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Abstract
Identifying the high level structure of texts provides important information when performing distant reading analysis. The
structure of texts is not necessarily linear, as transitions, such as changes in the scenery or flashbacks, can be present. As a first
step in identifying this structure, we aim to identify transitions in texts. Previous work (Heyns and van Zaanen, 2021) proposed
a system that can successfully identify one transition in literary texts. The text is split in snippets and LDA is applied, resulting
in a sequence of topics. A transition is introduced at the point that separates the topics (before and after the point) best. In this
article, we extend the existing system such that it can detect multiple transitions. Additionally, we introduce a new system
that inherently handles multiple transitions in texts. The new system also relies on LDA information, but is more robust than
the previous system. We apply these systems to texts with known transitions (as they are constructed by concatenating text
snippets stemming from different source texts) and evaluation both systems on texts with one transition and texts with two
transitions. As both systems rely on LDA to identify transitions between snippets, we also show the impact of varying the
number of LDA topics on the results as well. The new system consistently outperforms the previous system, not only on texts
with multiple transitions, but also on single boundary texts.

Keywords: topic modelling, LDA, transition identification

1. Introduction
The digitization and annotation of texts is one of the
main focus area in the field of digital humanities. The
large number of digitization projects boost the amount
of digitally available texts and this, in turn, allows hu-
manities scholars to access and analyze texts that pre-
viously were difficult to access or process.
With the huge amounts of texts available, one may
try to identify patterns that cross (large amounts of)
texts. However, given the size of the number of texts,
close reading approaches (consisting of in depth liter-
ary analyses of texts) are practically infeasible. Instead,
distant reading approaches (Moretti, 2013), which rely
on the automatic analysis of a text, can be considered
instead. Distant reading can identify global properties
of one or more texts, in contrast to close reading, which
focuses on more fine-grained properties (Franzini et al.,
2015). One advantage of distant reading is that the
computer can perform large scale objective analyses
of texts, as opposed to the time consuming, subjective
analyses of close reading.1

One task that is particularly useful in a distant reading
setting is that of identifying the high level structure of a
text. This requires an overview of the entire text (which
might be very long, making it difficult for humans to
retain a full overview). Genette et al. (1980) identified
different levels within literary texts. On one level, the
sequence of events is viewed in relation to the ordering
of the narration. This text structure is not necessarily

1A discussion on the advantages and disadvantages of
close and distant reading approaches is beyond the scope of
this article.

linear, but transitions, such as changes in the scenery
and flashbacks, may be present.
In previous work, Heyns and van Zaanen (2021) pro-
posed a system that identifies a boundary describing
a high level transition in a literary text. This method
assumes that transitions occur when there is a shift in
topics. By identifying the topics that occur in the text,
they showed that it is possible to identify a transition
in a text by finding the position in the text that shows
a relatively large contrast in topics between those that
occur before and those that occur after the position in
the text. This position can then be expected to be a high
level textual transition.
Practically, the system subdivides the literary text into
smaller snippets. LDA (Blei et al., 2003) is then used
to identify the main topic for each snippet. Next, each
boundary between the snippets is considered a potential
textual transition. The boundary that shows the largest
difference between LDA topics occurring before and
those after the specific boundary, is assigned to be the
high level textual transition. This occurs when there is
a minimum of overlap between the LDA topics before
and after the boundary. The system is evaluated by ap-
plying it to a text which consists of the concatenation
of two texts. As such, a real transition is known. The
random mean squared error (RMSE) is used to mea-
sure how well the proposed transition matches the real
transition.
The system works relatively well, with low RMSE
(even working perfectly in some cases) which shows its
practical feasibility. However, the system also shows
some shortcomings. First, it is designed to only iden-
tify one transition in a text. In real texts, one may ex-
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pect more transitions, limiting the practical applicabil-
ity of the system. Second, the experiments were only
performed on one text (that was created by the con-
catenation of two texts). This limited evaluation set-
ting may mean that the results cannot be generalized to
other texts.
In this article, we aim to extend the previous work in
several ways. First, we extend the system proposed by
Heyns and van Zaanen (2021), allowing it to identify
multiple transitions in a text.
Second, we introduce a new method to identify tran-
sitions in a text. This new method is designed from
scratch to be able to identify multiple transitions in a
text and as such, it will be closer to a real world sce-
nario where multiple transitions may occur in a text.
Third, we follow the same evaluation methodology as
Heyns and van Zaanen (2021), but extend the evalu-
ation to multiple transitions in the text. In this situa-
tion, the correct transitions are known (like the previ-
ous evaluation approach which only has one transition),
but the task is much more complex.
Finally, Heyns and van Zaanen (2021) performed ex-
periments on snippets from only one pair of texts.
Some results may be attributed to the specific texts that
were used. Here, we run experiments on multiple texts.
This allows us to experiment with text pairs that are se-
mantically more closely related to each other, further
complicating the identification of text transitions.

