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Abstract
Large datasets as required for deep learning of lip reading do not exist in many languages. In this paper we present the dataset
GLips (German Lips) consisting of 250,000 publicly available videos of the faces of speakers of the Hessian Parliament,
which was processed for word-level lip reading using an automatic pipeline. The format is similar to that of the English
language LRW (Lip Reading in the Wild) dataset, with each video encoding one word of interest in a context of 1.16 seconds
duration, which yields compatibility for studying transfer learning between both datasets. By training a deep neural network,
we investigate whether lip reading has language-independent features, so that datasets of different languages can be used to
improve lip reading models. We demonstrate learning from scratch and show that transfer learning from LRW to GLips and
vice versa improves learning speed and performance, in particular for the validation set.

Keywords: Audio-visual, Dataset, Lip reading, Automatic Speech Recognition, Deep Learning, Transfer Learning,
Computer Vision

1. Introduction
Lip reading is the ability of drawing conclusions about
what is being said by visually observing a speaker’s
lips. In practice, however, it can rarely be considered
on its own in human speech, since a variety of addi-
tional information is usually available in communica-
tion which, in combination with lip reading, can in-
crease the information content of the incoming com-
munication (Klucharev et al., 2003). These can con-
sist of, for example, audio information, context, heuris-
tics, gestures, facial expressions, or prior knowledge
about what is being said. Also, special capabilities of
the human brain and auditory sense allow us to ap-
ply filters that increase the focus on the desired com-
munication, such as the well-known cocktail party ef-
fect (Cherry, 1953). Thus, when phonemes, syllables,
words, or entire sentences have an information deficit
from the sender or receiver related to the communica-
tion pathway, lip reading can be one among many ways
to compensate for this deficit. Ambient noise, hearing
loss, slurred pronunciation, unfamiliar words, distance,
or soundproof barriers are examples of communication
problems between sender and receiver. Most people
automatically look at the speaker’s lips when intelligi-
bility suffers, so they are all lip readers with varying
degrees of skill (Woodhouse et al., 2009).
There is a variety of possible applications for lip read-
ing, such as disability support, sports communication
in the press, voice control in noisy environments, ad-
ditional accuracy for ASR systems, law enforcement
and preservation of evidence. In recent years, enor-
mous progress has been made in a number of techni-
cal areas, the effects of which enable an efficient tech-

nical evaluation of lip reading (Paszke et al., 2019;
Chetlur et al., 2014). High-quality cameras nowa-
days have high-resolution sensors whose light sensi-
tivity, dynamic range and noise suppression in post-
processing enable clear, sharp and detailed images.
The memory capacity and computing power of graphic
cards have increased to such an extent that complex
computations are also possible on consumer PCs (Lem-
ley et al., 2017). New deep learning models require
large-scale labelled training data, which is not available
for many languages yet. Our motivation is twofold:

1. to contribute German data1 for the generation of
corpus-based lip reading models, and

2. to evaluate this dataset by training a deep neural
network and transfer learning to and from the En-
glish LRW dataset.

2. Background
Datasets for lip reading are not yet as common as those
for speech recognition. In this section, we describe the
details of the “Lip Reading in the Wild” (LRW) dataset
created by Chung and Zisserman (2016), which is a
popular benchmark and high-quality dataset for Au-
tomatic Lip Reading (ALR) and thematically related
tasks such as Automatic Speech Recognition (ASR) in
general. Other published datasets for lip reading are the
Chinese LRW-1000 (Yang et al., 2019) and the Roma-
nian (Jitaru et al., 2020). We will use the English LRW
for comparison and transfer learning. In the second part

1GLips is available at the following link: https:
//www.inf.uni-hamburg.de/en/inst/ab/wtm/
research/corpora.html

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html
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of this section, we briefly address the particular situa-
tion of data protection and copyright in Germany and
consider the practical obstacles that arise when creat-
ing large datasets.

