the literature (Szegedy, 2020).
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Wang et al. (2018, 2020) explored the similar
task of translating mathematical statements from
LaTeX into Mizar, using LSTM-based models with
attention. To generate aligned LaTeX-Mizar pairs,
they use a tool (Bancerek, 2006) that translates
top-level Mizar statements into artificial LaTeX
sentences, a task that is facilitated by the fact that
Mizar is human readable and similar in length with
the corresponding LaTeX version. Carman (2021)
evaluated the competency of LSTMs toward for-
malizing a restricted set of artificially generated the-
orems about simple arithmetic expressions, report-
ing reasonable success over expression lengths seen
during training. More recently, Wu et al. (2022)
evaluated Codex and PaLM on a significantly more
limited, but human-written set of theorems in alge-
bra and number theory.

In contrast to prior work, we address the auto-
formalization of both theorems and their proofs,
and extend the scope to proofs of code correctness.
We use a number of manually written mathemati-
cal statements to abstract a complex grammar that
is then used to generate a dataset of substantially
longer and more diverse mathematical theorems
and proofs. We develop an architecture based
on the Universal Transformer (Dehghani et al.,
2018) and adapt a copying mechanism (Gu et al.,
2016) to handle arbitrary numbers and variable
names at test time. The models are evaluated exten-
sively on their ability to systematically generalize
to statement lengths not seen during training, for
which we report sequence-level accuracy as well
as a semantic-level accuracy calculated by combin-
ing sequence-level accuracy for the theorem and
running Coq to determine if the generated proof
is correct. Code and data are made available at
https://github.com/gc974517/autoformalization.

2 Dataset of Theorems and Proofs

We create two independent datasets of mathemat-
ical statements that overall correspond to four
classes of theorems and proofs: the first dataset con-
tains three classes of arithmetic statements (EVEN-
ODD, COMPOSITES, and POWERS), described in
detail in Section 2.1, and the second dataset contain-
ing statements about code correctness via Hoare
logic (POLY), described in detail in Section 2.2.
In each example, the input theorem-proof pair is
given in LaTeX, whereas the formalized output is
represented in Coq. This work focuses on the proof
assistant Coq (Bertot and Castéran, 2013) because

(a) there is a rich set of mathematical libraries that
have been developed for it, (b) it has been used
successfully to reason about significant computa-
tion artifacts, such as the ComperCert C compiler
(Leroy, 2009)), and (c) it benefits from a rich set of
training material for the proof assistant related to
software verification (Pierce et al., 2010).

Each class of examples demonstrates features
necessary for the successful autoformalization of
mathematical theorems and proofs. For example,
POWERS and COMPOSITES examples may define
useful terminology to make the theorems shorter,
e.g. proving that 4 is a square, or conversely they
may state theorems directly without any prelim-
inary definitions, e.g. proving ∃n. n2 = 4. As
shown in Figures 3 and 4, this corresponds in Coq
to aliasing propositions using the Definition key-
word. Additionally, the examples in the dataset
provide a stress test of the copying mechanism de-
scribed in Section 3.1, testing its ability to learn
the correct order and number of terms to include
in mathematical expressions, as well as their place-
ment in theorems and proofs, in a way that general-
izes to arbitrary tokens in mathematical language.

For each of the four classes of theorems and
proofs, we manually created a few examples our-
selves in order to guide the construction of a com-
plex grammar that is then used to generate a dataset
of substantially longer and more diverse mathemat-
ical theorems and proofs. Each dataset is generated
using its corresponding grammar in an identical
way. First, a random seed is sampled that controls
the overall structure of the theorem, proof, and
definition, if any. Then, the skeleton structure of
the proof is completed with phrases that are sam-
pled from a separate context-free grammar. The
coarse control of the skeleton structure allows the
construction of examples with interesting features
like sublemmas, forward or backward proof direc-
tion, coreference, or additional conditions for the
theorem, among others.

Many of the difficulties in formalizing mathe-
matical statements from NL into Coq stem from
the wide variability in the level of detail of mathe-
matical proofs, and the frequent mismatch between
what is considered an acceptable inference step in
NL proofs vs. an inference step in Coq. Further-
more, there may be multiple Coq proofs for any
given theorem, at different levels of granularity. We
address this ambiguity by requiring the structure of
the Coq proof to match the overall structure of the
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LaTeX Input Sequence

Theorem. 28M + 308 is even.

Proof. We know the summation between even numbers
in N will be an even number. Observe that 308 is known
to be even. Additionally, note that the pair M × 28 is
trivially even. This is true because the coefficient 28 is
even.

Coq Output Sequence

Require Import Arith.
Theorem M28_308:
forall M : nat, Nat.even(28 * M + 308) = true.

Proof.
intros.
repeat rewrite Nat.even_add.
assert (H1: Nat.even 308 = true).
{ auto. }
assert (H2: Nat.even 28 = true).
{ auto. }
assert (H3: Nat.even (28 * M) = true).
{ rewrite Nat.even_mul.
rewrite H2.
auto. }

rewrite H1.
rewrite H3.
auto.

Qed.

Figure 1: Generated example from the EVEN-ODD set.

NL proof. This is achieved by quasi-synchronously
generating the LaTeX and Coq versions of mathe-
matical statements, while still allowing for some
simple re-orderings in order to improve general-
ization performance, e.g. swapping arguments of
commutative operations.

In total, the grammar-based method for gen-
erating examples can theoretically produce over
283 million unique arithmetic examples and over
491,000 unique code examples, before consider-
ing variations in phrasing by sampling from the
context-free grammar.

2.1 Arithmetic Statements

We generated three classes of mathematical state-
ments, i.e. theorem-proof pairs:

• EVEN-ODD: an expression is even or odd.

• COMPOSITES: a number is composite.

• POWERS: a number is an integer power of n.

EVEN-ODD examples contain arithmetic expres-
sions of n variables with even coefficients that are
summed with a constant term, meaning that the
parity of this constant determines the parity of the
whole expression. Proofs make use of this fact
with varying rigor based on our manually designed

LaTeX Input Sequence

Theorem. 450 + a · 192 + j · 462 is guaranteed to be
even for any natural terms j, and a.

Proof. It can be justified that 192 · a+ j · 462 is trivially
even. Note that 192a is an even number in N because
multiplying between an even integer with an arbitrary
number in N is guaranteed to be even. Likewise, 462j
is trivially an even number in N. The claim is proven as
a consequence of the fact that the sum of even numbers
with an even number will be in itself an even number.
Therefore, our theorem holds.

Coq Output Sequence

Require Import Arith.
Theorem a450_192j_450_even:

forall j a : nat,
Nat.even (192 * a + 462 * j + 450) = true.

Proof.
intros.
rewrite Nat.even_add.
assert (H1: Nat.even (192 * a) = true).
{ rewrite Nat.even_mul.
auto. }

assert (H2: Nat.even (462 * j) = true).
{ rewrite Nat.even_mul.
auto. }

assert (H3: Nat.even
(192 * a + 462 * j) = true).

{ repeat rewrite Nat.even_add.
rewrite H1.
rewrite H2.
auto. }

rewrite H3.
auto.

Qed.

Figure 2: Instance of sublemma use in the EVEN-ODD
dataset. The proof that the sum of non-constant terms is
even (assertion H3) is given before proving the theorem.

grammar, an example of which is shown by Figure
1. The Coq program is generated concurrently with
the paired LaTeX example. The example shown in
Figure 2 illustrates the generation and use of prior
facts to prove an implicit sublemma, in both the
natural language and matching Coq version.

Examples of theorems and proofs for POWERS

and COMPOSITES share a similar structure in both
their LaTeX and Coq forms, as shown in Figures 3
and 4, respectively. The theorems assert the ex-
istence of a natural number such that a defining
property holds and their proofs are constructive,
with the distinction that examples for composites
prove factorization into n factors.

For both training and testing, we generate 5,000
even-odd, 5,000 composites, and 2,000 powers ex-
amples. We train on values of n ∈ {2, 3, 5, 7, 9}
and test on values n ∈ {2, 3, . . . , 12}, where n rep-
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LaTeX Input Sequence

Definition. We define that w ∈ N is a composite natural
number if taking some R, Q ∈ N we have Q, R ≥ 2 and
Q×R = w.

Theorem. 35 is a composite whole number.

Proof. Remember that a composite natural number is the
multiplication between Q and R such that Q and R ≥ 2.
Allow R = 7, Q = 5. We justify the result is valid as
35 = Q ·R.

Coq Output Sequence

Require Import Lia.
Definition composite
(w : nat) :=
exists R Q : nat,
(Q >= 2) /\ (R >= 2)
/\ (Q * R = w).

Theorem w_composite:
composite 35.

Proof.
unfold composite.
exists 7.
exists 5.
lia.

Qed.

Figure 3: Generated COMPOSITES example.

LaTeX Input Sequence

Definition. We say o is a square whenever there exists
some whole number Z such that Z ≥ 2 and o = Z2.

Theorem. o = 64 is a square.

Proof. Let Z = 8. Observe that 64 = 82. Also notice
Z = 8 is more than or equal to 2. This yields 64 is a
square whole number.

Coq Output Sequence

Require Import Lia.
Definition square
(o : nat) :=
exists Z : nat,
(Z >= 2) /\ (o = Z^2).

Theorem square_64:
square 64.

Proof.
unfold square.
exists 8.
assert (H1: 8 >= 2).
{ lia. }
repeat split.
apply H1.

Qed.

Figure 4: Generated example from the POWERS set.

resents the number of variables in the arithmetic
expression, the number of factors, or the power,
respectively. This is done in order to evaluate the
model’s ability to generalize to unseen arithmetic

expression lengths and numbers of factors.

2.1.1 Handwritten Examples
We also created a small collection of 45 human-
written LaTeX theorem-proof pairs to evaluate per-
formance on examples outside of our manually
generated grammar. These are distinct from the
original manually written examples that were used
to guide the development of the generative gram-
mar. There are 15 examples for each type of proof
from the arithmetic set, using the same vocabulary
with a number of unseen grammatical structures.

2.2 Code Correctness Statements

We create a dataset of correctness proofs about
short programs written in the imperative program-
ming language Imp (Pierce et al., 2018), which we
call POLY. The programs represent various algo-
rithms for evaluating a polynomial, and their proofs
of correctness verify that the programs correctly
model the polynomial as a mathematical function.
Proofs are conducted as either fully decorated pro-
grams or as sequences of Hoare triples with natural
language justifying steps in between. An example
is shown in Figure 5.

For both training and testing data, we generate
5,000 examples. We train on programs containing
2, 3, 5, 7, 9, and 11 lines, then test on programs con-
taining from 2 up to 14 lines to evaluate the model’s
ability to generalize to novel program lengths.

3 Semantic Parsing Architecture

To formalize LaTeX statements into Coq, we de-
veloped an encoder-decoder architecture based on
the Universal Transformer (Dehghani et al., 2018).
Similar to Csordás et al. (2021), we do so by adding
recursive passes into the encoder and decoder of
a base Transformer (Vaswani et al., 2017), thus
making the model analogous to a Universal Trans-
former without adaptive computation time (ACT).
Further, we introduce a copying mechanism and
support for out-of-vocabulary mathematical terms.

3.1 Copying Mechanism

Mathematical language contains features uncom-
mon or non-existent in natural language, such as
numbers, variables, and carefully defined terminol-
ogy. In order to address the use of general math-
ematical jargon, these tokens are replaced in the
LaTeX input with generic forms denoting their us-
age, such as <var1> up to <varN> for variables,
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LaTeX Input Sequence Coq Output Sequence

Theorem. Consider the following series of com-
mands such that
S := 3;
S := 3 + S * Z;
S := 1 + S * Z

Allow Z = y, for any natural number y, ahead
of running this code then S = 3×y2+3×y+1
after the set of instructions has executed.

Proof. By application of usual Hoare logic:

{Z = y}
S := 3;

{Z = y ∧ S = 3}
S := 3 + S * Z;

{Z = y ∧ S = 3× y + 3}
S := 1 + S * Z

{Z = y ∧ S = 3× y2 + 3× y + 1}

Hence, this program is shown to be correct.

