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Abstract
Automatic Term Extraction (ATE) is a key component for domain knowledge understanding and an important basis for further
natural language processing applications. Even with persistent improvements, ATE still exhibits weak results exacerbated by
small training data inherent to specialized domain corpora. Recently, transformers-based deep neural models, such as BERT,
have proven to be efficient in many downstream NLP tasks. However, no systematic evaluation of ATE has been conducted so far.
In this paper, we run an extensive study on fine-tuning pre-trained BERT models for ATE. We propose strategies that empirically
show BERT’s effectiveness using cross-lingual and cross-domain transfer learning to extract single and multi-word terms.
Experiments have been conducted on four specialized domains in three languages. The obtained results suggest that BERT can
capture cross-domain and cross-lingual terminologically-marked contexts shared by terms, opening a new design-pattern for ATE.
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1. Introduction

Automatic Term Extraction (ATE) is essential to special-
ized domains knowledge understanding and can further
be used as input for other NLP applications, including
information retrieval, thesauri construction, machine,
and computer-aided translation, etc. The aim of ATE
is to identify terminological units in specific domains
(Castellvi et al., 2001). For that purpose, several meth-
ods have been proposed, ranging from linguistic-based
(Ananiadou, 1994; [Justeson and Katz, 1995)), statisti-
cal (Schafer et al., 2015)), feature-based (Conrado et
al., 2013) as well as hybrid (Basili et al., 1997;|Aubin
and Hamon, 2006) and deep neural-based (Wang et al.|
2016; Hatty and Schulte im Walde, 2018)) approaches.
Nonetheless, they still exhibit weak results, and manual
post-filtering remains necessary to exploit current sys-
tem outputs (Terryn et al., 2018)). Furthermore, feature-
based approaches, which, up to now, are considered
among the most accurate, require labor-intensive feature
engineering with no straightforward transfer learning if
a new domain is addressed. The only transfer learning-
based method that we are aware of deals with clinical
concept detection, and still requires feature engineer-
ing (Lv et al., 2014).

Current research on ATE deals with two main prob-
lems: (1) the small size of data collections inherent to
specialized domains and (2) the limited availability of
annotations due to the lack of consensus about the nature
of terms (Terryn et al., 2018)). The former problem has
been addressed in other downstream applications using
data selection or data augmentation, as shown in SMT
(Moore and Lewsis, 2010; |Axelrod et al., 20115 |Gasco et
al., 2012), and NMT (Parcheta et al., 2018) as well as
combining specialized and general domain word embed-
dings as demonstrated in the clinical concept detection
(E1 Boukkouri et al., 2019)) and bilingual terminology
extraction (L1iu et al., 2018)) tasks. Nonetheless, these
techniques are often difficult to apply for ATE since they

all require a reasonable amount of annotated datﬂ
The latter problem has also been addressed in other
applications using transfer learning, such as, in conver-
sational AI (Schuster et al., 2019) and named entity
recognition (Jia et al., 2019; Rahimi et al., 2019) tasks.
However, transfer learning is based on mapped represen-
tations learned from one sufficient annotated source data
and targeted another less-resourced data. In ATE, proper
and sufficient source annotations are not available, mak-
ing such transfer learning difficult even to consider. To
overcome the annotation gap occurring in ATE, (Judea
et al., 2014) proposed an unsupervised data generation
approach. However, it relies on linguistic features that
need to be defined beforehand.

Over the last few years, a new family of deep neural ap-
proaches impulsed by transformers has brought forward
significant improvements in many downstream applica-
tions (Vaswani et al., 2017; [Devlin et al., 2018]; Raffel
et al., 2019). BERT, for instance, can learn bidirectional
context representations from a considerable amount of
general domain data that can be fine-tuned for a specific
task.

These approaches remarkably capture semantic and
syntactic information (Rogers et al., 2020; [Reif et al..
2019), and supersede classical approaches on many
NLP tasks. Based on the assumption that terms share
terminologically-marked contexts (Meyer, 2001), we
put greater stress on this hypothesis and propose to in-
vestigate its validity on cross-domain and cross-lingual
scenarios by experiencing the usage of BERT for ATE
on four specialized domains in three different languages.
We believe our work provides three important contribu-

'"Data augmentation-based SMT, and NMT systems often
require additional annotated bi-texts for training or improving
language models. In clinical concept detection and bilingual
term extraction, embedding models are used as features for
deep neural approaches, such as biLSTM, but these methods
also require enough annotated data to be trained on.
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tions: 1) The first extensive study of BERT for ATE; 2)
The proposition of efficient and straightforward BERT-
based strategies (as a binary classifier, as a sequence
labeling method, and as features for a BILSTM-CRF)
that can be further improved by post-filtering; 3) The
empirical verification that the terminologically-marked
contexts assumption holds in both the cross-domain and
cross-lingual scenarios thanks to transfer learning.

2. Related Work

Several approaches for ATE have been proposed so
far, ranging from the early linguistic-based (Bourigault
1992; Justeson and Katz, 1995) to the recent deep neural-
based (Wang et al., 2016} Hatty and Schulte im Walde!
2018). We divide their classification into supervised
versus unsupervised methods.

2.1.

Unsupervised methods usually involve two steps: (i)
the identification of term-like units and (ii) the filtering
and sorting of the extracted units that may not be terms
using several rules (Daille, 2017).