2.1. LRW – Lip Reading in the Wild
The LRW dataset consists of short videos of people’s
faces uttering a defined word (Chung and Zisserman,
2016). Care was taken to ensure that the speakers’ lips
are clearly visible.
LRW is composed of MPEG4 videos, each 1.16s long
and recorded at 25 frames per second (fps). The 500
classes of words, each with approximately 900-1100
instances, spoken by hundreds of different speakers
were cut from BBC archives of news broadcasts, talk
shows and interviews in 256×256 pixels format and
center-focused on the speaker via face detection. In
each video clip, the word labelled as a directory name
consisting of 5-12 letters is pronounced in a time-
centred manner. Here, 50-word instances each are di-
vided between validation and test directories, while the
rest is reserved for training purposes. In addition, for
each word there is a metadata file in .txt format contain-
ing BBC internal data such as disk reference, channel
and program start. As an externally usable entry, the
duration of the pronunciation of the respective word is
noted in seconds. In our evaluation (cf. Section 5), we
cropped the videos of the LRW dataset to 96×96 pix-
els focusing on the lips of the speakers to train our lip
reading models.

2.2. Copyright
Copyright law (UrhG) in Germany and its related an-
cillary copyrights deal with the creation of works and
the rights and powers of their creators. Videos that can
be accessed and downloaded from publicly accessible
platforms are in principle subject to §1 UrhG2 as a work
as soon as they have a certain so-called creative level,
i.e., they are enhanced, for example, by creative edit-
ing. Choosing such videos as a source for creating a
dataset would involve a great deal of communication
effort, as the permission of the author would have to be
obtained in writing for each individual work. Videos
from webcams or surveillance cameras without further
significant creative editing generally lack this level of
creativity, which is why they are particularly suitable as
a data source for dataset creation, as long as the rules
of the DSGVO3 are followed. Furthermore, in creating
GLips, we comply with two special exceptions embed-
ded into the German copyright law. First, we pursue
a legitimate scientific interest for helping to enhance
the support for the hearing impaired through the cre-
ation of our dataset and second, the politicians shown

2§1 UrhG-Allgemeines-dejure.org: https:
//dejure.org/gesetze/UrhG/1.html

3Datenschutz-Grundverordnung (DSGVO) - dejure.org:
https://dejure.org/gesetze/DSGVO

are persons of public interest recorded in a publically
available parliament-recorded environment.

2.3. General Data Protection Regulation in
Germany (DSGVO)

When people are recorded on film, these videos are
subject to the DSGVO, which has been valid in the Eu-
ropean Union since 25.05.2018. The DSGVO require-
ments cover, among other things, in Art. 5: (1) legality,
(2) public interest for a specific purpose, (3) data min-
imization, (4) correctness, (5) storage time limit, and
(6) integrity and confidentiality, whereby special reg-
ulations regarding items 2 and 5 apply for scientific
research purposes, which e.g., allow a longer storage
period. This binding framework increases the bureau-
cratic, legal and possibly also personnel effort for a data
protection officer, which further reduces the availabil-
ity of datasets for machine learning purposes. But since
biometric features are usually not mutable and we can-
not yet fully estimate how many derivations from bio-
metric data are possible in the future (Faundez-Zanuy,
2005), we as dataset creators have a special responsi-
bility with regard to copyright, data protection and li-
censing.