Require Import String.
From PLF Require Import Imp.
From PLF Require Import Hoare.
Theorem poly_code_correct:

forall y : nat,
{{ Z = y }}
S := 3;
S := 3 + S * Z;
S := 1 + S * Z
{{ S = 3 * y ^ 2 + 3 * y + 1 }}.

Proof.
intros.
apply hoare_seq with
(Q := (
(Z = y /\ S = 3)

)%assertion).
apply hoare_seq with
(Q := (
(Z = y /\ S = 3 * y + 3)

)%assertion).
apply hoare_seq with
(Q := (
(Z = y /\ S = 3 * y^2 + 3 * y + 1)

)%assertion).
all: eapply hoare_consequence_pre;
try (apply hoare_asgn || assn_auto'').

Qed.

Figure 5: Generated POLY example: [Left] the Hoare logic proof; [Right] the code correctness proof in Coq.

which effectively ensures generalization to vari-
able renaming (Ferreira et al., 2022), <nat1> up to
<natN> for numbers, or <def> for definitions, cou-
pled with the use of a copying mechanism adapted
from Gu et al. (2016). Note that a different generic
token is introduced for each unique numerical con-
stant or variable literal in the theorem and its proof,
and the corresponding generic token is used in
the Coq version. For example, considering the
⟨LaTeX, Coq⟩ pair in Figure 3, <nat1>, <nat2>,
<nat3>, and <nat4> would be used to replace the
constants 2, 35, 7, and 5 respectively, everywhere in
the LaTeX and Coq statements. Similarly, <var1>,
<var2>, and <var3> were used to replace variable
literals w, R, and Q. This is in contrast to using
just two generic tokens <nat> and <var> every-
where, which would make all numbers coreferent
and all variables coreferent. Preliminary experi-
ments validated the utility of encoding these dis-
tinctions while maintaining the correct coreference
in both LaTeX and Coq statements.

Overall, by using generic tokens for numbers,
variables, and definitions, only a limited set of em-
beddings need to be trained and the model is forced
to utilize contextual information in order to appro-

priately copy tokens into the Coq output. In this
way, the model has the ability to generalize to un-
seen numbers or variable and definition names.

The original CopyNet (Gu et al., 2016) used an
encoder-decoder architecture with a copying mech-
anism to calculate the probabilities of generating
in-vocabulary tokens vs. copying tokens from the
input sequence to the output. Our autoformaliza-
tion task guarantees mutual exclusivity between
generating (g) and copying (c) tokens, which al-
lows using a simplified formula for calculating the
probability of producing a token yt at time step t.
Letting Vc denote the Coq vocabulary, X denote
the input sequence of LaTeX tokens, and X denote
the collection of unique tokens in X , we calculate
the probability of producing yt as:

p(yt) =





p(yt, g) =
1

Zt
eψg(yt), yt ∈ Vc

p(yt, c) =
1

Zt

∑

xj∈X:xj=yt

eψc(xj), yt ∈ X

where Zt =
∑

yt∈Vc

eψg(yt) +
∑

xj∈X
eψc(xj). The scor-

ing functions are given by ψg(yt) = v⊤
ytWost and

ψc(xj) = tanh
(
h⊤
j Wc

)
st, where vyt is a one-

29



hot encoding of yt, hj is the hidden encoder state
for the input token xj , st is the decoder state at step
t, and Wo and Wc are learnable parameters.

3.2 Encoder-Decoder Architecture

We diverge from the standard Transformer archi-
tecture in a few crucial ways:

• Probabilities are calculated via p(yt) above.

• Absolute positional encodings are removed.

• Self-attention uses relative positional repre-
sentations as in Shaw et al. (2018).

• Stacks of N encoder/decoder blocks have T
recurrent passes.

All other aspects of the model remain unchanged
from the original Transformer. We emphasize rel-
ative positional information over absolute in our
model architecture. Preliminary evaluations on the
EVEN-ODD dataset showed that Transformer mod-
els that use absolute positional encodings obtain
0% sequence-level accuracy on expression lengths
that are not seen at training time. Removing re-
liance on absolute position resolves this type of
systematic generalization. The use of relative posi-
tional encodings for the Transformer-based models
was thus essential for achieving stronger systematic
generalization, which also agrees with the findings
of Csordás et al. (2021) on other NLP tasks.

4 Experimental Evaluations

To evaluate the performance of trained models, we
ran two primary experiments: first on the collection
of arithmetic examples, then on the collection of
code correctness examples. All models are eval-
uated in terms of sequence-level accuracy, where
an example is considered correctly processed only
if the generated Coq sequence for both the theo-
rem and its proof perfectly matches token by to-
ken the ground truth sequence. We also report
semantic-level accuracy, for which the generated
Coq theorem needs to attains a perfect sequence-
level accuracy and the Coq engine verifies that the
generated Coq proof truly proves the generated
Coq theorm, regardless of whether it matches the
ground truth version of the proof. This empha-
sizes that the model was able to capture the general
meaning of the natural language proof by correctly
translating the theorem and successfully proving it
using the natural language version as a guide.

All experiments were performed on one NVIDIA
RTX-A6000 GPU with 48GB of memory.

EVEN-ODD COMPOSITES POLY

n Seq Sem Seq Sem Both
2 99.6 99.8 76.7 97.6 100.0
3 99.4 99.6 64.6 94.2 100.0
4 99.4 99.4 56.1 93.9 82.1
5 99.2 99.6 54.9 94.4 99.2
6 98.8 98.8 57.1 94.3 45.1
7 99.1 99.5 58.5 93.4 96.5
8 93.8 94.0 53.5 88.3 15.7
9 98.6 98.6 53.7 93.7 98.2
10 7.0 7.0 1.2 1.6 35.6
11 0.0 0.0 0.0 0.0 93.5

12+ 0.0 0.0 0.0 0.0 0.0

POWERS Seq = 100.0 Sem = 100

Table 1: Sequence-level (Seq) and semantic-level (Sem)
accuracy (%) on test examples, split by expression
length, with the exception of POWERS.

4.1 Arithmetic Statements

We evaluate a Transformer model on the full data
combining EVEN-ODD + COMPOSITES + POWERS

and using both the theorem and its proof in each
sequence. We tune a model with embedding and
state sizes of 32, a feed forward width of 256, 4
encoder and decoder blocks with 4 recurrent passes,
4 attention heads, and a clipping value of 2 for self-
attention. We trained this model over minibatches
of size 20, optimized with Adam using β1 = 0.9,
β2 = 0.98, ε = 1e− 9, and an initial learning rate
of 0.001, annealed by a factor of 1/

√
10 based on

training loss plateaus with a patience of 5 epochs.
The results in Table 1 show that the model gener-

alizes well to the intermediate lengths of {4, 6, 8},
with a small number of correctly translated exam-
ples longer than the maximum of 9 used in training.
Otherwise, the model fails to generalize to longer
unseen lengths, which is not surprising, given that
Transformer models are known to fail dramatically
at systematic generalization on longer inputs for
various NLP tasks (Csordás et al., 2021), or to in-
cur substantial decrease in accuracy for longer sym-
bolic integration problems (Welleck et al., 2022).
Switching to semantic-level evaluation leads to a
significant increase in accuracy for COMPOSITES,
with a more modest increase for EVEN-ODD.

4.2 Code Correctness Statements

We extend our scope to include data representing
proofs of program correctness using the language
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of Hoare logic. We train a separate model with
the same embedding and state sizes, feed forward
width, and learning rates as in Section 4.1. Depth
is increased to 8 encoder and decoder blocks with 8
recurrent passes, 8 attention heads, and a clipping
value of 8. The model is trained over minibatches
of size 1 with Adam, with a patience of 3 epochs.

The POLY results shown in Table 1 demonstrate
that the model is able to generalize to program line
counts of {4, 6, 8, 10} unseen during training with
diminishing returns as the program length grows,
eventually failing to generalize for lengths longer
than the maximum seen in training. We observe
that increasing the depth of the model significantly
improved generalization. A model with identi-
cal hyperparameters to the arithmetic experiment
yielded less then half the sequence-level accuracy
for intermediate program lengths. Therefore, fur-
ther increasing the depth of the model could push
performance closer to optimal generalization to in-
termediate lengths at the cost of significantly more
computing resources. Additionally, POLY exam-
ples are far less prone to non-fatal token swapping
errors. We observe that semantic-level accuracy is
identical to sequence-level, as all copying errors
compromised the validity of the proof. Therefore,
accuracies are shown as one column (Both).

4.3 Handwritten Examples

We also evaluate the semantic-level accuracy of
the trained models on the collection of 45 human-
written LaTeX theorem-proof pairs. This is done
by manually verifying that the generated Coq the-
orem corresponds to the LaTeX version and that
the subsequent proof is correct according to the
Coq interpreter. The fully trained model achieved
53.3% for both EVEN-ODD and COMPOSITES, and
73.3% for POWERS.

Mistakes in almost all cases are confined to the
mishandling of out-of-vocabulary tokens, such as
mis-copying a variable within a definition or the
omission of an assertion in the proof tied to a term.
The model otherwise generated syntactically sound
Coq code. Mistakes strongly correlate with exam-
ples that deviate significantly from the grammatical
structure of the artificial data. Thus, pre-trained lan-
guage models as evaluated by Wu et al. (2022) or
pre-training new models on mathematical corpora
like MATH (Hendrycks et al., 2021) may serve to
alleviate the problems caused by the scarcity of
aligned natural and formal mathematics data.

5 Concluding Remarks

As we have seen, it is feasible to train machine
learning models to perform autoformalization over
very restricted domains of math and code correct-
ness proofs. These models show capability to sys-
tematically generalize to new expression lengths
and program sizes. Moreover, these models were
able to translate previously unseen hand written
natural language examples, albeit with lower ac-
curacy. We are hopeful that this approach can be
applied to autoformalization of a larger segment of
mathematics and code verification.

As mentioned by Szegedy (2020), "Autoformal-
ization is not just a challenge: successful autofor-
malization would represent a breakthrough for gen-
eral AI with significant implications in various do-
mains." We see an especially significant impact in
education, where integration of autoformalization
into proof assistants for introductory mathematics
and software verification courses would enable the
detection of missing steps or misconceptions in
students’ proofs.
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Abstract

Evaluation of quantitative reasoning of large
language models is an important step towards
understanding their current capabilities and lim-
itations. We propose a new task, Numerical
Correlation in Text, which requires models to
identify the correlation between two numbers
in a sentence. To this end, we introduce a new
dataset, which contains over 2,000 Wikipedia
sentences with two numbers and their correla-
tion labels. Using this dataset we are able to
show that recent numerically aware pretraining
methods for language models do not help gen-
eralization on this task posing a challenge for
future work in this area.1

1 Introduction

Numerical reasoning tasks are one area where the
performance of Large Language Models (LLMs)
has not improved as drastically (Rae et al., 2021)
as on other tasks. Good performance is critical
for many downstream applications in areas such
as fact checking, question-answering, or search.
Different tasks have been proposed to evaluate the
numerical reasoning capabilities of LLMs (Mishra
et al., 2022).

We can analyze these tasks along two dimen-
sions: diversity of knowledge required and how
solvable the task is. Higher diversity ensures bet-
ter coverage across different domains while higher
solvability yields more interpretable metrics. Math-
ematical word problems (MWPs) are written in a
way that the text of the problem is always suffi-
cient to determine the exact unique answer and are
therefore highly solvable. However, they lack in
diversity since many MWP datasets are constructed
from templates or are even fully synthetic.

In contrast, numerical cloze-style problems re-
quires highly diverse knowledge since they can be
easily formed from any text that includes numbers.

1Work completed during internship at Salesforce Research.
Please direct correspondence to: dspokoyn@cs.cmu.edu

Figure 1: An illustrative plot of certain numerical eval-
uation tasks along the two dimensions of diversity and
solvability. Our aim with numerical correlation is for
the task to be both diverse and solvable.