The term-like units are often sequences of noun chunks
that are selected during the identification step accord-
ing to their part-of-speech and their morpho-syntactic
patterns (Justeson and Katz, 19935), as well as gen-
eral phrase rules involving phrase borders (Bourigault!
1992)), samples of annotated texts and lists of seed terms
(Jacquemin, 2001). [Bourigault (1992), for instance,
introduced a two steps-based method: (1) analysis: in
which a set of rules of frontier marker identification (e.g.,
punctuation marks, verbs, pronouns, etc.) is defined and
(2) parsing: in which the maximal-length noun phrases
are determined, and sub-group candidates are extracted
based on grammatical structure rules. |Justeson and Katz
(1995)) used the linguistic properties of technical termi-
nology. Terms can also be collected using the lexical
expansion of seed term lists and nominal phrases that
include seed terms (Jacquemin, 2001; [Burgos Herera|
2014).

In the filtering step, all the collected term-like sequences
are usually ranked according to termhood and unithood
(Kageura and Umino, 1996) criteria, which can be mea-
sured by frequency, association measures (e.g., mutual
information, log-likelihood), specificity measures (Ah/
mad et al., 1994)), etc. Filtering can also be done by
removing nested sequences (incorrect, incomplete, or
expansions that are not part of the base term). This
is usually done using several measures, such as the C-
value (Frantzi and Ananiadou, 2000), contextual filter-
ing under the assumption that terms are gregarious, the
NC-value (Frantzi and Ananiadou, 2000) or by exploit-
ing the fact that terms, contrary to regular noun phrases,
share terminologically-marked contexts (Meyer, 2001}
Condamines, 2002)). In this work, we assume that terms
do share strongly marked contexts that BERT is able to
capture, and we push this hypothesis further to cross-
domain and cross-lingual scenarios.

Unsupervised Methods
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2.2. Supervised Methods

Prior works on ATE used different learning algorithms
and feature sets (Conrado et al., 2013 |Judea et al., 2014}
Hatty et al., 2017). (Hatzivassiloglou V, 2001), for in-
stance, presented an automated system for assigning
protein and gene class labels to biological terms in free
texts. They explored three established learning tech-
niques: Bayesian learning (Duda and Hart, 1973)), de-
cision tree using C4.5 implementation (Quinlan, 1993)),
and inductive rule learning using RIPPER implementa-
tion (Cohen, 1996). [Takeuchi and Collier (2005) used
support vector machines to extract Bio-medical enti-
ties, while Zhang and Fang (2010) used Conditional
Random Fields (CRF) and syntactic features. These
methods, among others, require quite a high number
of features to be set. |[Conrado et al. (2013), for in-
stance, explored Naive Bayes and decision tree using
17 linguistic, statistical, and hybrid features, such as
frequency, TF-IDF, POStags, etc. They also used two
additional features from corpora that belong to another
domain Finally, Hitty et al. (2017)) used a random forest
classifier, trained on several termhood measures, and
recursively applied to the components. To overcome the
lack of training data, Judea et al. (2014) proposed an
unsupervised training data augmentation step prior to
using a binary classifier and a CRF trained on different
types of features. Even if their approach is language-
independent, it has only been tested on English and
still relies on linguistic features that need to be defined
beforehand.

More recently, several deep neural approaches have also
been applied to ATE.|Wang et al. (2016) used two deep
neural classifiers: a CNN that learns terms represen-
tation using multiple filters to capture sub-gram infor-
mation and an LSTM that captures the meaning of a
term from the sequential combination of its constituents.
Amjadian et al. (2016) leveraged local and global em-
beddings to encapsulate the meaning of the term for the
classification step, although they only work with uni-
gram terms. Few neural-based methods regard ATE as a
sequence labeling task (Han et al., 2018)). In clinical con-
cept detection, which can be seen as a sub-task of ATE,
several methods have, however, been proposed (Lv et
al., 2014; El Boukkouri et al., 2019). Finally, Sajatovi¢
et al. (2019) evaluated 16 state-of-the-art methods at
the corpus and document level, showing that there is no
best-performing single method for corpus-level ATE.

3. BERT for ATE

We address ATE by introducing three different strategies.
The first consists in using BERT as a binary classifier,
while the second uses BERT as a sequence labeling
model for Named Entity Recognition (NER). Finally,
we propose a feature-based strategy which consists in
using BERT embeddings as input features for a bidi-
rectional LSTM (biLSTM) with a Conditional Random
Fields (CRF) layer.



3.1. BERT as Binary Classifier

BERT is a supervised learning mode that has been
trained on the Masked Language Model (MLM) objec-
tive and Next Sentence Prediction (NSP). For NSP, the
model takes as input pairs of sentences and learns to
predict if the second sentence is the subsequent sentence
of the first one. We similarly fine-tune our model, pro-
viding sentence/term pairs and sentence/non-term pairs
instead of sentence pairs. In a similar fashion to NSP,
we select 50% of the training pairs where the second
sequence is a term, while the other 50% pairs consist of
randomly chosen n-gram Therefore, for each positive
training pair, we randomly select within the sentence of
the same pair an n-gram as non-term to keep a balanced
training set. Class balancing is often a vital setup for
classifiers’ efficiency. Even if some existing techniques
do reduce the impact of unbalanced classes, we only
deal with balanced training in this work. The intuition
behind this step is that BERT will learn shared features
between terms and their contexts the same way it does
for subsequent pairs of sentences. Moreover, for each
correct input pair, the term is present in both sequences,
which we expect to be advantageous to learn more con-
text about terms during the masked LM phase. Upon
testing, all the n-grams of a sentence are used to provide
sentence/term-like pairs.

3.2. BERT as NER system

We also address ATE as a named entity recognition task
where each term is seen as a named entity. Therefore,
we can easily adapt the pre-trained BERT for NER in
order to perform ATE. This procedure can be seen as
an over-simplification of the actual NER task where we
consider only one named entity type (a term), whereas,
in the classical task, we consider several named entities.
Similarly to NER, we use the IOB scheme (I indicates
that the token is inside an entity, O indicates that a
token is outside the entity, and B indicates that the token
begins the entity).