3. GLips Dataset Creation

Figure 1: Word length distribution in GLips

This section gives an overview of the creation pro-
cedure of the dataset German Lips (GLips). Despite
the focus of this paper and the name on the ALR do-
main, GLips should be applicable in the whole scien-
tific ASR domain as versatile as possible, because, as
explained in Section 2, the legally compliant creation
of large video datasets in the German-speaking area is
connected with some hurdles. Therefore, the creation
of GLips is oriented towards LRW in order to ensure a
high compatibility for methods such as transfer learn-
ing and experiments on the topic of Language Indepen-
dence and to advance scientific knowledge in these ar-
eas. Furthermore, by choosing video material based
on naturally spoken language in a natural environment,
we decided to use this approach for ASR systems, as
it produces more robust results for real-world applica-
tions than artificially generated datasets with as little
noise as possible (Burton et al., 2018).
GLips consists of 250,000 H264-compressed MPEG-4
videos of speakers’ faces from parliamentary sessions

https://dejure.org/gesetze/UrhG/1.html
https://dejure.org/gesetze/UrhG/1.html
https://dejure.org/gesetze/DSGVO
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Figure 2: Pipeline for the generation of training data

of the Hessian Parliament, which are divided into 500
different words of 500 instances each. The word length
distribution is shown in Fig.1. As with LRW, each
video is 1.16s long at a frame rate of 25fps. The audio
track was stored separately in an MPEG AAC audio file
(.m4a). For each video there is an additional metadata
textfile with the fields:

• Spoken word,

• Start time of utterance in seconds,

• End time of utterance in seconds,

• Duration of utterance in seconds,

• Corresponding numerical filename in the
database.

Start- and end-time of utterance refers to the complete
original video and not to the occurrence of the word in
the clip.

3.1. Acquisition
With the permission of the Hessian Parliament, we used
over 1000 videos and their respective subtitles. The
Hessian parliament has published a superset of these
videos also on its YouTube channel4. The subtitles
are available as a separate text file and include man-
ually created subtitles with time intervals. Similar to
LRW subtitle editing (Chung and Zisserman, 2016),
this leads to the issue that not all subtitles are verba-
tim, as in rare cases the content but not the exact spo-
ken words have been reproduced in the subtitle, which
means that despite checks, there are likely to be some
words in the dataset that do not match the lip profile
of the speaker. In order to create GLips, we also need
the exact time of pronunciation and the duration of the
utterance for each selected word. However, the sub-
title files only contain one interval for each of several
words. The solution to this problem via alignment us-
ing the WebMAUS service is discussed in section 3.3.

4YouTube - Hessischer Landtag: https://www.
youtube.com/c/HessischerLandtagOnline

3.2. Multimodal Processing Pipeline
The technical creation of the multimodal dataset GLips
is thematically divided into the two areas of extraction
and processing of data. In Fig. 2, the entire pipeline
is shown schematically from the existence of the raw
data to the creation of training data suitable for machine
learning, of which GLips represents a subset.
Since the original audio, video and subtitle data are al-
ready available in a separate form, the technical part
of the data extraction is limited to the acquisition of
all data and the cleaning of the text data from meta in-
formation so that only the spoken words are available
as input for the next step. The more complex part of
the data processing is described in more detail in the
following two sections and is divided into the two sub-
sections audio subtitle alignment using WebMAUS and
face detection. The audio and video files are synchro-
nized in the last step, but are stored in separate files for
the sake of more diverse processing options.

Figure 3: Example of GLips cropped to 96×96 pixels

https://www.youtube.com/c/HessischerLandtagOnline
https://www.youtube.com/c/HessischerLandtagOnline
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The output of this pipeline consists of structured,
processed, and augmented data suitable as potential
training data for various areas of machine learning.
The TextGrid files with their phonetic information,
which are no longer needed by GLips, longer excerpts
from aligned videos for sentence-based lip reading ap-
proaches, or video clips with several people to test at-
tention mechanisms, are just a few ideas for research.
For the transfer learning in Section 4, we use a modified
GLips dataset that was reduced in size from 256×256
pixels to 96×96 pixels (see Fig. 3) by additionally
cropping the videos to focus on lip reading learning and
to ensure better computability on consumer hardware.