A consequence of formulating cloze-style prob-
lems is that many texts do not provide sufficient
information to determine the correct answer and
have inherent uncertainty which results in a lower
solvability. As an example from the NumerSense
dataset (Lin et al., 2020), "Some plant varieties can
grow up to <mask> feet tall." In Figure 1, we show
an illustrative plot of tasks along these two dimen-
sions. A good numeracy evaluation task should be
both diverse and solvable.

In this work we propose Numerical Correlation
in text, a new task that aims to retain both high
diversity and high solvability. Given two numbers
in text the task is to predict whether the numbers
are positively, negatively or not correlated. For ex-
ample: “Some plant varieties can grow up to 6 feet
tall and require 20 liters of water a month”. We ex-
pect a positive correlation between the height of the
plant and the amount of water it would need. This
shows the key insight that predicting the correlation
relationship between two numbers is possible with-
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# Ex Text Label

1. The president travels on average **30** times a year on Air Force one a Boeing **747**. Neutral
2. A **2** bedroom, **1800** square feet house is hard to find in this neighborhood. Positive
3. To cook a 20 lb turkey place in the oven for **2** hours at **435** degrees. Negative

Table 1: Explanations for the three examples: 1) the model of the plane should not change how often the president
travels, 2) we expect more bedrooms to increase the size of the house, and 3) we expect an increase of temperature
to decrease the cooking time.

out having to exactly predict the missing numbers.
The task of numerical correlation requires a vari-
ety of commonsense reasoning skills but is trained
with a cross-entropy objective and evaluated with a
simple accuracy metric. We provide examples of
sentences and their labels in Table 1.

Although correlation between two numbers can
involve incredibly complex functions, we approx-
imate the correlation to be linear and treat it as
a three-way classification. We use a qualifica-
tion task to select a group of Amazon Mechani-
cal Turk (AMT) labelers and construct a dataset of
Wikipedia sentences which contain two numbers
and their correlation relationship.

We investigate the performance of four models:
two general pretrained language transformers and
two numerically aware models on our new dataset
in a few-shot setting. When probed on the numeri-
cal correlation task we see that all models exhibit a
plateau in their performance with only 6% of the
training data. Further all models underperform the
human baseline in both the finetuning and linear
probing setting. Surprisingly, our results also indi-
cate that existing numerically pretraining methods
do not result in better performance on the numeri-
cal correlation task.

2 Dataset

2.1 Qualification
We used ten handwritten numerical correlation ex-
amples and had 100 AMT workers with 99%> ap-
proval rate label them. On average each question
took around 1 minute to complete. Thresholding
on 80% accuracy or above left us with 18 AMTla-
belers. Examples and the instructions are shown in
the Appendix Table 2 and Figure 5, respectively.

2.2 Annotation
We use the WikiConvert dataset (Thawani et al.,
2021) which contains over 900k sentences with
at least one measurement in each sentence. We
use the three original correlation labels (Positive,

Negative, Neutral)2 and had each sentence labeled
by three different AMTlabelers. We selected 1,000
random sentences that contain two measurements
and another 1,000 sentences that contain two any
two quantities.3

We used Krippendorff alpha to measure the inter-
annotator agreement and found that the agreement
was 0.55 (scale is [-1,1]). We computed an average
"Jackknife" F1 score of 77 by choosing one label to
be the ground truth and averaging the F1 score of
the other two labels. We also observe that the time
taken to label each sentence rose to 1.7 minutes
on average, likely due to the increased difficulty to
ascertain the correlation in random sentences.

2.2.1 Negative

Out of the 2,000 sentences only 42 were found to
have a negative correlation which is too few data
points to train or evaluate a model. For this reason
we experimented with two strategies to generate
more negative correlation examples: 1) editing a
measurement in real sentence 2) providing a de-
scription of a real negative relationship and prompt-
ing labelers to provide a sentence as an example.
In a small pilot we found that the first strategy was
incredibly more time consuming to complete and
so we only used the second strategy to generate
negative correlation examples. We provided 60
descriptions of negative relationships and asked
the three labelers to provide an example for each
sentence.4 In total our dataset consists of 124 sen-
tences with negative correlation, 746 with positive
correlation and 1,155 with neutral correlation.

2We introduce a fourth label (Unanswerable) which we
advised the labelers to use sparingly when they were unsure
of the answer

3We filtered out sentences that contained dates or where
shorter than 64 characters in length.

4We hand filtered out sentences that did not properly follow
the instructions.
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Figure 2: Summary of the performance of the four models on the numerical correlation task with 10% of the training
data.

3 Experiments

Given a sentence X and two numbers y1 and
y2 in the text, we define the task of predict-
ing the correlation between the two numbers
as a classification task with the label set C =
{Positive,Negative,Neutral}. We compare
four models, two general pretrained language mod-
els (BART (Lewis et al., 2020) and RoBERTa (Liu
et al., 2019)) and two numerically aware models
(GeMM (Spokoyny et al., 2022) and GenBERT
(Geva et al., 2020)). We conduct few-shot learning
experiments where the model is trained on between
1% to 10% of the training data and the remaining
data is split into a validation and test set evenly.
We train all models with the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 1e-5 and a batch size of 16. We use the majority
vote labeling to choose the final label for each sen-
tence in all subsequent experiments.5 We report the
test F1 scores averaged over 5 initialization seeds.

3.1 Supervised

We conduct few-shot linear probing as well as full
finetuning experiments and plot the results in Fig-
ure 3 and Figure 4 respectively. For our linear prob-
ing experiments we freeze the parameters of the
model and only train a linear classifier,Wθ ∈ Rd×3,
where d is the hidden size of the model. We ob-
served that BART performed better by a large mar-
gin (20 F1) as compared to the second best per-
forming model, GeMM. However, all models expe-
rience a plateau in performance after only 6% of
the training data.

Unlike the linear probing experiments, when we
finetune the models we observe that all models (ex-
cept GenBERT) converge to similar performance,

5In case of a tie we do not use the sentence in our data.
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Figure 3: Linear probing experiments with 1% to 10%
of the training data.

approximately 10 F1 points below human perfor-
mance. The poor performance of GenBERT could
be explained by the fact that it uses a BERT ar-
chitecture whilst the other models are based on
RoBERTa and BART. We present all of the super-
vised Test-F1 results with 10% of the training data
in Figure 2.

3.2 Unsupervised

Since we observe the actual values of the both num-
bers we can probe a model in an unsupervised fash-
ion to predict the correlation relationship. We do
this by selecting one number (y1) to be the target
prediction and masking it’s value in the sentence.
We then probe the model to predict the value of the
target (y1) with different values of the other num-
ber (y2). We use GeMM, a numerically pretrained
model (Spokoyny et al., 2022) and denominate the
model’s prediction for the masked value as Ŷ .

We constructN examples, {X1, XN }, by select-
ing values linearly spaced between {y2∗0.5, y2∗2}
and pass each example to the model to predict the
N values of {Ŷ1, ŶN }. We can then calculate the
R-squared values of the linear regression for each
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Figure 4: Full finetuning experiments with 1% to 10%
of the training data.

pair of numbers in a sentence. We pick a threshold
value τ and build a deterministic classifier which
predicts “Neutral” if the R-squared value is less
than τ , “Positive” if the R-squared value is greater
than τ and the slope is positive, and “Negative” if
the R-squared value is greater than τ and the slope
is negative. When evaluated on a held out test set
this classifier performs close to randomly guessing
the label.

4 Related Work

4.1 Numerical Reasoning
An active area of research in NLP is focused
on solving numerical reasoning tasks. There
have been many datasets collected such as AQuA-
RAT (Ling et al., 2017), Dolphin18K (Huang
et al., 2016), Math23K (Wang et al., 2017),
MathQA (Amini et al., 2019) which contain a math-
ematical question expressed in natural language
and an answer. Benchmarks which aim to evaluate
the general abilities of LLMs like BIG-bench, have
also incorporated numerical reasoning tasks such
as arithmetic questions or unit conversion (Srivas-
tava and et al., 2022). To solve these problems a
model needs to perform certain necessary calcula-
tions to arrive at the answer. Typically the value
of the numbers provide no information to help dis-
ambiguate the derivation of the solution and can be
treated symbolically. One key aspect of these tasks
is that there exists no ambiguity in the answer.

4.2 Commonsense Reasoning
Another area of research has focused on cloze-style
prediction of numbers in textual contexts. Certain
works have limited the output space of numbers
to small ranges (Lin et al., 2020), their exponent
value (Chen et al., 2019) whilst others have aimed

to produce distributions over the entire real number
line (Spithourakis and Riedel, 2018; Spokoyny and
Berg-Kirkpatrick, 2020). As opposed to the pre-
vious section, these tasks commonly do not have
a correct answer but are ambiguous. A great ad-
vantage of numerical cloze-style reasoning is the
ubiquity of available data in different forms and do-
mains. However, it is difficult to measure progress
and interpret the evaluation metrics such as likeli-
hood for these types of commonsense tasks.

There are other NLP tasks which have concen-
trated on the difficulties that arise when numbers
are present in a text. Ravichander et al. (2019)
proposed EQUATE, a benchmark quantitative rea-
soning in natural language inference while other
works have focused on quantity entailment (Roy
et al., 2015). Dubey et al. (2019) built a dataset
where the numerical values were useful to predict
the sentiment of sarcastic tweets. Sundararaman
et al. (2022) proposed a classification task of num-
bers into entities (Count, Size, Year, Percentage,
Date, Age), while similar work has considered the
problem of solving numeric Fused-Heads (Elazar
and Goldberg, 2019). Our work on the correlation
task focuses on a particular relationship between
two quantities in text. However there are others po-
tential relationships between numbers in text that
could be explored such as causation.

5 Conclusion

We introduced a new task of predicting numerical
correlation in text and build an annotated dataset to
evaluate models on this task. Using this dataset we
show that pretrained language models have poor
performance on this task and that current methods
to add numerically aware pretraining to models are
not effective. We identified that there exists a large
gap between human performance and the best su-
pervised model. In the future we hope to expand
our annotation to include the slope of the correla-
tion. We believe that predicting both the slope and
correlation type of two numbers can be improve in-
terpretability in numerical question answering and
commonsense reasoning applications. In future
work we also plan to expand the dataset to cap-
ture numerical correlation relationships in longer
chunks of text such as paragraphs and documents.
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Figure 5: Instructions given to the labellers for the qualification task.

# Ex Text Label

1. I wear my nike shoes out in only **3** months because the soles are only **1/2** an inch thick. Positive
2. To cook a 20 lb turkey place in the oven for **2** hours at **435** degrees. Negative
3. Jordan trained for his race by running **5** miles at a pace of **10** mph. Negative
4. The president travels on average **thirty** times a year on Air Force one a Boeing **747**. No Relationship
5. My house has **2** bedrooms and is **1800** square feet. Positive
6. Blackthorn was one of **39** original **180** feet seagoing buoy tenders built between 1942-1944. No Relationship
7. The family bought a **two** ton pickup truck with 180 hp and a fuel efficiency of **25** miles per gallon. Negative
8. My subaru has a **4** cylinder and **150** horse power enginer. Positive
9. Like all Type UB III submarines UB-102 carried **10** torpedoes and was armed with a **10** cms deck gun. No Relationship
10. The Triple Crown of Canoe Racing consists of three separate marathon races with a total distance of **308** miles over **5** days of racing. Positive

Table 2: The ten examples used to qualify AMTworkers.
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Abstract

Transformer-based language models are able
to capture several linguistic properties such
as hierarchical structures like dependency or
constituency trees. Whether similar structures
for mathematics are extractable from language
models has not yet been explored. This work
aims to probe current state-of-the-art mod-
els for the extractability of Operator Trees
from their contextualized embeddings using
the structure probe designed by (Hewitt and
Manning, 2019). We release the code and our
data set for future analyses1.