Since the BERT NER is already pre-trained following
the IOB scheme, we chose the ORG tag for all the
experimentsﬂ Hence, each term of a given sentence is
assigned by B-ORG or I-ORG labels, and all non-terms
are assigned by O-ORG.

3.3. Bi-LSTM for Sequence Labeling with
BERT Embeddings

We finally address ATE as sequence labeling task. Bidi-

rectional LSTM (biLSTM) are standard to the task of

named entity recognition using sequence labeling. A

Conditional Random Fields (CRF) layer is connected

*While various binary classifiers have been applied to ATE
(see the Related Work section), to our knowledge, the only
work that addressed ATE using BERT comes from the Ter-
mkEval shared task (Rigouts Terryn et al., 2020)

3The n-gram size is set empirically.

*Within the IOB tags (PER, ORG, MISC, and LOC), no
significant difference in performance has been observed.

to the LSTM last output layer, enabling it to efficiently
use neighboring tag information to better model the
conditional probability of the output state sequence.
Weights in vanilla LSTM can either be initialized with
random values or with third-party word embeddings:
here, BERT embeddings are used as input of our model
to overcome the problem of low training data.

Domain # Tokens # Documents | # Term lists
en | 468,711 44 1174
corruption | fr | 475,244 31 1217
nl | 470,242 49 1295
en | 102,654 89 1575
dressage fr | 109,572 125 1183
nl | 103,851 125 1546
en| 314,618 38 1534
wind energy | fr | 314,681 12 968
nl | 308,742 29 1245
en| 45,788 190 2585
heart failure | fr | 46,751 215 2423
nl | 47,888 175 2257

Table 1: Number of unique tokens and documents per
corpus for English (en), French (fr) and Dutch (nl) as
well as the size of the evaluation term lists.

4. Data Sets

Up to now, cross-lingual and cross-domain transfer
methods for ATE have been hindered by the lack of
multilingual data sets annotated according to the same
guidelines (Schuster et al., 2019). However, the recently
released data set from the first TermEval shared task
(Rigouts Terryn et al., 2020) offers an appropriate anno-
tation methodology that falls within both multilingual
and multi-domain scenarios. Therefore, in our experi-
ments and evaluation, we use the TermEval data sets,
which consist of four specialized domains: corruption,
dressage, wind energy, and heart failure in three lan-
guages: English (en), French (fr), and Dutch (nl). Table
depicts the number of documents and tokens for each
corpus as well as the test lists size.

5. Experiments and Results

We follow the evaluation procedure defined in the Ter-
mEval shared task (Rigouts Terryn et al., 2020) which
consists in using three domains (corruption, wind en-
ergy, and dressage) for training and validation and the
heart failure domain for testing. We first report the re-
sults on the development sets used for cross-validation
and fine-tuning, and then the obtained results on the
heart failure test set. For each experiment, reported
results are the mean average of 10 runs.

5.1. Pre-trained Models

As pre-trained models can behave differently accord-
ing to the addressed tasks (Liu et al., 2019), we eval-
uate several BERT models that we have fine-tuned on
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Corp Equi Wind
English P R F1 P R F1 P R Fl1
BERT 29.46 49.45 36.79 30.76 71.61 42.94 21.87 74.03 33.73
BERT-multi 25.47 58.21 35.25 27.87 71.94 40.15 22.92 74.51 34.94
RoBERTa 26.85 62.53 37.33 29.17 75.59 42.03 20.93 77.08 32.91
BERT (NER) 52.92 22.46 31.48 54.45 32.63 40.81 35.48 23.66 28.39
BERT-multi (NER) 34.09 11.51 17.21 13.41 14.67 14.01 11.14 18.58 13.93
RoBERTa (NER) 31.91 10.22 15.48 49.39 28.44 36.11 32.48 23.08 26.98
BERT-biLSTM-CRF 22.61 18.98 20.63 20.65 16.03 18.05 21.04 23.31 22.11
French P R Fl1 P R F1 P R Fl1
BERT-multi 27.53 53.03 35.91 21.17 60.77 31.35 13.82 68.99 22.97
CamemBERT 29.73 62.61 40.25 24.38 65.89 35.53 15.63 72.51 25.71
BERT-multi (NER) 39.17 11.59 17.89 42.83 20.20 27.45 23.22 25.93 24.5
CamemBERT (NER) 42.61 12.33 19.13 48.01 23.33 31.40 24.09 24.48 24.28
BERT-biLSTM-CRF 18.78 16.21 17.40 18.53 19.08 19.76 17.20 20.72 18.79
Dutch P R Fl1 P R F1 P R Fl1
BERT-multi 23.70 68.59 35.21 30.39 63.85 41.10 15.85 66.55 25.52
BERT-multi (NER) 40.93 15.68 22.67 65.25 32.79 43.65 37.41 38.31 37.85
BERT-biLSTM-CRF 20.51 21.75 21.11 21.17 18.90 19.97 21.70 15.28 17.93

Table 2: ATE scores (%) in terms of Precision (P), Recall (R) and F1-score (F1). For each validation corpus, the two
remaining ones were used for fine-tuning. We contrast 3 usages of BERT : as a binary classifier, BERT-NER and
BERT embeddings used with a biILSTM-CRF. We also contrast BERT’s multi-lingual version as well as RoOBERTa

for English and Camembert for French.

the specialized corpora. The tested models for English
were: bert-base-cased (BERT) (Devlin et al., 2018)),
bert-base-multilingual-cased (BERT-multi), and roberta-
base (RoBERT3) (Liu et al., 2019ﬂ For French, we
used Camembert (Martin et al., 2019) and bert-base-
multilingual-cased (BERT-multi). Finally, for Dutch,
we only considered bert-base-multilingual-cased.