3.3. Subtitle Alignment using WebMAUS
The Munich Automatic Segmentation System (MAUS)
is a software for manifold speech data processing de-
veloped by Schiel et al. (2011) which is also avail-
able as a web service called WebMAUS5 (Kisler et al.,
2012; Ide, 2017). For us, the modules G2P, Chunker
and MAUS from this software package are of particular
interest as an automatic pipeline via RESTful API to be
able to create GLips. From our previously cleaned sub-
title text files, a phonological transcript is created using
G2P in BAS score format6, which is an open format for
describing segmental information. A chunker is also
needed to keep the audio and text information more
easily computable, since some audio files come from
hours of parliamentary sessions that can push the Web-
MAUS server to its capacity limits when sent in aggre-
gate over several days. From these smaller segments,
the aligner from the WebMAUS service can use the cor-
responding audio file to temporally match the text with
the audio file in order to generate a TextGrid file with
matching phonetic and word segments. There are three
levels of analyzable information in this. As can be seen
in Fig. 5, the levels ORT-MAU (orthographic informa-
tion), KAN-MAU (canonical-phonemic word represen-
tation) and MAU (aligned transcription) including the
corresponding time axis are available. With this infor-
mation about an exact time period of the pronunciation
of each word spoken in the audio file, it is possible to
extract the temporally related video clip from the orig-
inal video.

3.4. Face Detection
The face detection was implemented based on
the two Python libraries OpenCV7 with Nvidia-
CUDA8 support for more efficient performance and

5BAS web service interface: https://clarin.
phonetik.uni-muenchen.de/BASWebServices/
interface

6Phonetik BAS: https://www.phonetik.
uni-muenchen.de/Bas/BasFormatsdeu.html

7OpenCV: https://opencv.org/
8CUDA Toolkit: https://developer.nvidia.

com/cuda-toolkit

Figure 4: Example full screen view of the raw video
data from the Hessian Parliament

Video Properties LRW GLips

Total number ∼500,000 250,000
Number of differ-
ent speakers

hundreds ∼100

Format MPEG4 MPEG4
Resolution in pix-
els

256×256 256×256

Length 1,16s 1,16s
Framerate 25fps 25fps
Word classes 500 500
Instances ∼1000 500
Word length in let-
ters

5-12 4-18

Metadata file yes yes
Separate audio file no yes
TextGrid file no yes
Equipment level professional webcam
Lighting professional indoor stan-

dard

Table 1: Comparison of LRW and GLips

face recognition9. As shown in Fig. 4, the external con-
ditions for speaker detection are almost perfectly suited
to run face detection only on a section of the video due
to the fixed podium and almost constant position of the
webcam, which both reduces the processing time of all
videos and makes attention mechanisms less important
for speaker detection. Very few complications occur in
the videos that these processing conditions do not sat-
isfy, s.a. the speaker moving too vividly or being very
tall which could cause the face detection to confuse the
speakers face with the person sitting in the elevated po-
sition behind him.

4. Comparison of GLips and LRW
Both GLips and LRW contain large quantities of videos
of speakers in frontal view perspectives to ensure a
clear view on their lips. As seen in Table 1, special

9GitHub - ageitgey face recognition: https://
github.com/ageitgey/face_recognition

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://www.phonetik.uni-muenchen.de/Bas/BasFormatsdeu.html
https://www.phonetik.uni-muenchen.de/Bas/BasFormatsdeu.html
https://opencv.org/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
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Figure 5: The spoken word “Landtags” including context visualized from a TextGrid file using Praat soft-
ware (Boersma, 2001)