1 Introduction

Transformer-based Language Models have not only
a high impact on all domains in Natural Language
Understanding but also on related fields that be-
sides natural language try to model artificial lan-
guages such as programming code or mathemat-
ical notation written in LATEX (Feng et al., 2020;
Peng et al., 2021). The knowledge or linguistic
properties that models like BERT or RoBERTa
capture have been the subject of several studies:
According to recent research, BERT encodes infor-
mation about part-of-speech tags, roles, and syntac-
tic features such as constituency and dependency
trees (Rogers et al., 2020). Since transformer-
encoder-based models were applied successfully
for mathematical question answering or notation
prediction (Reusch et al., 2022b; Jo et al., 2021),
these models must have also acquired mathematical
knowledge. However, the field of interpretability
for mathematical information has not been a topic
of research so far. Therefore, this work aims to
analyze the prevalence of one type of mathematical
knowledge: Operator Trees, a type of parse trees
that can be generated from LATEX formulas.

Generally, whether a model encodes a certain
property is evaluated by applying a probe, i.e., a

1https://github.com/AnReu/
extracting-opts

classifier that is trained on top of the contextualized
embeddings. The performance of this classifier is
used as an indicator whether the information about
the property was encoded in the contextualized
embeddings. To analyze whether it is possible to
reconstruct an Operator Tree from the contextual-
ized embeddings of a transformer-encoder model,
we apply the structural probe introduced by (He-
witt and Manning, 2019). This probe approximates
the distance between nodes in the trees using the
distance of two embeddings.

In total, we train the structural probe on the em-
beddings of each layer of nine models for math and
science and show that in most cases it is possible to
reconstruct Operator Trees from the models’ con-
textualized embeddings. The highest correlation
between the learned tree distance and the gold stan-
dard is reached in the middle layers, e.g., around
layer 6 for models based on bert-base and roberta-
base. As Hewitt et al. also found for dependency
trees, most models follow a similar pattern of infor-
mation spreading among layers.

2 Related Work

Within the last years, several transformer-encoder-
based models for mathematics have been developed
with different applications in mind. The recent
ARQMath Lab 3 (Mansouri et al., 2022) included
several teams that applied models pre-trained on
math: MIRMU used mathBERTa, a model based on
roberta-base (Novotnỳ and Štefánik, 2022; Geletka
et al., 2022), (Reusch et al., 2022a) adapted albert-
base-v2 and roberta-base for math, and (Zhong
et al., 2022) further pre-trained a BERT model. In
ARQMath Lab 1, the team PSU also released a
further pre-trained model based on RoBERTa (Ro-
hatgi et al., 2020). In addition, (Jo et al., 2021)
fine-tuned a BERT model for notation prediction
tasks based on scientific documents. MathBERT
(Peng et al., 2021) leverages operator trees during
pre-training for several tasks such as formula topic
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classification and information retrieval. Related to
mathematics is also the domain of scientific doc-
uments for which SciBERT was trained (Beltagy
et al., 2019).

However, little is known so far about what
BERT-based models learn about mathematics. In
contrast, their learning capacities on natural lan-
guage received large attention in recent research
(for a survey see (Rogers et al., 2020)). Several
probes and classifiers were employed to analyze
whether BERT captures grammatical structures like
dependency or constituency trees (Tenney et al.,
2019; Hewitt and Manning, 2019; Coenen et al.,
2019) or which layer attends to which linguistic
feature (Clark et al., 2019). Visual frameworks
like bertviz by (Vig, 2019) support the analysis of
BERT’s inner working by visualizing the attention
weights of trained models. Also ALBERT was
shown to capture part-of-speech tags in different
places as reported by (Chiang et al., 2020), but
most studies were performed using BERT.

3 Probing for Mathematical Structures

We analyze whether it is possible to reconstruct
mathematical parse trees from the models’ contex-
tualized embeddings. It was already shown that
BERT is able to learn grammatical structures of
natural languages which could be extracted in the
form of constituency and dependency trees (Tenney
et al., 2019; Hewitt and Manning, 2019). There-
fore, we apply the same type of probe to test for
Operator Trees.

3.1 Structural Probe
The goal of the structural probe as introduced
by (Hewitt and Manning, 2019) is to learn a
matrix B, such that the distance dB defined by
dB(Ui, Uj) :=

√
(Ui − Uj)TBTB(Ui − Uj) ap-

proximates a given tree distance dT , i.e., the length
of the path between the node of word si and the
one of word sj in the tree of example s. Ui and Uj
are the contextualized embeddings of the words si
and sj in s. B is learned by minimizing the loss
function over each examples s ∈ S in the training
corpus:

min
B

∑

s∈S

1

|s|2
∑

i,j

|dT (si, sj)− dB(Ui, Uj)|

Originally, Hewitt et al. applied the structural probe
to demonstrate that dependency structures of the
English language are, to some extent, contained in

=

\frac

ˆ

2 v

r

\mathrm

m

Figure 1: Operator Tree of the formula m = r
v2

BERT’s contextualized embeddings. In this work,
we will train a structure probe to evaluate whether
the models’ inner workings have learned about
mathematical structures, i.e., operator trees.

3.2 Operator Trees

Formulas possess a hierarchical structure, which is
encoded in Content Math ML 2, defining an opera-
tor tree (OPT). An example OPT for the equation
m = r

v2
is shown in Fig. 1. Nodes of this tree rep-

resentation can be individual or multiple symbols
such as numbers, variables, text fragments indi-
cating certain functions, fractions, radicals, LATEX
style expressions, or parentheses and brackets. This
definition is similar to the one found in (Mansouri
et al., 2019), but we added parentheses and brack-
ets to investigate the way the models capture open
and closed bracket relationships. OPT edges in-
dicate an operator-argument relationship between
parent and child nodes. Left and right brackets
and parentheses have each an edge to the parent
of the tree inside them. LATEX style expressions
like \mathbb can be simply seen as an operator
applied on the argument inside. Hence, the original
OPT stays intact.

4 Experimental Setup

We evaluated in total 13 models which are publicly
available on the Huggingface Model Hub3. We
chose the eight mathematical models by searching
the Model Hub for transformer-encoder models that
were (further) pre-trained on mathematics. We also
added the popular model SciBERT as its domain,
science, is close to mathematics. In addition, the
four models which served as a base for pre-training
were evaluated. A summary of the models can be
found in Tab. 1. Of particular interest would have
been an evaluation of MathBERT by (Peng et al.,
2021), a model that relied on Operator Trees during

2https://w3c.github.io/mathml/#contm
3https://huggingface.co/models

41

https://w3c.github.io/mathml/##contm
https://huggingface.co/models


Model Identifier Base Model Data Set

albert-base-v2 - Books and Wikipedia
AnReu/math_albert albert-base-v2 ARQMath

bert-base-cased - Books and Wikipedia
allenai/scibert-scivocab-cased - Scientific documents
AnReu/math_pretrained_bert bert-base-cased ARQMath
tbs17/MathBERT - Math text books, curricula, paper abstracts
tbs17/ MathBERT-custom - Math text books, curricula, paper abstracts

roberta-base - Books, Wikipedia, news, websites, stories
roberta-large - Books, Wikipedia, news, websites, stories
AnReu/math_pretrained_roberta roberta-base ARQMath
shauryr/arqmath-roberta-base roberta-base ARQMath
uf-aice-lab/math-roberta roberta-large Math discussion posts
witiko/mathberta roberta-base ARQMath, ArXiv documents

Table 1: Summary of the evaluated models, their base models and the data sets used for pre-training.

pre-training. However, neither the model nor the
code are publicly available.

BERT, ALBERT and RoBERTa were trained on
a general natural language corpus and serve as base-
lines. Six models were further pre-trained from a
base model like BERT or RoBERTa, while three
were developed from scratch. The data sources the
models were trained on are rather diverse: Five
models use ARQMath, others use math text books,
school curricula, paper abstracts, or other discus-
sion posts apart from ARQMath. SciBERT is the
only model what was not specifically trained on
mathematical content, but on scientific publications.
All models can be found on Huggingface by using
their model identifier.

4.1 Data

Our probe is trained on formulas, which were
parsed to OPTs by a custom LATEX parser writ-
ten in Python adapted from the parser rules of the
mathematical formula search engine Approach0
(Zhong and Zanibbi, 2019; Zhong et al., 2020). We
could not use existing parsers because it is neces-
sary to associate each LATEX token with its node in
the OPT and existing parsers only output the entire
parse tree without annotation of a node’s token in
the formula. We selected 50k training examples
by chance from the corpus of all formulas from
ARQMath 2020 (Mansouri et al., 2020), which
contains question and answer posts from the Q&A
community Mathematics StackExchange4. From

4https://math.stackexchange.com

the remaining set we chose 10k for development,
and an additional set of 10k as test set. The average
number of nodes in all three sets is 16.5, while the
average tree depth is 4.8. The most common node
types are variables and numbers, followed by LATEX
braces and relation symbols. Among the relation
symbols, the equal sign "=" occurs most often.

4.2 Metrics

We follow Hewitt et al. and evaluate the perfor-
mance using UUAS (Undirected Unlabeled Attach-
ment Score), which denotes the percentage of cor-
rectly identified edges in the predicted tree and, dis-
tance Spearman (DSpr.), which is determined by
first calculating the Spearman correlation between
the predicted distances dB and the gold-standard
distances dT . These correlations are then averaged
among all formulas of a fixed length. Finally, the
average across formulas of lengths 5–50 is reported
as DSpr. We decided to include both metrics since
it was shown that their scores can result in opposite
trends (Hall Maudslay et al., 2020).

4.3 Setup

To train and evaluate the probing classifier, we used
the original code provided by Hewitt et al.5 and
adapted it to the transformers library6. We used the
L1 loss and a maximum rank of the probe of 768,
as reported by the authors. We trained the probes

5https://github.com/john-hewitt/
structural-probes

6https://pypi.org/project/
transformers/
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using one A100 GPU with 40 GB GPU memory.
Depending on the base model, the training of a
probe took between 15 min and 1.5h. Each model
was trained on five different random seeds.

5 Results

Tab. 2 summarizes the highest values from all lay-
ers. We report our results using UUAS and DSpr.
where higher values indicate a larger percentage
of correctly reconstructed edges and a higher cor-
relation between the predicted and gold-distances,
respectively. Each value is the mean of the five
runs. It is visible that almost all adapted models
improve over their natural language baselines. The
highest performance overall is demonstrated by An-
Reu/math_pretrained_bert. Only the performance
of MathBERT-custom drops in comparison to bert-
base-cased. The DSpr. scores of the best models
in comparison to their baselines are visualized in
Fig. 2.

In general, the models pre-trained on ARQMath
demonstrated a better performance across both met-
rics compared to models pre-trained on other data
sets. A possible reason could be that this data set
contains a large variety of formulas written in LATEX
while this is unclear for the other data sets since
they are not publicly available. We validated these
results also using a second OPT data set based on
the MATH data set (Hendrycks et al., 2021), which
contains formulas written in LATEXextracted from
competition math problems. Since there was no
drop in performance among the models pre-trained
on ARQMath, we can conclude that models did not
benefit from the overlap between the pre-training
data and the probing formulas.

BERT and RoBERTa-based models show that
the best extractability for Operator Trees lies in the
middle layers, between layer 4 and 7 for base mod-
els and between layer 9 and 13 for large models.
This pattern is consistent with the results reported
by Hewitt et al. for dependency structures. Notably,
the same pattern does not emerge for ALBERT and
AnReu/math_albert. Here, the highest scores are
in layers 2 and 3. Overall, the scores for both
ALBERT-based models are significantly lower,
even after training on ARQMath. Interestingly,
this model was among the best for the ARQMath
Lab 3 on Mathematical Answer Retrieval and out-
performed also AnReu/math_pretrained_roberta,
which is the second best model for UUAS in this
study. A similar mismatch between the perfor-

Model DSpr. UUAS

albert-base-v2 0.631 (3) 0.477 (3)
AnReu/math_albert 0.680 (2) 0.513 (2)

bert-base-cased 0.713 (7) 0.532 (6)
allenai/

scibert-scivocab-cased
0.727 (7) 0.545 (7)

AnReu/
math_pretrained_bert

0.815 (7) 0.700 (6)

tbs17/MathBERT 0.718 (6) 0.550 (5)
tbs17/
MathBERT-custom

0.686 (5) 0.530 (5)

roberta-base 0.703 (5) 0.526 (5)
roberta-large 0.706 (9) 0.536 (13)
AnReu/
math_pretrained_roberta

0.746 (5) 0.576 (5)

shauryr/
arqmath-roberta-base

0.715 (5) 0.541 (4)

uf-aice-lab/
math-roberta

0.711 (9) 0.547 (11)

witiko/mathberta 0.752 (5) 0.574 (5)

Table 2: Results of reconstruction of OPTs using UUAS
and DSpr., displaying only the best results across all
layers, best layer indicated by (layer number).

mance in downstream natural language tasks and
syntactic parsing was also found by (Glavaš and
Vulić, 2021). Therefore, this finding casts a doubt
on whether the models rely on their OPT knowl-
edge when solving the downstream task of Mathe-
matical Answer Retrieval. However, the limitations
of probing classifiers as the one used in this work
do not allow conclusions about the models usage
of the knowledge. Hence, further research in this
direction is required to investigate whether and
how these models use structural knowledge during
downstream tasks. In addition, Appendix A shows
examples of reconstructed Operator Trees, while
Appendix B contains the mean scores and standard
deviation for each model in each layer.