5.2. Dev Set Experiments

5.2.1. Domain Transfer Learning Evaluation

The domain transfer learning procedure consists of fine-
tuning BERT on a given domain and testing on another
domain. Having three validation data sets (corruption
(Corp), dressage (Equi), and wind energy (Wind)), and
several BERT models, we subdivided the domain trans-
fer evaluation into two experiments: 1) fixing the train-
ing data sets while varying BERT models and 2) fixing
the models while varying the training data sets.

Table [2]reports the obtained results when varying BERT
models using BERT as a binary classifier, BERT as
NER, and BERT with biLSTM-CRF. The contrasted
models are BERT and its multilingual version (BERT-
multi), as well as RoBERTa for English and Camem-
BERT for French. For each specialized test set, we
fine-tuned on the combination of the remaining data
sets, which consists of providing BERT with both do-
mains as one single data set. If this procedure may seem
counter-intuitive, we expect that BERT can capture cor-

Additional models such as bert-large-cased and
distilroberta-base are presented in the supplementary material.
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relations between terms across domains by assuming
that they have terminologically-marked contexts.
Overall, better results were obtained in terms of the F1
score when using BERT as a binary classifier. How-
ever, BERT (NER) showed competitive results and was
sometimes better for Dutch and always better in terms
of precision (P). When comparing BERT models used
for binary classification, we see that the results are more
contrasted for English and that no single model per-
forms the best in each domain. For French, it is clear
that Camembert is the best performing model in terms
of the F1 score. When it comes to BERT (NER), we
observe in some cases a considerable drop in the results
for BERT-multi (NER) and Roberta (NER) for the Corp
domain. This drop could be linked to the lower num-
ber of named entities in the Corp data set compared
to the other corpora. Conversely, BERT-multi (NER)
outperformed BERT-multi for Dutch on Equi and Wind
test sets. Finally, we observe that BERT-biLSTM-CRF
obtained way lower results, suggesting that using BERT
embeddings as features for a biILSTM-CREF is less ef-
fective than using BERT as a classifier. This is not
surprising as we already know that biLSTM models of-
ten require a massive amount of training data, which is
definitely not the case in our data sets.

Based on the previous experiment’s best performing
models, we report in Table [3] the obtained results by
varying the training data sets. Training on the English
Wind corpus and testing on Corp, for instance, shows
better results (+2.64% with RoBERTa) than combining
Wind with Equi. On the contrary, better results are



English

Test Train

Corp Equi | Wind | Equi+Wind
RoBERTa 36.16  39.97 37.33
BERT (NER) 1597 22.18 31.48
BERT-biLSTM-CRF | 20.54  19.01 20.63

Equi Corp ‘ Wind ‘ Corp + Wind
RoBERTa 42.07 4499 42.03
BERT (NER) 38.55 41.74 40.81
BERT-biLSTM-CRF | 17.65 19.51 18.04

Wind Corp ‘ Equi ‘ Corp + Equi
RoBERTa 36.16  33.77 3291
BERT (NER) 30.58 26.89 28.39
BERT-biLSTM-CRF | 19.99  20.64 22.11

French

Test Train

Corp Equi | Wind | Equi + Wind
CamemBERT 34.87  39.07 40.25
CamemBERT (NER) | 18.71  19.99 19.13
BERT-biLSTM-CRF | 18.04  16.66 17.40

Equi Corp ‘ Wind ‘ Corp + Wind
CamemBERT 3273 3222 35.53
CamemBERT (NER) | 34.09 31.62 31.40
BERT-biLSTM-CRF | 1896  19.21 19.76

Wind Corp ‘ Equi ‘ Corp + Equi
CamemBERT 26.78  24.57 25.71
CamemBERT (NER) | 30.35 22.54 24.28
BERT-biLSTM-CRF | 18.40 17.97 18.79

Table 3: Domain transfer results (F1%) of ATE on the
English and French data sets (for the sake of clarity,
Dutch results are put in the supplementary material).

obtained for BERT (NER) and BERT-biLSTM-CRF
when using both Equi and Wind corpora. However,
these observations do not hold for all the experiments
and vary depending on the chosen data sets and the
used models. Overall, contrasting the results suggest
that transfer learning for ATE is domain sensitive and
that a careful choice of training data sets is undoubtedly
needed for better performance.

5.2.2. Language Transfer Evaluation

The language transfer experiment, shown in Table
questions the usefulness of adding other languages for
fine-tuning. Hence, given the English corruption test
set for instance (annotated as corp (en)), we fine-tune
the multilingual BERT model (BERT-multi) on each of
the two remaining data sets separately (equi or wind)
as well as their combination (noted as All), which si-
multaneously represent cross-lingual and cross-domain
evaluation. As can be seen, adding other languages of-
ten increases the results, and when it is not the case, the
F1 score difference remains very low. Improvements
are more noticeable for the Dutch test sets, where we
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Test corpus Training corpus
corp equi

en en+fr+nl | en  en+fr+nl
corp (en) - - 35.09  36.27
equi (en) 34.68 39.29 - -
wind (en) | 34.04 3289 |34.04 36.01

fr en+fr+nl fr en+fr+nl
corp (fr) - - 3484 34.14
equi (fr) 27.64  28.23 - -
wind (fr) 2412 2432 | 24.12  26.07

nl en+fr+nl nl en+fr+nl
corp (nl) - - 2991  34.09
equi (nl) 37.52  41.56 - -
wind (nl) 26.11  28.03 | 26.11 28.44
Test corpus Training corpus

wind All

en en+fr+nl en en+fr+nl
corp (en) 3556 37.64 | 3525 34.16
equi (en) 40.54  42.10 | 40.15 41.60
wind (en) - - 3494 3542

fr en+fr+nl fr en+fr+nl
corp (fr) 3571 3521 |3591 3397
equi (fr) 3288 3233 | 3135 2998
wind (fr) - - 2297  24.12

nl en+fr+nl nl en+fr+nl
corp (nl) 3552  38.89 | 35.21 353
equi (nl) 4142 4136 | 41.10 39.99
wind (nl) - - 25.52  29.79