attention was paid to the aspect of compatibility be-
tween the two datasets. The camera equipment of the
BBC is clearly of higher quality than the webcam of
the Hessian Parliament so that despite nominally the
same video resolution, there is a difference in qual-
ity between the video datasets due to dissimilar dy-
namic range of the camera sensor, possibly existing
camera-internal post-processing, as well as more elab-
orately calculated and manufactured lenses. In addi-
tion, external factors such as shorter camera distance
(object distance), the partially existing professional and
intelligibility-oriented speech training of the news pre-
senters and the more professional lighting in the BBC
dataset provide a clearer, higher-contrast and sharper
image of the lip movements, so that it can be expected
that LRW-trained models for lip reading will have a
higher performance in terms of word recognition than
will be the case with GLips. The quality of the audio
recordings, which were integrated into the .mp4 for-
mat in LRW and are available separately as .m4a in
GLips, is less deviant due to the use of high-quality
microphones in the Hessian Parliament. However, for
training our lip reading models we will only use the
visual information. Furthermore, the number of speak-
ers in LRW is several hundred, which is significantly
higher than in GLips, which is estimated to be around
100.

5. Model Evaluation

Figure 6: X3D Architecture

There are several recurrent (e.g. (Stafylakis and
Tzimiropoulos, 2017)) and feedforward (e.g. (Xin-
shuo Weng, 2019), (Martı́nez et al., 2020)) models for
lip reading on word level. We chose the X3D convolu-
tional neural network model by Feichtenhofer (2020)
since it is efficient for video classification in terms of
accuracy and computational cost and well designed for
the processing of spatiotemporal features. The model is

depicted in Figure 6, has 4D tensors as its main layers,
with one dimension each for the temporal dimension
(T), height and width (H × W) of spatial dimensions
and number of channels (C). It is an expanding im-
age processing architecture that uses channel-wise con-
volutions as building blocks. Synchronized stochas-
tic gradient descent (SGD) was performed of parallel
workers following the linear scaling rule for learning
rate and minibatch size to reduce training time (Goyal
et al., 2018).
We used the official model implementation10 that is in-
cluded in Pytorch Lightning-Flash11 and for video pro-
cessing we use the PyTorchVideo (Fan et al., 2021) li-
brary. The model was implemented and tested on a sin-
gle NVIDIA Geforce RTX2080Ti.

5.1. Experiments with GLips and LRW
To evaluate whether the word recognition rate of the lip
reading models can be improved by transfer learning,
we conducted two experiments. To keep the transfer
learning computations manageable, we create two
subsets of each of the LRW and GLips datasets, which
we call LRW15 and GLips15, and which consist of only
15 randomly selected words of 500 instances each
instead of all 500 words. Two further subsets named
GLips15-small and LRW15-small consist only of a total of
95 word instances of the same 15 words as the former
subsets. We cropped the videos to 96×96 pixels
around the lip region to increase the performance in
computation and to improve the focus of learning on
the lips.

In Experiment 1, we use the largest versions of the
GLips15 and LRW15 datasets among themselves for
transfer learning. We test here whether lip reading
abilities can be passed among models trained on the
same size datasets in a language-independent manner
by comparing the word recognition rate of the transfer-
learned models with those learned from scratch.

In Experiment 2, we test whether the transfer learning
benefits are greatest, as theoretically expected, where

10GitHub - X3D implementation: https:
//github.com/facebookresearch/SlowFast/
blob/main/MODEL_ZOO.md

11GitHub - PyTorch Lightning Flash: https:
//github.com/PyTorchLightning/
lightning-flash

https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md
https://github.com/PyTorchLightning/lightning-flash
https://github.com/PyTorchLightning/lightning-flash
https://github.com/PyTorchLightning/lightning-flash
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Figure 7: Results of training (left) and validation (right) accuracy per iteration for Experiment 1: transfer learning
between same-size datasets

Figure 8: Results of training (left) and validation (right) accuracy per iteration for Experiment 2: transfer learning
from a large dataset to a small dataset

models learned on large datasets transfer to models
learned on smaller datasets by learning from LRW15→
GLips15-small and also from GLips15→ LRW15-small, and
also by comparing the results to models learned from
scratch.