6 Conclusion

This work aims to answer the question: Are Oper-
ator Trees extractable from the models’ contextu-
alized embeddings? We trained a structural probe
that learns to approximate the distances between
nodes in the trees. The results show that models
(further) pre-trained on mathematical data sets out-
perform their natural language baselines. The high
correlation of the trained probe suggests that the
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Figure 2: Results of reconstruction of OPTs across lay-
ers of the best models and all baselines, results for DSpr.,
the same pattern emerges for UUAS.

models indeed encode useful information about
Operator Trees in their contextualized embeddings.
Given that the models have never been trained on
Operator Trees, but only using masked-language
modeling on string-based representation such as
LATEX, explicitly proving Operator Trees during a
downstream task such as Mathematical Retrieval
might not even be necessary.

Furthermore, we notice differences between
model classes: While BERT and RoBERTa-based
models demonstrate a higher extractability for the
structural probe, both ALBERT-based models fall
behind. In contrast, their performance on mathe-
matical answer retrieval is on par with the other
evaluated models. Further research is required to
investigate this issue. We are open to offer other
researchers the re-use of our work by making our
source code and data set fully publicly available on
GitHub7.
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A Examples of Reconstructed Operator Trees
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Figure 3: Operator Trees calculated from the predicted squared distances between the tokens. The black edges
above each formula are the gold edges from the OPT parser, while the red edges are the predicted ones by each
model, taken from one seed of the best layer by DSpr. In a large majority of cases the models correctly identified
the edges of the displayed formula. Most differences can be seen from the second part of the left hand side of the
equation, where the models mostly struggle with the parent-child relationships of the equal sign.
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B Results for all layers

bert-base-cased tbs17/MathBERT tbs17/MathBERT-custom

mean stdev mean stdev mean stdev

0 0.6525 0.00126 0.6455 0.00040 0.6468 0.00058
1 0.6759 0.00116 0.6481 0.00110 0.6492 0.00035
2 0.6851 0.00075 0.6540 0.00084 0.6530 0.00078
3 0.6949 0.00078 0.6834 0.00047 0.6785 0.00080
4 0.7008 0.00045 0.7047 0.00083 0.6824 0.00049
5 0.7082 0.00027 0.7145 0.00036 0.6863 0.00073
6 0.7106 0.00019 0.7175 0.00036 0.6832 0.00009
7 0.7134 0.00037 0.7092 0.00044 0.6772 0.00024
8 0.7121 0.00042 0.6987 0.00026 0.6703 0.00016
9 0.7079 0.00033 0.6842 0.00028 0.6609 0.00027
10 0.6965 0.00013 0.6646 0.00021 0.6531 0.00031
11 0.6759 0.00046 0.6495 0.00026 0.6425 0.00031

allenai/scibert_scivocab_cased AnReu/math_pretrained_bert

0 0.6578 0.00094 0.7167 0.00020
1 0.6835 0.00122 0.7639 0.00032
2 0.6962 0.00110 0.7848 0.00041
3 0.7061 0.00033 0.7985 0.00030
4 0.7200 0.00040 0.8015 0.00011
5 0.7263 0.00046 0.8070 0.00017
6 0.7267 0.00009 0.8110 0.00005
7 0.7261 0.00016 0.8154 0.00012
8 0.7150 0.00063 0.8116 0.00006
9 0.6938 0.00008 0.8007 0.00018
10 0.6792 0.00019 0.7839 0.00008
11 0.6764 0.00031 0.7647 0.00010

Table 3: DSpr. Results of BERT, BERT-based and similar models.
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bert-base-cased tbs17/MathBERT tbs17/MathBERT-custom

mean stdev mean stdev mean stdev

0 0.4585 0.00169 0.4832 0.00113 0.4891 0.00053
1 0.4947 0.00107 0.4845 0.00129 0.4927 0.00061
2 0.5109 0.00068 0.4845 0.00059 0.4929 0.00043
3 0.5178 0.00027 0.5171 0.00028 0.5162 0.00049
4 0.5216 0.00059 0.5393 0.00051 0.5255 0.00074
5 0.5315 0.00064 0.5496 0.00037 0.5300 0.00059
6 0.5323 0.00019 0.5491 0.00039 0.5248 0.00044
7 0.5321 0.00053 0.5363 0.00038 0.5169 0.00050
8 0.5283 0.00040 0.5202 0.00043 0.5074 0.00042
9 0.5221 0.00051 0.5017 0.00018 0.4973 0.00045
10 0.5032 0.00018 0.4756 0.00022 0.4854 0.00038
11 0.4779 0.00035 0.4560 0.00028 0.4725 0.00034

allenai/scibert_scivocab_cased AnReu/math_pretrained_bert

0 0.4655 0.00036 0.5458 0.00069
1 0.4984 0.00150 0.6336 0.00054
2 0.5151 0.00103 0.6686 0.00034
3 0.5244 0.00037 0.6825 0.00030
4 0.5363 0.00038 0.6790 0.00043
5 0.5450 0.00038 0.6920 0.00032
6 0.5421 0.00066 0.7000 0.00043
7 0.5453 0.00018 0.6952 0.00041
8 0.5308 0.00087 0.6852 0.00043
9 0.5101 0.00036 0.6694 0.00046
10 0.4925 0.00033 0.6415 0.00030
11 0.4865 0.00038 0.6028 0.00046

Table 4: UUAS Results of BERT, BERT-based and similar models.

albert-base-v2 AnReu/math_albert

mean stdev mean stdev

0 0.6192 0.00072 0.6693 0.00017
1 0.6290 0.00133 0.6783 0.00022
2 0.6279 0.00039 0.6805 0.00043
3 0.6312 0.00030 0.6791 0.00024
4 0.6310 0.00049 0.6759 0.00015
5 0.6291 0.00029 0.6743 0.00031
6 0.6255 0.00067 0.6706 0.00014
7 0.6221 0.00082 0.6649 0.00017
8 0.6168 0.00053 0.6583 0.00017
9 0.6115 0.00041 0.6516 0.00041
10 0.6028 0.00037 0.6397 0.00033
11 0.5919 0.00040 0.5991 0.00025

(a) DSpr. Results

albert-base-v2 AnReu/math_albert

mean stdev mean stdev

0 0.4620 0.00128 0.5095 0.00039
1 0.4727 0.00132 0.5130 0.00040
2 0.4746 0.00054 0.5125 0.00025
3 0.4771 0.00055 0.5127 0.00038
4 0.4742 0.00063 0.5090 0.00032
5 0.4747 0.00059 0.5062 0.00023
6 0.4699 0.00088 0.5030 0.00062
7 0.4652 0.00091 0.4975 0.00048
8 0.4563 0.00070 0.4891 0.00032
9 0.4470 0.00049 0.4811 0.00024
10 0.4343 0.00088 0.4671 0.00056
11 0.4144 0.00075 0.4082 0.00046

(b) UUAS Results

Figure 4: Results of ALBERT and math albert.
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roberta-base
shauryr/
arqmath-roberta-base

witiko/mathberta
AnReu/
math_pretrained_roberta

mean stdev mean stdev mean stdev mean stdev
0 0.6066 0.00085 0.6219 0.00054 0.6051 0.00024 0.6179 0.00036
1 0.6561 0.00022 0.6682 0.00048 0.6824 0.00065 0.6917 0.00038
2 0.6691 0.00039 0.6841 0.00049 0.7123 0.00117 0.7195 0.00057
3 0.6840 0.00044 0.7014 0.00085 0.7363 0.00043 0.7345 0.00038
4 0.6930 0.00027 0.7114 0.00045 0.7475 0.00021 0.7422 0.00027
5 0.7025 0.00026 0.7146 0.00027 0.7519 0.00065 0.7464 0.00030
6 0.6986 0.00053 0.7102 0.00019 0.7487 0.00069 0.7409 0.00005
7 0.6937 0.00067 0.7038 0.00015 0.7501 0.00022 0.7366 0.00041
8 0.6881 0.00093 0.6997 0.00027 0.7456 0.00035 0.7331 0.00020
9 0.6843 0.00058 0.6961 0.00018 0.7399 0.00015 0.7274 0.00027
10 0.6677 0.00061 0.6798 0.00050 0.7207 0.00020 0.7094 0.00026
11 0.6538 0.00036 0.6616 0.00031 0.7049 0.00034 0.6942 0.00024

Table 5: DSpr. Results of RoBERTa-base and small RoBERTA-based models.

roberta-base
shauryr/
arqmath-roberta-base

witiko/mathberta
AnReu/
math_pretrained_roberta

mean stdev mean stdev mean stdev mean stdev
0 0.4456 0.00127 0.4619 0.00044 0.4268 0.00078 0.4543 0.00068
1 0.4825 0.00042 0.5010 0.00083 0.5086 0.00068 0.5296 0.00084
2 0.4988 0.00053 0.5184 0.00053 0.5388 0.00065 0.5477 0.00095
3 0.5187 0.00015 0.5352 0.00059 0.5618 0.00065 0.5690 0.00063
4 0.5224 0.00042 0.5414 0.00061 0.5732 0.00027 0.5731 0.00043
5 0.5255 0.00041 0.5378 0.00017 0.5742 0.00084 0.5759 0.00026
6 0.5172 0.00053 0.5358 0.00026 0.5687 0.00057 0.5672 0.00024
7 0.5088 0.00035 0.5247 0.00059 0.5692 0.00038 0.5591 0.00029
8 0.5106 0.00033 0.5311 0.00061 0.5704 0.00055 0.5599 0.00026
9 0.5091 0.00057 0.5324 0.00016 0.5659 0.00025 0.5590 0.00041
10 0.4899 0.00032 0.5167 0.00033 0.5471 0.00043 0.5411 0.00027
11 0.4713 0.00051 0.4902 0.00030 0.5294 0.00035 0.5238 0.00037

Table 6: UUAS Results of RoBERTa-base and small RoBERTa-based models.
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roberta-large
uf-aice-lab/
math-roberta

mean stdev mean stdev

0 0.61374 0.00029 0.61387 0.00051
1 0.62816 0.00057 0.62524 0.00068
2 0.65153 0.00077 0.65213 0.00080
3 0.66078 0.00116 0.66054 0.00058
4 0.67341 0.00050 0.67043 0.00083
5 0.68048 0.00111 0.68125 0.00034
6 0.68313 0.00044 0.68719 0.00052
7 0.68996 0.00057 0.69613 0.00054
8 0.69757 0.00072 0.70321 0.00068
9 0.70602 0.00058 0.71079 0.00046
10 0.70484 0.00029 0.70922 0.00043
11 0.70425 0.00061 0.70943 0.00068
12 0.70255 0.00106 0.70796 0.00041
13 0.70144 0.00057 0.70940 0.00042
14 0.69807 0.00035 0.70646 0.00044
15 0.69522 0.00046 0.70268 0.00048
16 0.69463 0.00012 0.70220 0.00032
17 0.69444 0.00023 0.70017 0.00025
18 0.68966 0.00009 0.69823 0.00025
19 0.68492 0.00029 0.69437 0.00014
20 0.68087 0.00036 0.69277 0.00027
21 0.67582 0.00035 0.69129 0.00012
22 0.66197 0.00051 0.68796 0.00057
23 0.64475 0.00056 0.68602 0.00082
24 0.62023 0.00042 0.66011 0.00017