Table 4: Language transfer learning results (F1%) on
the validation sets. All the experiments were based on
bert-base-multilingual model (BERT-multi) .

obtained an F1 score of 41.56% versus F1 of 37.52%
without the use of multiple languages when compared to
a fine-tuning using the Corp data set only. Nonetheless,
we notice that, in some cases, adding more languages de-
creases the performance, as it can be noticed when test-
ing on Wind (en) and fine-tuning on Corp. Indeed, the
F1 score dropped from 34.04% to 32.89% when adding
French and Dutch languages to English (en+fr+nl). Fi-
nally, some improvements can also be observed when
using both cross-lingual and cross-domain combination.

5.3. Test Set Experiments

5.3.1.
In contrast to our proposed approaches, we implemented
a feature-based baseline that exploits eXtreme Gradient
Boosting (XGBoost) (Chen and Guestrin, 2016)) for clas-
sification E} We also implemented a Vanilla-biLSTM-

Baselines

More than 25 features were tested. We retained the best-
performing ones: Frequency, TF-IDF, C-value, Termhood, and
Specificity.



English
P R F1
Baselines
Features (en) 39.44 29.28 33.61
Features (enfrnl) 14.96 39.20 21.65
Vanilla-biLSTM-CRF 6.84 10.16 8.17
Team results
TALN-LS2N 34.78 70.87 46.66
RACAI 42.40 40.27 41.31
NYU 43.46 23.64 30.62
e-Termino 34.43 14.20 20.10
NLPLab 21.45 15.59 18.06
Proposed
BERT (en) 36.31 72.15 48.21
BERT (NER) 57.22 27.74 37.37
BERT-biLSTM-CRF 24.17 38.32 29.54
BERT-multi (en) 33.67 71.79 45.77
BERT-multi (enfrnl) 33.01 72.67 45.37
French
P R F1
Baselines
Features (fr) 48.90 53.47 50.92
Features (enfrnl) 18.71 40.75 25.64
Vanilla-biLSTM-CRF 4.52 11.79 6.53
Team results
TALN-LS2N 45.17 51.55 48.15
e-Termino 36.33 13.50 19.68
NLPLab 16.07 11.18 13.19
Proposed
CamemBert 40.11 70.51 51.09
CamemBert (NER) 57.51 25.75 35.57
BERT-biLSTM-CRF 21.13 32.48 25.60
Bert-multi (fr) 36.13 68.11 47.18
BERT-multi (enfrnl) 33.16 69.61 4491
Dutch
Baselines
Features (nl) 32.29 36.07 34.07
Features (enfrnl) 16.45 49.83 24.73
Vanilla-biLSTM-CRF 6.27 9.34 7.50
Team results
NLPLab 18.9 18.6 18.7
e-Termino 29.0 9.6 14.4
Proposed
BERT-multi 32.86 7547 45.73
BERT (NER) 63.75 42.53 51.02
BERT-biLSTM-CRF 22.65 34.62 27.38

Table 5: Our methods results on the heart failure test
set (%) contrasted with the baselines and results of the
participants teams on the shared task

CRF to contrast with our BERT-biLSTM-CRH} The
results are reported in Table[5] alongside the results of

"It should be noted that this work focuses on BERT-based
strategies, and these baselines were implemented solely for
comparison’s sake.
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the participating teams{ﬂ on the TermEval shared task
(Rigouts Terryn et al., 2020). The teams performed
various approaches: e-Termino used a rule-based ap-
proach, RACAI used a combination of statistical ap-
proaches based on several features, NLPLab used a
biLSTM based on pre-trained Glove and NYU used
chunking, statistical and search-based scores. Finally,
the best performing team (TALN-LS2N) used BERT
as a binary classifier which is similar to our approach
from a data representation perspective but differs from
it did not exploit cross-lingual transfer, and 2) they only
performed a combination of all training data for fine-
tuning. On the contrary, we investigate several domain
combinations and show that more cross-domain data
does not necessarily lead to better performance.

5.3.2. Results

Table |3 shows the obtained results on the heart failure
test set. We first report the results for our cross-domain
feature-based approach, noted Features (en) for English
and its cross-lingual version, noted Features (enfrnl)
for all languages as well as our Vanilla-biLSTM-CRF
baseline. We also list the official results of the shared
task for all the participating teams. Finally, we report
the results of our proposed approaches using BERT,
BERT (NER), as well as BERT-biLSTM-CRE.
Overall, our achieved results on the test sets follow
the observed results obtained on the development sets.
Indeed, BERT for English, CamemBERT for French,
and BERT-multi for Dutch obtained the best F1 scores,
while BERT (NER) obtained the best precision. Our
methods outperformed the baselines as well as the par-
ticipating teams with a large margin for Dutch. Using
cross-lingual transfer learning did not improve the re-
sults compared to BERT-multi (en) and BERT-multi
(enfrnl). It also noticeably weakened the results for
French. This can also be observed for the Features
(enfrnl) baseline, where the results drop significantly.
Finally, even if the BERT-BiLSTM-CREF is behind the
classifier based-BERT model, it shows, however, no-
ticeably better results than the Vanilla-biLSTM CREF,
which highlights the substantial contribution of BERT
embeddings as input features for the biLSTM for this
task.