5.2. Experimental Results
The smoothened curves of the results were plotted
in TensorBoard12. As seen in Fig. 7, in Experi-
ment 1 the validation accuracies of GLips15 and
LRW15 trained from scratch are lower than those of
the transfer-learned models GLips15→LRW15 and
LRW15→GLips15. Also both transfer-learned curves
rise steeper in the beginning, which means that the
networks learn faster and maintain their higher level
across all epochs, manifesting their learning advantage.
Additionally, GLips15→LRW15 has a higher starting
point, which accelerates the learning rate even more.

12TensorBoard: https://www.tensorflow.org/
tensorboard

The results of Experiment 2 in Fig. 8 also clearly
demonstrate the advantages of transfer learning, but
look different in detail. LRW15→GLips15-small as
well as GLips15→LRW15-small achieve an advantage
over the respective networks trained from scratch. In
both experiments the average validation accuracies
of the LRW-networks reach a higher score than the
GLips-networks. This is particularly pronounced for
GLips15→LRW15-small, which appears has the largest
advantage in the validation experiment. It is surprising
that GLips as source of transfer learning helps learn-
ing LRW more (dark red curve) than vice versa, since
GLips as the source of transfer learning has lower-
quality videos. An explanation could be that given the
low number of data points in this experiment, GLips
with its noisier visual features did not allow the model
to overfit, while on the other hand, the LRW-pretrained
model (light blue) might have overfit to distinct features
in LRW.

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
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6. Discussion
The successful transfer learning between the two lan-
guages indicates that there are features in both datasets
regarding lip reading that are language-independent
and thus can be transferred to another language.
Due to the better performance of the LRW-trained net-
works, we hypothesize that the difference between the
models trained on GLips and LRW lies in the quality
of the data. In GLips, in comparison, overall learning
is subjected to more noise in addition to the features
important for the complex task of lip reading. How-
ever, the evaluation of the curves shows clear advan-
tages of transfer learning compared to learning from
scratch, both in the overall performance and in the
speed of learning. The quality of a dataset is of ut-
most importance for the performance of a model us-
ing it. Transfer learning in neural networks amplifies
the effects of the quality differences between datasets.
In both experiments, we can observe the advantage of
the higher quality dataset of LRW for transfer learn-
ing, as anticipated in Section 4. In particular, for mod-
els trained from small datasets, the benefit of transfer
learning compared to learning from scratch becomes
substantial.
The benefit of transfer learning for lip reading has re-
cently been shown between English, Romanian and
Chinese language (Jitaru et al., 2021). Their work
showcases transfer learning from multiple source lan-
guages. Here one needs to take into account that some
languages have larger and higher-quality datasets, ben-
efiting transfer learning more than other languages.
Speaker independence according to Bear and Taylor
(2017) is only possible in GLips if the dataset would
be split into training, validation and test speakers ac-
cording to different speakers. We did not imple-
ment a speaker-independent split in GLips in favor of
the larger word set. If splitting GLips in a speaker-
independent fashion, the number of words in the train-
ing set would reduce to less than 500 for some words.
As a technical implementation, it would be possible to
perform a face recognition on the original videos and
to link the different identities with the spoken word
instances. With this extended information dimension,
disjoint test sets can be created with respect to the train-
ing and validation sets. Data augmentation like transla-
tion or altering the RGB-values of the videos were not
used in the training for performance reasons. However,
such techniques may be useful on more powerful archi-
tectures to reduce the risk of overfitting (Krizhevsky et
al., 2017) and to increase generalization performance.

7. Conclusion
With GLips we have created the first large-scale Ger-
man lip reading dataset, which is compatible to the
large English LRW dataset. Using an X3D deep neural
network, we demonstrated successful transfer learning
between the two languages in both directions. This new
dataset can support various applications in areas of dis-

ability support, communication in noisy environments,
boosting of existing ASR systems, etc., progressing
state-of-the-art assistive technologies. Revisiting the
publicly available source of the dataset, further appli-
cations would become possible, such as learning auto-
matic speech recognition, and extended TextGrid infor-
mation will allow to create a dataset for sentence-level
recognition from the original videos.
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