(a) DSpr. Results

roberta-large
uf-aice-lab/
math-roberta

mean stdev mean stdev

0 0.44171 0.000279 0.44210 0.000778
1 0.45419 0.001066 0.45024 0.001192
2 0.48857 0.000532 0.48968 0.001104
3 0.50158 0.000647 0.50030 0.000336
4 0.52109 0.000171 0.51772 0.000599
5 0.51957 0.001377 0.52384 0.000602
6 0.51196 0.000350 0.52088 0.000902
7 0.52005 0.000604 0.52933 0.000500
8 0.52343 0.001005 0.53698 0.000465
9 0.53249 0.000754 0.54388 0.000493
10 0.53287 0.000664 0.54576 0.000411
11 0.53620 0.000540 0.54715 0.000436
12 0.53255 0.001094 0.54254 0.000349
13 0.53622 0.000277 0.54502 0.000427
14 0.52932 0.000924 0.53911 0.000366
15 0.52427 0.000548 0.53527 0.000632
16 0.52411 0.000432 0.53579 0.000367
17 0.52099 0.000341 0.53276 0.000112
18 0.51146 0.000397 0.52748 0.000328
19 0.50598 0.000293 0.52150 0.000432
20 0.50340 0.000510 0.52375 0.000435
21 0.49970 0.000665 0.52158 0.000291
22 0.48542 0.000576 0.52027 0.000370
23 0.47364 0.000890 0.52066 0.000748
24 0.44753 0.000611 0.49027 0.000578

(b) UUAS Results

Figure 5: Results of RoBERTa-large and uf-aice-lab/math-roberta.
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Abstract

The advances in language-based Artificial In-
telligence (AI) technologies applied to build ed-
ucational applications can present AI for social-
good opportunities with a broader positive im-
pact. Across many disciplines, enhancing the
quality of mathematics education is crucial in
building critical thinking and problem-solving
skills at younger ages. Conversational AI sys-
tems have started maturing to a point where
they could play a significant role in helping stu-
dents learn fundamental math concepts. This
work presents a task-oriented Spoken Dialogue
System (SDS) built to support play-based learn-
ing of basic math concepts for early childhood
education. The system has been evaluated via
real-world deployments at school while the stu-
dents are practicing early math concepts with
multimodal interactions. We discuss our ef-
forts to improve the SDS pipeline built for math
learning, for which we explore utilizing Math-
BERT (Shen et al., 2021b) representations for
potential enhancement to the Natural Language
Understanding (NLU) module. We perform
an end-to-end evaluation using real-world de-
ployment outputs from the Automatic Speech
Recognition (ASR), Intent Recognition, and
Dialogue Manager (DM) components to under-
stand how error propagation affects the overall
performance in real-world scenarios.

1 Introduction

Following the advances in Artificial Intelligence
(AI) research, building innovative applications to
support education can present exciting opportu-
nities with a positive and broader social impact.
The United Nations (UN) Sustainable Development
Goals1 (SDGs) (Desa et al., 2016) represent an ur-
gent call for action to help address critical global
problems, where education is among the top five
of these development areas (i.e., poverty, hunger,
health, education, gender equality). Across many

1https://sdgs.un.org/goals

disciplines, improving the quality of mathematics
education is crucial in building critical thinking and
problem-solving skills at younger ages, which is
a fundamental component of comprehensive and
successful STEM education (i.e., science, technol-
ogy, engineering, and mathematics). Language-
based AI systems are starting to mature to a point
where they could play a significant role in help-
ing students learn and practice mathematical con-
cepts. Despite its importance, applied Natural Lan-
guage Processing (NLP) technologies for enhanc-
ing mathematics education still remain a highly
under-explored area of research.

This study presents a task-oriented Spoken Di-
alogue System (SDS) developed to facilitate play-
based learning of basic mathematical concepts for
early childhood education. The system has been
developed in the lab and evaluated via real-world
deployments at school while the students are learn-
ing and practicing basic math concepts with multi-
modal interactions. These fundamental early math
concepts and basic operations include constructing
numbers using ones and tens, counting, addition,
subtraction, measurement of length and size, etc.
The multimodal interactions involve speech-based
interactions to answer early math-related or game-
related questions, counting and placing learning-
specific tangible objects (i.e., manipulatives) in a
visually observed space, touch-based interactions
with the 1-to-100 number grid projected on the
wall, to name a few.

This work discusses our efforts to improve the
modular SDS pipeline built for game-based math
learning and perform an end-to-end evaluation with
various SDS components using real-world deploy-
ment outputs. The main SDS module we focus on
investigating is Natural Language Understanding
(NLU). The NLU arguably is the most critical com-
ponent of goal-oriented dialogue systems that en-
ables efficient communication between humans and
intelligent conversational agents via application-
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specific comprehensive sub-tasks. Intent Recogni-
tion (IR) is at the heart of these NLU tasks, where
the goal is to identify users’ objectives from the
input text and determine their intentions.

The representation of human language is a cru-
cial factor determining the success of conversa-
tional agents, especially in real-world applications.
In the math learning domain, this language rep-
resentation gains further significance due to the
quite peculiar nature of mathematical language.
With that motivation, we explored employing Math-
BERT (Shen et al., 2021b) representations for po-
tential enhancement to the NLU module of our
play-based math-learning system. MathBERT is a
recently proposed language model created by pre-
training the well-known BERT-base model (Devlin
et al., 2019) on a large mathematical corpus. We
compared the NLU results obtained by simply us-
ing BERT (Devlin et al., 2019) and ConveRT (Hen-
derson et al., 2020) representations versus the new
MathBERT representations. We further investi-
gated the two variations of MathBERT models, one
pre-trained with mathematics-specific vocabulary
and the other with BERT-base vocabulary, to see
their effects on our domain-specific math-learning
NLU task.

As most of the application-specific and modu-
lar SDS pipelines do, our task-oriented SDS con-
tains particular building blocks or modules for Au-
tomatic Speech Recognition (ASR), Natural Lan-
guage Understanding (NLU), multimodal Dialogue
Management (DM), Natural Language Generation
(NLG), and Text-to-Speech (TTS). At its current
stage of research & development, for practical
reasons, we employ template-based responses at
the NLG module with off-the-shelf TTS. Thus,
this study emphasizes more on speech recognition
(ASR), intent understanding (NLU), and response
selection (DM) tasks for a conversational agent that
supports elementary math learning. For a complete
end-to-end evaluation of our task-oriented SDS,
we evaluated the ASR, NLU, and DM components
to understand how error propagation affects the
overall performance in real-world scenarios.

2 Related Work

2.1 NLP for Mathematics Education

Exploring the advancements in AI systems for so-
cial good and positive impact in the education
domain, specifically to amplify students’ learn-
ing experiences, has recently gained increasing

interest from the research community (D’Mello
and Graesser, 2013; Chassignol et al., 2018; Jia
et al., 2020; Baker, 2021; Zhai et al., 2021). In-
telligent and interactive play-based learning sys-
tems have shown remarkable benefits for teaching
mathematical concepts in smart and collaborative
spaces (Lester et al., 2013; Pires et al., 2019; Richey
et al., 2021; Sun et al., 2021). For early childhood
education, a recent study by Skene et al. (2022) has
showcased that game-based learning environments
can offer significant advantages over traditional
learning approaches while practicing fundamental
math concepts, especially for younger learners.

Harnessing NLP technologies to construct inno-
vative applications for education is gaining popular-
ity as an emerging area of research having various
examples in the last decade (Blanchard et al., 2015;
Lende and Raghuwanshi, 2016; Taghipour and Ng,
2016; Raamadhurai et al., 2019; Cahill et al., 2020;
Chan et al., 2021; Dutta et al., 2022). Within those
efforts, exploring conversational agents for intel-
ligent tutoring systems and smart education appli-
cations is a glaring sub-field of NLP in education,
having several research studies tackling the prob-
lem from different angles (Graesser et al., 2004;
Kerry et al., 2009; Winkler and Söllner, 2018; Pala-
sundram et al., 2019; Winkler et al., 2020; Datta
et al., 2020; Zhang et al., 2021).

Furthermore, there have been recent attempts to
bridge the gap between general AI research and
mathematics education (Davila and Zanibbi, 2017;
Jiang et al., 2018; Mansouri et al., 2019; Yuan
et al., 2020; Huang et al., 2021; Kumar and Ra-
jagopal, 2021). To further narrow our attention
to language-based technologies applied to math-
ematics education, relatively few recent studies
exist (Shen et al., 2021a; Suresh et al., 2022; Logi-
nova and Benoit, 2022) which explore transfer
learning to improve language representation for
math-related tasks (Peng et al., 2021; Shen et al.,
2021b). Among these, MathBERT (Shen et al.,
2021b) has been built specifically for challenging
downstream NLP tasks in math education (e.g.,
knowledge component prediction, auto-grading
open-ended question-answering, and knowledge
tracing). It is indeed a mathematics-customized
BERT model (Devlin et al., 2019). MathBERT rep-
resentations are created by pre-training the BERT-
base model on large mathematical corpora, includ-
ing pre-kindergarten, to high-school and college
graduate-level mathematical text.
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2.2 Dialogue Systems and NLU

For interactive early math learning applications,
as we aim to build a spoken dialogue system for
kids, we will briefly discuss the existing dialogue
system technologies and language understanding
approaches in a more generic context here.

Conversational agents or dialogue systems are
mainly categorized as either open-ended or task-
oriented (Chen et al., 2017). The open-ended di-
alogue systems or chatbots allow generic conver-
sations such as chit-chat (Serban et al., 2016; Ju-
rafsky and Martin, 2018). On the other hand, task-
oriented conversational AI systems are designed to
accomplish specific tasks and handle goal-oriented
conversations (Serban et al., 2018; Mehri et al.,
2020). With the advances of deep learning-based
language technologies, improved access to high
computing power, and increased availability of
large datasets; the end-to-end trained dialogue sys-
tems can achieve encouraging results for both open-
ended (Serban et al., 2016; Dodge et al., 2016)
and task-oriented (Wen et al., 2017; Bordes et al.,
2017; Ham et al., 2020) applications. Dialogue
Managers (DM) of task-oriented conversational AI
systems are mostly sequential decision-makers. At
that step, learning the optimal dialogue policies can
be achieved via reinforcement learning (RL) from
an excessive number of user interactions (Zhao
and Eskenazi, 2016; Shah et al., 2016; Cuayáhuitl,
2017; Dhingra et al., 2017; Liu et al., 2017; Su
et al., 2017). However, building RL-based dialogue
systems with highly limited user interaction data
is immensely challenging. For this reason, super-
vised learning methods with traditional pipeline-
based modular dialogue systems are still widely
accepted when training data is initially limited to
bootstrap the task-oriented SDS for further data
collection (Budzianowski et al., 2018). For implicit
dialogue context management, statistical and neu-
ral network-based dialogue system frameworks and
toolkits (Bocklisch et al., 2017; Ultes et al., 2017;
Burtsev et al., 2018) are employed popularly in the
research communities and industrial applications.

The NLU module of a dialogue system pipeline
processes the user utterances as input text and usu-
ally predicts the user’s intents or dialogue acts.
For sequence learning tasks of Intent Recognition
and Slot Filling (Mesnil et al., 2015; Hakkani-Tür
et al., 2016), joint training of Intent Classifica-
tion and Entity Recognition models have been ex-
plored widely (Zhang and Wang, 2016; Liu and

Lane, 2016; Goo et al., 2018; Varghese et al.,
2020). Many hierarchical multi-task learning archi-
tectures have been proposed for these joint NLU
methods (Zhou et al., 2016; Gu et al., 2017; Wen
et al., 2018; Okur et al., 2019; Vanzo et al., 2019).
Vaswani et al. (2017) proposed the Transformer
as a game-changing neural network architecture
based entirely on attention mechanisms (Bahdanau
et al., 2015). Right after the Transformers, Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) has been pro-
posed. BERT has become one of the most sig-
nificant breakthroughs in language representations
research and has shown strong performance in
several NLP tasks, including NLU. Lately, Bunk
et al. (2020) introduced the Dual Intent and Entity
Transformer (DIET) model as a lightweight multi-
task architecture. DIET has been shown to outper-
form fine-tuning the BERT model for predicting in-
tents and entities on a complex multi-domain NLU-
Benchmark dataset (Liu et al., 2021). For efficient
language representation learning, Henderson et al.
(2020) recently proposed the Conversational Rep-
resentations from Transformers (ConveRT) model,
which is another lightweight approach to obtain pre-
trained embeddings as sentence representations suc-
cessfully used in several conversational AI tasks.