2. Background
To our knowledge, only a limited amount of research
on the automatic detection of transitions in language
has been conducted.
Previous research by Grosz and Sidner (1986) and
Hirschberg and Litman (1993) focused on specific
properties in the linguistic signal. This is illustrated
by the identification of transitions in the area of spoken
dialog. In particular, characteristic features of transi-
tions that can be found in the language signal are used,
e.g., phrases used to signal a topic change, significant
pauses in the speech signal, changes in intonation, or
domain specific cue phrases. A similar approach has
been applied to textual data where the text structure,
e.g., headings, chapter divisions, paragraphs, etc., is
used to detect transitions.
These techniques that rely on specific aspects of the lin-
guistic signal, however, are specialized, are difficult to
use for longer, unstructured texts, and can be expected
to lead to low quality results in situations where the
structure of the text does not directly follow the lay-
out (e.g., when a topic crosses multiple paragraphs).
In particular, in literary text, where, for instance, we
may be interested in the structure that shows a (non-
linear) story line, the relationship between properties
such as paragraph transitions and story line transitions
becomes unclear.
Reynar (1994) proposed a method based on lexical co-
hesion and a graphical technique called Dot-plotting

to identify transitions in text. Dot plotting was first
proposed by Church (1993) to align bilingual corpora.
Reynar (1994) adjusted the Dot-plotting method so that
it enumerates the lexical items in a text. If a particular
word appears at positions x and y in a text, the four
points corresponding to the Cartesian product of the
set would be plotted, i.e., the area indicated by (x, x),
(x, y), (y, x), and (y, y) is plotted. The repetition of
lexical items occurs more frequently within regions of
a text discussing the same topic. The density of the
areas outside a region is calculated and the boundary is
identified at the lowest density point. Choi et al. (2001)
have extended and improved upon this method by intro-
ducing LDA as a classification method in the popular
c99 algorithm.
Aurnhammer et al. (2019) describe results from a study
that compares results from a close reading analysis with
those of a distant reading analysis. The close reading
approach manually annotated Reddit posts and these
annotations are compared against a distant reading ap-
proach that relies on the identification of topics using
LDA. The results showed that there is a relationship be-
tween manually annotated topics and LDA topics in a
text, although some types of annotations cannot easily
be identified automatically.
To evaluate the performance of a system that identifies
transitions in texts, the system has to be applied to a
text in which the transitions are known. The output of
the system can then be compared against the true tran-
sitions in the text. However, (manually) identifying text
transitions is a subjective task. Texts often have a hier-
archical structure (Grosz and Sidner, 1986), where text
parts can consist of multiple (sub) text parts as apposed
to a simple linear structure (Skorochod’ko, 1971). This
means that textual transitions can take place on mul-
tiple levels in the hierarchy. Two separate studies by
Galley et al. (2003) and Gruenstein et al. (2008) found
that human annotators did not always agree on the tran-
sition positions in texts they were asked to annotate.

3. Methodology
In this article, we will introduce, evaluate, and compare
two systems. These systems are applied to texts with
known transitions. Information on the data that is used
to evaluate these systems is provided first, followed by
a description of the systems and their experimental set-
tings.

3.1. Data sets
To evaluate the text transition identification systems,
we require texts in which the transitions are known.
Previous work already indicated that manual annota-
tion may prove difficult. As such, we create evaluation
data by concatenating text snippets from different texts.
This way, we have control over the position of the tran-
sitions.
The creation of a text used for evaluation is done by
taking snippets from two texts (say texts A and B).
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These snippets are then concatenated into a new text
in such a way that the transition between snippets from
text A and B is still known.
Our first data set (called ST for single transition) con-
tains concatenated texts with only one boundary (which
means that the text is created by concatenating snippets
from A and B such that it follows the sequence AB).
The second data set (which is called MT for multiple
transitions) contains texts with multiple boundaries and
these are created by concatenating snippets in the for-
mat ABA.
In contrast to the evaluation of Heyns and van Zaa-
nen (2021), which only used one pair of texts, here we
use ten pairs of texts (extracted from a total of twenty
books). In particular, we used the following text pairs:

1. Utilitarianism by John Mill, and Hide and Seek by
Wilkie Collins,

2. Crime and Punishment by Fyodor Dostoevsky,
and Great Expectations by Charles Dickens,

3. Eureka by Edgar Allan Poe, and A study in scarlet
by Sir Arthur Conan Doyle,

4. And Then There Were None by Agatha Christie,
and In the woods by Tana French.

5. The Count of Monte Cristo by Alexandre Dumas,
and Our Mutual Friend by Charles Dickens

6. Middlemarch by George Eliot, and Jude the Ob-
scure by Thomas Hardy

7. Through the looking glass by Lewis Carroll, and
Anne of green Gables by Lucy Montgomery

8. Jane Eyre by Charlotte Brontë and Little Dorrit by
Charles Dickens

9. The Moonstone by Wilkie Collins, and Franken-
stein by Mary Shelley

10. Barchester Towers by Anthony Trollope, and
Cranford by Elizabeth Gaskell

For the ST data set, we selected 25 snippets of 500
words each from both texts A and B, which we concate-
nated. We did this for each of the ten pairs of texts. For
the MT data set (which contains ABA created texts), we
used twelve snippets of text A for the first part and thir-
teen snippets from text A for the last part. The B part
still consisted of 25 snippets from text B. This means
that all concatenated texts in both data sets consist of
50 snippets each, where for the ST texts the true transi-
tion occurs after 25 snippets and for the MT texts, the
transitions occur after snippet twelve and after snippet
37. All concatenated texts contain 25,000 words in to-
tal.
Before creating the snippets, straightforward pre-
processing is applied to the texts. Stop words are re-
moved using NLTK2 as stop words occur frequently in

2https://www.nltk.org/

the text and do not aid in assigning LDA topics to the
snippets. The texts are also lower cased, lemmatized,
and the punctuation is removed using spaCy3.

3.2. Systems
In previous work, Heyns and van Zaanen (2021) de-
scribed a transition identification system that can iden-
tify a single transition in a text. The system accepts
an input text consisting of a sequence of snippets (S).
Using LDA a topic is assigned to each snippet, re-
sulting in a sequence of LDA topics: LDA(S) =
⟨LDA(s1), LDA(s2), . . . , LDA(sn)⟩. Each position
between two snippets, (sx, sx+1) in the sequence (with
x = 1 . . . n− 1) is considered as a potential transition.
At each potential transition, the entropy at that position
is computed. The potential transition with the mini-
mum entropy indicates the best potential transition.4 If
there is multiple positions that have the same minimum
entropy, the system selects one of the potential transi-
tions at random.
To allow the system to identify multiple boundaries,
we extended the existing system. We will call this
extended system the STI (Single Transition Identifica-
tion) system as it is based on the original system that
only identifies a single transition. After the system
identifies the first transition (as explained in the previ-
ously proposed system), the sequence is divided in two
at the transition point. The algorithm is repeated on the
first and second part of the sequence. A potential tran-
sition for both parts of the sequence is then identified
and the position with the minimum entropy is selected
as the second intersection.
In this article, we also propose a new system, which
can identify multiple transitions in a text. We will call
this the MTI (Multiple Transition Identification) sys-
tem. We start with the same input as the STI sys-
tem, i.e., a text consisting of a sequence of snippets
(S), which is handed to the LDA system, again re-
sulting in a sequence of LDA topics: LDA(S) =
⟨LDA(s1), LDA(s2), . . . , LDA(sn)⟩. We then use a
collation algorithm to search for the boundary using the
following steps:

1. Number snippets according to their position in the
text.

2. For each of the LDA topics, identify all snippets
(represented by their number) that have that LDA
topic assigned to them.

3. For each LDA topic, identify all sequences of con-
secutive snippet numbers. Calculate the length of
all of these consecutive snippet numbers and add
the lengths, which forms the value for that LDA

3https://spacy.io/
4The original system selected the transition that has the

smallest intersection between the LDA topics on both sides
of the boundary using a bag for one side and a set for the
other side.

https://www.nltk.org/
https://spacy.io/
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LDA Snippet numbers Value
1 [13, 14, 15], [17, 18], [22, 23, 24,

25], [33, 34, 35, 36, 37]
A =14

2 [1, 2, 3], 39, [44, 45, 46, 47, 48] 8
3 27, 50 0
4 49 0
5 6, 19, 21, 26, [28, 29, 30, 31, 32] 5
6 [4, 5, 6, 7, 8, 9, 10, 11, 12], 38,

[40, 41, 42, 43]
B =13

7 16, 20 0

Table 1: For each LDA topic, corresponding snippet
numbers are ordered. Groups of consecutive snippet
numbers are identified, indicated by square brackets.
The value belonging to an LDA topic is the sum of the
lengths of all groups of consecutive snippets in a topic.
The LDA topics with the largest values (which will be
list A and B) are indicated in bold in the value column.

Group [1 3] 39 [44 48] Sum
A 12 10 2 7 11 42
B 3 1 1 1 5 11

Table 2: Calculate the minimum distance for the start
and end snippets (indicated using open and close square
brackets) of each group to the closest snippet value in
list A and list B. Here this is illustrated for LDA topic
2.

class. Note that a snippet with number x forms its
own group (which then has value zero) if no snip-
pet with number x−1 and x+1 can be found with
the same LDA topic.