6. Analysis and Discussion

Table [6| represents the proportion of heart failure term
types for BERT for different domain transfer config-
urations. Regardless of the training sets, we see that
specific and common terms are the most captured ele-
mentsﬂ However, the overall scores and the high per-
centage of false positives indicate that there is still a big
room for improvement. It should also be remarked that
the named entities or out-of-domain terms categories
are less represented in the training sets; making them
harder to spot upon testing. The models’ training was

8Not all the teams submitted outputs for all languages.
“See Table 5 in the supplementary material for details.



Domains
BERT Corp Equi Wind Corp+Equi Corp+Wind Equi+Wind Corp+Equi+Wind
Specific Terms 81.67 76.47 82.58 76.36 82.04 77.48 73.44
Common Terms 81.19 71.15 69.27 73.98 80.56 65.83 74.60
Named Entities 59.73 53.09 63.71 61.06 58.84 58.40 57.96
OOD Terms 68.15 42.03 71.33 63.05 64.96 42.03 33.75

Table 6: Percentage of each term type in the true positives for BERT output list on the English heart failure test set
with respect to transfer learning on different domains. The information about the other models can be found in the

supplementary material.

English (BERT) French (Camembert) Dutch (BERT-multi)
P R F1 P R F1 P R F1
No filtering 34.75 71.23 46.71 40.71 68.81 51.15 63.76 42.55 51.04
Patterns 34.88 70.11 46.58 40.83 67.94 51.01 64.59 42.24 51.08
Specificity 53.74 54.64 54.18 57.65 48.30 52.57 66.21 21.78 32.04
C-Value 48.08 61.02 53.78 55.10 58.78 56.88 83.58 39.90 54.01

Table 7: Results after filtering down our best models output lists using different filters, improving the results. For
the pattern filtering, all terms that fit nominal patterns are kept. For the C-Value and the Specificity, we only keep

the first half of the ordered filtered list.

carried out directly on the terms, but we could go a step
further by selecting a finer granularity (specific, com-
mon, out-off-domain, named entity). However, these
classes were extremely unbalanced. While it was not the
concern of this work, future work will adapt the models
to exploiting each class’s particularities. Finally, many
classic ATE approaches apply post-filtering to the col-
lected term-like sequences. In the same way, we applied
to our models outputs three main automatic filtering
techniques that are: pattern filtering where all terms that
fit nominal patterns were kept; C-Value and the Speci-
ficity measures where only the first half of the ordered
lists were kept. Table [7]reports the obtained results of
each filtering technique. We first see that pattern filter-
ing did not improve the results, suggesting that BERT’s
outputs are morpho-syntactically correct. We also see
that C-Value filtering significantly improves the results
for each model, while Specificity filtering F1 scores
are less important for French and drastically weaker for
Dutch. However, for English, the F1 is improved by
7.47%.

Among the three proposed BERT-based approaches, the
binary classification system obtained the best results.
Varying the data sets revealed the effectiveness of cross-
domain BERT fine-tuning and lent support the assump-
tion that terms share cross-domain marked-contexts cap-
tured by BERT. This finding opens a new interesting line
of research for ATE since the lack of training data can be
reduced by using other specialized domains. Nonethe-
less, the results also revealed that using several training
data sets does not necessarily guarantee better perfor-
mance. We still have an unanswered question: how to
choose the most appropriate training data sets? Regard-
less of the empirical improvements, it is worth highlight-
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ing the simplicity of our strategies, since neither feature
engineering nor pattern design is needed. Besides that,
observing BERT outputs underlined the presence of
some inappropriate or ungrammatical term-like candi-
dates. Post-filtering techniques proved to be remarkably
helpful for improving the results.

Our second strategy considered ATE as a sequence la-
beling problem. While named entities are present in all
corpora, we expected better performance from BERT
(NER). However, only a small proportion of named en-
tities was extracte Overall, and despite lower F1
scores, BERT (NER) showed acceptable and sometimes
competitive results compared to other methods. It also
obtained the best precision over all the experiments.
This is more noticeable for Dutch BERT (NER) as it
outperformed the BERT classifier. Finally, the larger
proportion of extracted specific terms can be explained
by their more extensive representation in the training
sets or by the fact that they may share more definite
marked contexts. We show that BERT can be used
for ATE, replacing classic methods to identify term-like
units more accurately, and it can be followed by standard
post-filtering techniques, further improving its results.

7. Conclusion

In this paper, we proposed the first systematic study of
BERT models for the ATE task on four low resource spe-
cialized domains in three languages. We experimented
with BERT as a binary classifier, and as a named entity
recognition system, as well as a bILSTM-CREF trained
on BERT features. The obtained empirical results in-
dicate that BERT is able to transfer learning across do-

19See Table 5 in the supplementary material for details.



mains and languages, opening a new promising direc-
tion for ATE.
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9. Appendix

Additional information is presented in this supplemen-
tary material. We first present models settings and the
detailed statistics of the evaluation term lists of each
domain and for each language. Then, we present ad-
ditional BERT models evaluations through figures and
extended tables.

9.1. Settings

9.1.1. BERT Settings

For the fine-tuning phase of BERT, we used the simple-
transforrnerslibrary and its default parameters setting.
For BERT as a binary classifier, we used only 1 epoch
for fine-tuning, while for BERT as NER task, we used
4 epochs. Nonetheless, no significant impact on the
results has been observed when using more epochs.