3 Language Understanding Methods

For the NLU module within our early math-
learning dialogue system pipeline, we have exam-
ined numerous options for Intent Recognition and
built our NLU models on top of the Rasa open-
source framework (Bocklisch et al., 2017).

3.1 Baseline: TF+BERT

The previous baseline Intent Recognition archi-
tecture available in the Rasa platform was based
on supervised embeddings as part of the Rasa
NLU (Bocklisch et al., 2017). It was an embedding-
based text classifier that embedded user utter-
ances and intent labels into the same vector space.
This former baseline architecture was inspired
by the StarSpace algorithm (Wu et al., 2018),
where the supervised embeddings were trained
by maximizing the similarity between intents and
utterances. Sahay et al. (2019) enriched this
embedding-based former baseline Rasa Intent Clas-
sifier by incorporating additional features and
adapting alternative network architectures. To be
more specific, they adapted the Transformer ar-
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chitecture (Vaswani et al., 2017) and employed
pre-trained BERT embeddings (Devlin et al., 2019)
using the bert-base-uncased 2 model for Intent
Recognition. We treat this simple and initial ap-
proach as our baseline NLU model in this study.
We will refer to this method as TF+BERT in our
experiments.

3.2 DIET+BERT
Next, we explored the potential benefits of adopt-
ing the recent DIET architecture (Bunk et al., 2020)
for the Intent Recognition task in the basic math-
learning domain. DIET is a transformer-based
multi-task architecture for joint Intent Classifica-
tion and Entity Recognition. The architecture in-
cludes a two-layer transformer shared for both
NLU tasks. A sequence of entity labels is predicted
with a Conditional Random Field (CRF) (Lafferty
et al., 2001) tagging layer on top of the transformer
output sequence corresponding to the input sen-
tences treated as a sequence of tokens. For the
intent labels, the transformer output for the classifi-
cation token and the intent labels are embedded into
the same semantic vector space. The dot-product
loss is employed to maximize the similarity with
the target label and minimize similarities with the
negative samples. DIET architecture enables the
incorporation of the pre-trained word and sentence
embeddings from language models as dense fea-
tures, with the flexibility to combine these with
token-level one-hot and multi-hot encodings of
character n-grams as sparse features. These sparse
features are passed through a fully-connected layer
with shared weights across all sequence steps. The
output of the fully-connected layer is concatenated
with the dense features from the pre-trained mod-
els. The high flexibility of this architecture al-
lowed us to use any pre-trained embeddings as
dense features in DIET, such as BERT (Devlin
et al., 2019), ConveRT (Henderson et al., 2020),
and MathBERT (Shen et al., 2021b). To investigate
the net benefits of DIET architecture, we adopted
DIET with off-the-shelf pre-trained BERT embed-
dings using the bert-base-uncased model (De-
vlin et al., 2019) and compared that against our
baseline TF+BERT model. This approach (i.e.,
combining out-of-the-box BERT representations
with the DIET classifier) will be referred to as
DIET+BERT in the experiments3.

2https://huggingface.co/bert-base-uncased
3Refer to Bunk et al. (2020) for hyper-parameters, compu-

tational costs, and hardware specifications.

3.3 DIET+ConveRT

Conversational Representations from Transformers
(ConveRT) (Henderson et al., 2020) is a promis-
ing architecture recently proposed to learn pre-
trained representations that are well-suited for con-
versational AI applications, especially for the real-
world Intent Classification tasks. ConveRT is a
transformer-based dual-encoder network leverag-
ing quantization and sub-word level parameteriza-
tion, where the pre-trained representation outputs
from its sentence encoder can be utilized for the
conversational Intent Classification tasks. DIET
and ConveRT are both lightweight architectures
with faster and more efficient training capabilities
than their counterparts. When incorporating the
ConveRT embeddings within the DIET classifier,
the initial embeddings for the classification tokens
are set as the input sentence encoding obtained
from the ConveRT model. That enables exploiting
extra contextual information from the complete sen-
tence on top of the word embeddings. For these rea-
sons, we adopted the DIET architecture and utilized
pre-trained ConveRT embeddings to potentially im-
prove the Intent Recognition performances on our
domain-specific early math-learning datasets. We
will call this approach DIET+ConveRT in our ex-
periments.

3.4 DIET+MathBERT

Finally, a pre-trained language model named Math-
BERT (Shen et al., 2021b) has been presented
lately for downstream NLP tasks in the domain of
mathematics education. MathBERT is a BERT-like
language representation model further pre-trained
from the bert-base-uncased model with dedi-
cated mathematical corpora. Note that BERT is a
general-purpose language model trained on a vast
amount of unlabeled text corpus (i.e., Wikipedia
and BookCorpus) with 3.3 billion words, which
can be further pre-trained to obtain a new set of
model weights for transfer learning. On the con-
trary, MathBERT is pre-trained on 100 million to-
kens of mathematical corpora, including instruc-
tional texts from books, curriculum, Massive Open
Online Courses (MOOCs), and arXiv.org paper
abstracts, covering all possible grade levels from
pre-k to college graduate-level content. Although
the scale of training corpora is much smaller than
the BERT-base model, MathBERT can still have
the potential to be more effective in math-related
NLP tasks. That is hypothesized because mathe-
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Math-Game Data
Statistics Planting Watering

# Distinct Intents 14 13
Total # Samples (Utterances) 1927 2115
# Math-related Samples 452 599
Min # Samples per Intent 22 25
Max # Samples per Intent 555 601
Avg # Samples per Intent 137.6 162.7
Min # Words per Sample 1 1
Max # Words per Sample 74 65
Avg # Words per Sample 5.26 4.95
# Unique Words (Vocab) 1314 1267
Total # Words 10141 10469

Table 1: KidSpace-POC NLU Dataset Statistics

matical language frequently uses domain-specific
vocabulary and concepts that require better word
representations within the math context. With that
motivation, we utilized the publicly available Math-
BERT release 4, which includes the PyTorch and
TensorFlow versions of MathBERT models and the
tokenizers. We explored adopting the DIET archi-
tecture with pre-trained MathBERT embeddings
to empower the NLU/Intent Recognition task in
our dialogue system designed for teaching basic
math concepts. Furthermore, we investigated the
representations from the MathBERT-base model
that is trained with the BERT-base vocabulary (i.e.,
origVocab) and compared that against the represen-
tations from MathBERT-custom model pre-trained
with math-specific vocabulary (i.e., mathVocab).
This custom mathVocab set is also released to re-
flect the specific nature of mathematical jargon and
concepts used in math corpora. In our NLU ex-
periments, we will refer to these two distinct ap-
proaches as DIET+MathBERT-base (origVocab)
and DIET+MathBERT-custom (mathVocab).

4 Experimental Results

4.1 Math-Game Datasets

Our experiments are conducted on the NLU
datasets of Kid Space Planting and Watering use
cases (Anderson et al., 2018; Aslan et al., 2022),
having utterances from gamified math learning ex-
periences designed for early childhood education
(i.e., 5-to-8 years old kids). The intelligent conver-
sational agent should accurately understand these
children’s utterances and provide appropriate feed-
back. The use cases include a specific flow of inter-

4https://github.com/tbs17/MathBERT

Math-Game Data
Statistics Planting Watering

# Distinct Intents 12 11
Total # Samples (Utterances) 2173 2122
# Math-related Samples 549 602
Min # Samples per Intent 4 6
Max # Samples per Intent 1005 1005
Avg # Samples per Intent 181.1 192.9
Min # Words per Sample 1 1
Max # Words per Sample 45 44
Avg # Words per Sample 4.80 4.48
# Unique Words (Vocab) 772 743
Total # Words 10433 9508

Table 2: KidSpace-Deployment NLU Dataset Statistics

active games facilitating elementary math learning.
The FlowerPot (i.e., Planting) game builds on the
math concepts of tens and ones, with the larger
flower pots representing tens and smaller pots rep-
resenting ones. The virtual character provides the
number of flowers the children should plant, and
when the children have placed the correct number
of large and small pots against the wall, digital
flowers appear. In the NumberGrid (i.e., Watering)
game, the children are presented with basic math
questions with clues. When the correct number
is touched on the 1-to-100 number grid projected
on the wall, water is virtually poured to water the
flowers. The virtual character supports the kids
with learning to construct numbers using the ‘tens’
and ‘ones’ digits, practicing simple counting, addi-
tion, and subtraction operations. These math-game
datasets have a limited number of user utterances,
which are annotated manually for intent types de-
fined for each learning activity. Some of the in-
tents are highly generic across learning activities
(e.g., affirm, deny, next-step, out-of-scope, good-
bye), whereas others are highly domain-dependent
and game-specific (e.g., intro-meadow, answer-
flowers, answer-water, answer-valid, answer-
invalid) or math-learning/task-specific (e.g., ask-
number, counting).

The NLU models are trained and validated on
the initial proof-of-concept (POC) datasets (Sa-
hay et al., 2021) to bootstrap the agents for real-
world deployments. These POC datasets were
curated manually to train the initial SDS mod-
els based on User Experience (UX) studies. The
models are then validated on the UX sessions in
the lab with five kids going through these early
math-learning games. Table 1 shows the statistics
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Math-Game Data
Model Planting Watering

TF+BERT (baseline) 90.50±0.25 92.43±0.32

DIET+BERT 94.00±0.38 96.39±0.14
DIET+ConveRT 95.88±0.42 97.69±0.11

DIET+MathBERT-base 90.40±0.16 93.56±0.26
DIET+MathBERT-custom 90.82±0.10 93.67±0.10

Table 3: NLU/Intent Recognition micro-avg F1-
scores (%): TF+BERT (baseline), DIET+BERT,
DIET+ConveRT, DIET+MathBERT-base (origVocab),
and DIET+MathBERT-custom (mathVocab) models
trained and validated on KidSpace-POC datasets.

of these KidSpace-POC NLU datasets. Planting
and Watering game POC datasets have 1927 and
2115 user utterances, respectively. The deploy-
ment datasets were collected later from twelve kids,
where the math-learning system was deployed in a
classroom at school (Okur et al., 2022b). Table 2
shows the statistics of KidSpace-Deployment NLU
datasets, where Planting and Watering deployment
datasets have 2173 and 2122 user utterances, re-
spectively. These deployment datasets are used
only for testing purposes, where we train our NLU
models on the POC datasets. For both in-the-lab
and real-world datasets, the spoken user utterances
and agent responses are transcribed manually at
first. These transcriptions are annotated for the
user intent and agent response types we defined for
each math learning activity. These transcribed and
annotated final utterances are analyzed and used in
our experiments.

4.2 DIET Classifier with MathBERT
Representations for NLU

Tables 3 and 4 present a summary of our
NLU/Intent Recognition experimental results for
the Planting and Watering math-game use cases at
school, covering a series of task-oriented interac-
tions for early math education. On the proof-of-
concept (POC) datasets that we created for each
math-game, we achieved above 95% F1-scores for
Intent Recognition performances with our best-
performing DIET+ConveRT NLU models (see
Table 3). We trained and cross-validated these
NLU models on math-game or activity-specific
datasets having around 2K POC samples. When
we later tested these models on real-world deploy-
ment data collected at school, we observed F1-
score performance drops of around 7% with our
best-performing DIET+ConveRT models (see Ta-

Math-Game Data
Model Planting Watering

TF+BERT (baseline) 85.08±0.49 90.06±0.56

DIET+BERT 87.03±0.30 89.63±0.62
DIET+ConveRT 89.00±0.29 90.57±0.86

DIET+MathBERT-base 84.52±1.19 86.85±1.15
DIET+MathBERT-custom 85.22±0.78 87.80±1.45

Table 4: NLU/Intent Recognition micro-avg F1-
scores (%): TF+BERT (baseline), DIET+BERT,
DIET+ConveRT, DIET+MathBERT-base (origVocab),
DIET+MathBERT-custom (mathVocab) models trained
on KidSpace-POC & tested on KidSpace-Deployment
datasets.

ble 4). This performance drop is anticipated and
explainable as we operate on the noisier real-world
utterances collected from younger children in dy-
namic play-based environments.