9.1.2. BiLSTM-CRF Hyperparameters

As for our biLSTM-CREF, we choose 150 hidden units
for the BiLSTM, and 100 in the ReLLU activated hid-
den layer, depending on the validation set performance.
In a similar fashion to others who used word embed-
dings like GloVe (Pennington et al., 2014) or fastText
(Bojanowski et al., 2017) as their input, we use the last
layer of pre-trained bert-base-cased (EN), CamemBERT
(FR) and bert-base-multilingual-cased-dutch (NL) as
BERT embeddings. The model was built using Keras
and trained with a batch size of 64, for 10 epochs.

Uhttps://github.com/ThilinaRajapakse/
simpletransformers

9.1.3. Infrastructure and Average Runtime

Our models are trained using a GeForce RTX 2080 GPU,
for about 6 minutes per run for BERT, 4 minutes for
BERT (NER) and 20 minutes for the BILSTM-CRF.

Domain #ST #CT #NE #O0OO0OD Total
en| 278 644 248 6 1174
corruption fr | 300 678 236 5 1217
nl | 310 731 249 6 1295
en| 780 309 421 71 1575
dressage fr| 705 238 221 26 1183
nl | 1026 333 153 41 1546
en| 781 296 444 14 1534

wind energy | fr | 444 308 195 21 968

nl | 577 342 305 21 1245
en| 1885 320 228 158 2585
heart failure | fr | 1714 505 147 59 2423
nl | 1561 450 182 66 2257

Table 8: Number of unique terms per corpus in three
languages. Numbers are given for each type of terms:
ST for Specific Terms, CT for Common Terms, NE for
Named Entities, and OOD for Out of Domain terms.
Total covers all the terms.

9.2. Results

In this section, we provide extensive and more compre-
hensive tables and experiments that we were unable to
add to the main paper due to a lack of space. In Table
[ we show ATE scores for each validation corpus. In
addition to the BERT models presented in the paper, we
also contrast our results with extra models. Tables
and [11|show cross-domain and cross-lingual results in
more details, on the validation sets as well as on the test
set. Table|l{shows for each term type in the output list,
its proportion in the gold standard, and corpus used for
training for the heart failure English test set. These pre-
cise percentages can be found in Table[T2] We can see
that even if a term type is sometimes less represented
in the training corpus, BERT (base and multi) often do
a good job retrieving it. Figure [2] suggests that transfer
learning for ATE is domain sensitive and that a careful
choice of training data sets is undoubtedly needed for
better performance since more training data does not
always rhyme with better performances.
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Figure 1: Proportion (%) of each term type in the output list, the gold standard, and corpus used for training for the
heart failure English test set. The proportion of out-of-domain terms in the training corpus is so small, it often looks
like there are none. These precise percentages can be found in TabldT2]
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Figure 2: Illustration of BERT, BERT-multi and BERT (NER) models outputs, with regards to term types for the
heart failure test sets and for all combinations of the training sets.
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Corp Equi Wind
English P R F1 P R F1 P R F1
BERT 29.46 49.45 36.79 30.76 71.61 42.94 21.87 74.03 33.73
distilbert-base-cased 29.07 51.4 37.08 31.09 72.15 43.42 22.32 73.06 34.16
BERT-multi 2547 58.21 35.25 27.87 71.94 40.15 22.92 74.51 34.94
distilbert-base-multi-cased 24.54 59.29 34.68 27.46 72.15 39.76 22.56 74.16 34.56
bert-large-cased 28.21 52.53 36.42 31.11 70.5 43.02 21.86 74.87 33.63
RoBERTa 26.85 62.53 37.33 29.17 75.59 42.03 20.93 77.08 3291
BERT (NER) 52.92 22.46 31.48 54.45 32.63 40.81 35.48 23.66 28.39
BERT-multi (NER) 34.09 11.51 17.21 13.41 14.67 14.01 11.14 18.58 13.93
RoBERTa (NER) 3191 10.22 15.48 49.39 28.44 36.11 32.48 23.08 26.98
distilroberta-base 26.79 55.5 35.89 27.29 73.52 39.77 19.99 75.12 31.56
BERT-biLSTM-CRF 22.61 18.98 20.63 20.65 16.03 18.05 21.04 23.31 22.11
French P R F1 P R F1 P R F1
BERT-multi 27.53 53.03 3591 21.17 60.77 31.35 13.82 68.99 22.97
distilbert-base-multi-cased 25.11 56.06 34.62 19.53 62.47 29.75 13.21 67.9 22.09
CamemBERT 29.73 62.61 40.25 24.38 65.89 35.53 15.63 72.51 25.71
BERT-multi (NER) 39.17 11.59 17.89 42.83 20.20 27.45 23.22 25.93 24.5
CamemBERT (NER) 42.61 12.33 19.13 48.01 23.33 31.40 24.09 24.48 24.28
BERT-biLSTM-CRF 18.78 16.21 17.40 18.53 19.08 19.76 17.20 20.72 18.79
Dutch P R F1 P R Fl1 P R F1
BERT-multi 23.70 68.59 35.21 30.39 63.85 41.10 15.85 66.55 25.52
distilbert-base-multi-cased 21.69 69.82 33.09 28.32 64.99 39.39 15.61 65.54 25.19
BERT-multi (NER) 40.93 15.68 22.67 65.25 32.79 43.65 37.41 38.31 37.85
BERT-biLSTM-CRF 20.51 21.75 21.11 21.17 18.90 19.97 21.70 15.28 17.93

Table 9: ATE scores (%) in terms of Precision (P), Recall (R) and F1-score (F1). For each validation corpus, the two
remaining ones were used for fine-tuning. We contrast 3 usages of BERT : as a binary classifier, BERT-NER and
BERT embeddings used with a biILSTM-CRF. We also contrast BERT’s multi-lingual version as well as RoOBERTa
for English and Camembert for French (This table is similar to Table 2 of the main paper with extra models such
distilbert and Roberta-large).
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English
Test Train
Corp Equi Wind Equi+Wind
BERT 35.33 38.01 36.79
BERT-multi 35.09 35.56 35.25
RoBERTa 36.16 39.97 37.33
BERT (NER) 15.97 22.18 31.48
BERT-biLSTM-CRF 20.54 19.01 20.63
Equi Corp Wind Corp + Wind
BERT 39.93 44.21 42.94
BERT-multi 38.93 40.54 40.15
RoBERTa 42.07 44.99 42.03
BERT (NER) 38.55 41.74 40.81
BERT-biLSTM-CRF 17.65 19.51 18.04
Wind Corp Equi Corp + Equi
BERT 33.45 33.34 33.73
BERT-multi 34.04 35.59 34.94
RoBERTa 36.16 33.77 3291
BERT (NER) 30.58 26.89 28.39
BERT-biLSTM-CRF 19.99 20.64 22.11
French
Test Train
Corp Equi Wind Equi + Wind
BERT-multi 34.84 35.71 3591
CamemBERT 34.87 39.07 40.25
CamemBERT (NER) 18.71 19.99 19.13
BERT-biLSTM-CRF 18.04 16.66 17.40
Equi Corp Wind Corp + Wind
BERT-multi 27.64 32.88 31.35
CamemBERT 32.73 3222 35.53
CamemBERT (NER) 34.09 31.62 314
BERT-biLSTM-CRF 18.96 19.21 19.76
Wind Corp Equi Corp + Equi
BERT-multi 24.12 23.37 2297
CamemBERT 26.78 24.57 25.71
CamemBERT (NER) 30.35 22.54 24.28
BERT-biLSTM-CRF 18.40 17.97 18.79
Dutch
Test Train
Corp Equi Wind Equi + Wind
BERT-multi 29.91 35.52 35.21
BERT-multi (NER) 3242 27.62 22.67
BERT-biLSTM-CRF 19.09 20.22 21.11
Equi Corp Wind Corp + Wind
BERT-multi 37.52 41.42 41.1
BERT-multi (NER) 46.36 41.51 43.65
BERT-biLSTM-CRF 19.14 21.20 19.97
Wind Corp Equi Corp + Equi
BERT-multi 26.11 24.8 25.52
BERT-multi (NER) 36.74 35.86 37.85
BERT-biLSTM-CRF 1629 19.83 17.93
661

Table 10: Domain transfer results (F1%) of ATE on the English, French and Dutch data sets (This table is the
extension of Table 3 of the main paper



English
Test Train
hf Corp Equi Wind | corp+equi | corp+Wind | equi+wind All
BERT 43.25 45.10 46.21 45.40 45.35 48.21 46.42
BERT-multi (en) 40.62 43.39 43.70 43.39 42.91 45.22 45.77
BERT-multi (enfrnl) | 40.92 43.81 44.71 43.62 44.11 46.29 45.37
RoBERTa 41.75 44.87 44.6 44.15 43.58 44.71 43.35
BERT-biLSTM-CRF | 24.28 26.57 28.27 2522 26.92 29.93 29.26

Table 11: Heart failure test results (F1%) using cross-domain and cross-lingual (enfrnl) training. Equi+Wind means
that we fine-tuned BERT on the combination of equitation and wind energy data sets. BERT-multi (enfrnl) means
that the training was conducted using three languages.

Domains

Occ. in Training Set Corp Equi Wind Corp+Equi Corp+Wind Equi+Wind Corp+Equi+Wind
Specific Terms 7.11 94.39 41.50 84.04 30.30 82.86 75.65
Common Terms 52.00 4.73 46.95 10.34 48.59 13.93 17.56
Named Entities 40.85 0.82 11.40 5.56 20.98 3.12 6.71

OOD Terms 0.02 0.04 0.14 0.04 0.10 0.06 0.06
BERT Corp Equi Wind Corp+Equi Corp+Wind Equi+Wind Corp+Equi+Wind
Specific Terms 81.67 76.47 82.58 76.36 82.04 77.48 73.44
Common Terms 81.19 71.15 69.27 73.98 80.56 65.83 74.60
Named Entities 59.73 53.09 63.71 61.06 58.84 58.40 57.96

OOD Terms 68.15 42.03 71.33 63.05 64.96 42.03 33.75
BERT-NER Corp Wind Equi Corp+Equi Corp+Wind Equi+Wind Corp+Equi+Wind
Specific Terms 27.93 31.01 25.33 25.65 32.12 28.67 29.47
Common Terms 40.12 28.21 18.80 17.86 33.85 21.36 21.31
Named Entities 23.89 25.22 28.31 25.22 25.66 26.54 27.87

OOD Terms 12.10 12.10 10.82 11.46 12.10 12.10 15.28
BERT-multi Corp Equi Wind Corp+Equi Corp+Wind Equi+Wind Corp+Equi+Wind
Specific Terms 79.60 79.39 73.92 78.81 79.81 76.84 79.76
Common Terms 73.66 73.04 74.29 73.66 73.04 66.77 68.65
Named Entities 61.94 59.29 53.53 60.61 56.63 50.31 61.06

OOD Terms 64.96 59.23 38.21 44.58 61.78 50.31 52.22

Table 12: Percentage of each term type in the true positives list for BERT, BERT-NER and BERT-multi outputs on
the English heart failure test set in respect to transfer learning on different domains. The top part of the table shows
(in %) how well each type is represented in the training data.
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