To the best of our knowledge, this study presents
the first attempt to adopt the lightweight multi-
task DIET architecture and incorporate pre-trained
MathBERT embeddings as dense features. We
combine these MathBERT representations with
sparse word and character-level n-gram features
in a plug-and-play fashion. The motivation behind
this was empowering math domain-specific embed-
dings for the NLU task targeted at kids playing
basic math-learning games. However, we could not
observe any benefits of employing MathBERT-base
(i.e., pre-trained using origVocab of BERT-base)
or MathBERT-custom (i.e., pre-trained using cus-
tomized mathVocab) representations for the Intent
Recognition task. Although MathBERT-custom
seems to perform slightly better than MathBERT-
base as expected, the gain is insignificant and still
way lower than ConveRT and even BERT. There
could be many reasons for this, such as the possible
mismatch between our domain and advanced math-
ematical corpora (e.g., mathematical equations and
symbols) with graduate-level textbooks that Math-
BERT trained on. Compared to this, our early
childhood math education domain involves more
basic concepts and simple operations (e.g., ones
and tens, counting, adding, and subtracting). In
addition, MathBERT is pre-trained on a relatively
small set (i.e., 100M tokens) compared to the mas-
sive general-purpose corpora that the BERT mod-
els are trained on (3.3B words). ConveRT embed-
dings have already been shown to perform well on
conversational tasks such as Intent Classification,
partly because these are pre-trained on large cor-
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Math-Game # Test Samples NLU/Intent Recognition ASR+NLU
NLU Model Activity (Speech/Utterances) F1 (%) F1 (%)

DIET+ConveRT Planting 588 91.8 75.8

DIET+ConveRT Watering 664 97.4 84.7

Table 5: End-to-End (ASR + NLU/Intent Recognition) Evaluation Results on Planting and Watering Math-game
activity datasets: DIET+ConveRT models trained on KidSpace-POC datasets and tested on KidSpace-Deployment
datasets.

Math-Game #test-NLU NLU/Intent ASR+NLU #test-DM DM/Response NLU+DM ASR+NLU+DM
Activity (utterances) F1 (%) F1 (%) (responses) F1 F1 F1

Planting 184 90.5 73.3 209 0.89 0.87 0.82

Watering 346 95.2 84.4 403 0.93 0.91 0.89

Table 6: End-to-End (ASR + NLU/Intent Recognition + DM/Response Selection) Evaluation Results on Planting
and Watering Math-game activity datasets: DIET+ConveRT NLU models and TED DM models trained on KidSpace-
POC datasets and tested on KidSpace-Deployment datasets.

pora of natural conversational datasets (e.g., Reddit
conversational threads). The success of ConveRT
representations over MathBERT could also indi-
cate that our educational game datasets involve nu-
merous utterances around play-based conversations
tailored towards planting and watering flower use
cases. Compared to those, our datasets include lim-
ited interactions that directly involve numbers or
counting/addition/subtraction operations. Our in-
tent class distributions also support this observation,
where we have around 450-600 samples within ap-
proximately 2K utterances in POC datasets anno-
tated with directly math-related intents (e.g., ask-
number, counting). In the deployment datasets,
we observed around 550-600 math-related utter-
ances within a total of 2.1K samples. Nevertheless,
instead of pre-training the BERT models to cre-
ate MathBERT, one can also explore pre-training
the ConveRT model on large and more elementary
math-related corpora as the next step.

4.3 End-to-End Evaluation

Our SDS pipeline starts by recognizing user speech
via the ASR module and feeds the recognized text
into our NLU component. We developed NLU
models performing Intent Recognition to interpret
user utterances. Then we pass these user intents
together with multimodal inputs, such as user ac-
tions and objects, into the DM component. The
multimodal dialogue manager handles verbal and
non-verbal communication inputs from the NLU
(e.g., intents) and external nodes processing audio-
visual information (e.g., poses, gestures, objects,
game events, and actions). We pass these multi-

modal inputs directly to the DM in the form of
relevant multimodal intents. The Dialogue State
Tracking (DST) model tracks what has happened
(i.e., the dialogue state) within the DM. Then, the
output of DST is used by the Dialogue Policy to de-
cide which action the system should take next. Our
DM models predict the appropriate agent actions
and responses based on all the available contex-
tual information (i.e., language-audio-visual inputs,
game events, and dialogue history/context from
previous turns). When the DM predicts verbal re-
sponse types, the NLG module retrieves actual bot
responses that are template-based in our use cases.
We create a variety of response text by preparing
multiple templates for each response type, where
the final response template is randomly assigned
at run-time. Finally, the generated text responses
are sent to the TTS module to output agent utter-
ances. Please refer to Okur et al. (2022a) for our
multimodal SDS pipeline diagram.

We were assuming perfect (or human-level)
speech recognition performances for the NLU re-
sults obtained on manual transcriptions (by hu-
man transcribers) until now. However, we ob-
served around 30% word-error-rate (WER) in ASR
transcriptions for kids’ speech. These ASR out-
puts are obtained via the top hypothesis given by
Google Cloud Speech-to-Text API 5. Considering
these ASR errors propagating into the ASR+NLU
pipeline, the Intent Recognition F1-score perfor-
mances drop around 11-to-17% (see Tables 5 and 6)
when evaluated directly on noisy ASR outputs ac-
quired using Google ASR engine. We are cur-

5https://cloud.google.com/speech-to-text/
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Math-Game Human Transcription ASR Output Intent Prediction

Planting Sunflowers 7 flour answer-flowers counting
We need just one more jasmine ranvir counting answer-flowers
Twenty four trailer for counting intro-game
We just counted nineteen he doesn’t canton my team counting out-of-scope
Twenty two tell me too counting out-of-scope
Six snakes counting answer-valid
Twelve towel counting answer-invalid
Nine nah counting deny

Watering Water could help them bloom why don’t can count them you answer-water counting
Thirteen flowers sure thing flowers counting affirm
Seven I haven’t counting deny
Twenty eight try it counting out-of-scope
Three tree counting answer-valid
Five bye counting goodbye
Bye bye Oscar buy a hamster goodbye answer-invalid

Table 7: ASR + NLU/Intent Recognition Error Samples from Kid Space Planting and Watering Math-game datasets.

rently working towards improving the Automatic
Speech + Intent Recognition (i.e., ASR+NLU) per-
formances by exploring the N-best ASR hypothe-
ses (Ganesan et al., 2021) instead of using only the
top ASR hypothesis.

For the DM model development, we adopted
a recently proposed Transformer Embedding Di-
alogue (TED) policy architecture (Vlasov et al.,
2019), which is highly suitable to our multimodal
math-learning use cases. In TED architecture, a
transformer’s self-attention mechanism operates
over the sequence of dialogue turns to select the
appropriate agent response. Despite the noisy ASR
outputs with relatively higher WER in kids’ speech
compared to adults, when we performed end-to-
end evaluations with the ASR+NLU+DM pipeline,
we observed only 4-to-7% drops in response pre-
diction F1-score performances (see Table 6). That
means error propagation from ASR and NLU has
much less effect on the Dialogue Manager (DM)
outputs, which are the agent’s final actions and
selected responses.

4.4 Error Analysis

Table 7 presents several concrete examples to com-
pare the utterance text obtained by manual human
transcriptions (i.e., ground truth) versus problem-
atic ASR outputs (i.e., speech transcriptions). The
ground truth intent classes based on gold data an-
notations on human transcriptions are shown along
with the predicted intent classes on ASR outputs
obtained by our best-performing DIET+ConveRT
NLU models. These ASR errors, especially on
domain-specific math-related intents, could explain
how errors propagate into the NLU module of

our SDS pipeline and significantly degrade the
performance of the Intent Recognition task. Al-
though such ASR errors are expected in noisy
real-world application data, especially with kids
of age 5-to-8 (Dutta et al., 2022), this analysis also
points to a significant room for improvements in the
ASR+NLU pipeline. It also encourages us to ex-
plore mitigation strategies such as utilizing N-best
ASR outputs (Ganesan et al., 2021) and employ-
ing phonetic-aware representations (Sundararaman
et al., 2021) that can be more robust to ASR errors.

5 Conclusion and Future Work

Improving the quality of mathematics education
is vital in developing problem-solving and criti-
cal thinking skills for younger learners, which are
fundamental for comprehensive STEM education.
This study showcased a task-oriented SDS built to
promote play-based math learning for early child-
hood education. The conversational AI system is
implemented and evaluated on real-world deploy-
ment data collected in classrooms while the kids
are practicing basic math concepts. We presented
our attempts to enrich the modular SDS pipeline
for gamified math learning and prosecuted an end-
to-end evaluation using several SDS components
tested on real-world deployment data. For NLP ap-
plied to math education, language representations
can play a significant role due to the exceptional na-
ture of math language. We investigated employing
the language representations from the MathBERT
model created by pre-training the BERT-base on
mathematical corpora. We compared the Intent
Recognition results obtained using BERT and Con-
veRT representations versus the recently proposed
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MathBERT embeddings on top of the DIET archi-
tecture for NLU. To perform an end-to-end evalu-
ation of our SDS pipeline, we evaluated the ASR,
NLU, and DM modules to investigate how error
propagation affects the overall SDS performance
in real-world math-learning scenarios.

In future work, we aim to explore adopting the
N-Best-ASR-Transformer architecture (Ganesan
et al., 2021) to utilize multiple ASR hypotheses.
This approach can improve the Intent Recognition
performances and mitigate recognition errors prop-
agated into the ASR+NLU+DM pipeline due to
using only the top ASR hypothesis. Another future
direction is to enhance math-specific language rep-
resentation learning by pre-training the ConveRT
model on large math corpora, especially tailored
towards early math education (e.g., pre-k to 2nd-
grade math curriculum), and then fine-tuning them
on our NLU tasks for game-based math learning.

Limitations

Before discussing the limitations of our study, note
that the goal of this multimodal dialogue system
that we built is to improve the quality of mathe-
matics education for younger learners. To begin
with, the cost of the overall setup currently de-
ployed at school (e.g., projector, RGB-D/3D cam-
eras, LiDAR sensor, lapel microphones) can be a
limitation, especially for public schools in disad-
vantaged regions. That can potentially prevent us
from having a broader positive impact with our AI
for social-good efforts.

Another limitation of this work is the size of the
collected datasets. Since the multimodal data col-
lection from authentic classrooms and their labor-
intensive annotation process is costly, we need to
be innovative to work on such low-data regimes and
benefit from the transfer learning paradigm when-
ever possible. Unfortunately, this data scarcity also
affects the generalizability and reliability of our
experimental results and end-to-end evaluations,
which affects the overall robustness of such real-
world applications.

In addition to the deployment costs and data-size
concerns, we are bound to use lapel microphones to
capture the speech from subjects. That affects the
overall unobtrusiveness of the system. Although
our ultimate goal is to use the microphone arrays
in the classroom, the high WER observed in ASR
with kids’ speech, even with lapel mics, prevents
us from using these far-field mic-array recordings.

Finally, instead of pre-training the BERT model
on large math corpora (as performed to create
MathBERT), we aimed to pre-train the ConveRT
model on a more early-math-related subset of the
corresponding corpora. However, although the
code and models are publicly available, the au-
thors of MathBERT (Shen et al., 2021b) have not
released the fine-tuning math dataset per the data
owner’s request. Hence, we cannot perform these
DIET+MathConveRT experiments before we col-
lect our early-math-related corpora for transfer
learning, which is another limitation of this work.
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