4. Identify the two LDA topics with the highest value
and call these list A and list B. If two LDA top-
ics have the same value, pick the topic with the
most snippets. If more than one topic also have
the same number of elements, pick the first topic.

Steps 1–4 are demonstrated in Table 1.

5. Identify the LDA topic X with the next highest
group value.

6. For the snippets that can be found at the start or
end of a group in topic X or are not present in a
group, identify the snippet that is closest to the
snippet under consideration in both lists A and

List Snippet numbers
A 13, 14, 15, 17, 18, 22, 23, 24, 25, 33, 34, 35,

36, 37
B 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48

Table 3: Lists A and B after the snippets of LDA topic
2 are added to the list with the minimum total values,
i.e., list B.

List Snippet numbers
A 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37

B 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50

Table 4: The final versions of list A and list B. All
possible boundary positions are printed in bold.

B. Store the minimum distances for each of these
snippets. Add the distances. Table 2 illustrates
this process for LDA topic 2. E.g., [1 is the be-
ginning of a group from LDA topic 2. The closet
snippet for this in list A is snippet 13, so the dis-
tance is 12. For list B, this is snippet 4, so the
distance for list B is 3.

7. Add the snippet numbers of the LDA topic under
consideration to the list with the smallest sum of
distances. Table 3 shows the altered list A and B.

8. Steps 5–7 are repeated for all the remaining LDA
topics. If an LDA topic has the same sum of min-
imum distances to list A and list B, the length of
the group in list A and list B that follows the start
and end of each group in the LDA topic is used
to calculate the minimum distance instead. If the
minimum distance to list A and B is still the same,
the segment is added to list A.

9. After all LDA topics are added to either list A
or B, we identify and remove the outliers in both
lists. An outlier is defined as a single snippet num-
ber x for which x − 1 and x + 1 are not found in
the same list. The outliers are added to an outlier
list.

10. For every outlier in the outlier list, we check if
can be added to a group in either list A or B and
the outlier is added to the appropriate list. Table 4
shows the final division of the snippets in lists A
and B.

11. The last step is to identify the start and end of each
group in list A and B. One group will always start
with snippet number 1 and one group will always
end with snippet number 50. We can delete these
values from the possible boundaries as a boundary
cannot occur in these positions. The remaining list
of possible boundaries will then contain groups of
two consecutive numbers. The boundaries will be
between the consecutive numbers found in the dif-
ferent lists. In this example (see Table 4) the pos-
sible boundaries are between snippet numbers 12,
13 and between snippet numbers 37, 38.

3.3. Experimental Settings
To evaluate the performance of the new MTI system
against that of the STI system which is an extension of
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the system proposed by Heyns and van Zaanen (2021),
we first perform an experiment that requires the iden-
tification of one transition in texts. Note that the ex-
tended STI system behaves like the system proposed
by Heyns and van Zaanen (2021) when identifying only
one transition although this decides on a transition us-
ing entropy. From previous work we know that the
STI system performs well on an ST data set. However,
the STI system so far has only been tested on one text.
Here we will extend the evaluation to multiple texts (as
described in Section 3.1). Additionally, we can com-
pare the performance of the MTI system against that of
the STI system when assigning one transition.
The second experiment focuses on the identification of
multiple transitions. Both STI and MTI systems will
be applied to the MT data set, which illustrates how
well both systems can identify multiple boundaries. We
expect the MTI system to clearly outperform the STI
system as this system has been specifically designed to
deal with multiple boundaries.
As seen in previous work (Heyns and van Zaanen,
2021), the number of LDA topics assigned to the text
can have a drastic influence on the performance of the
system. Previous results showed that in cases where
only one transition is identified, the (STI) system per-
forms well. To provide a good overview, we will eval-
uate both the STI and the MTI system with two to 30
LDA topics (in steps of two). For each number of LDA
topics, each system is run 100 times as, due to the ran-
dom factor inherent in LDA, the LDA topics might be
slightly different in each run. We provide the median,
mean, and standard deviation results for each of these
settings.

3.4. Evaluation
Standard evaluation metrics used in classification tasks,
e.g., precision, recall, and F-score, are not directly suit-
able when trying to evaluate this particular problem
even though the metrics could be used. True positives
can be defined as when the system identified a tran-
sition that is the same as the real transition. In the
same line, if the identified transition is not the same
as the true transition, it is a false positive. False neg-
atives occur when a true transition is not identified by
the system. True negatives are cases where the system
(correctly) identified a non-transition. From these, the
standard metrics can be calculated. However, the prob-
lem with these evaluation metrics is that they do not
take distance into account. It is better for the system to
propose a transition close to the real transition than to
propose one that is far.
Reynar (1994) proposed a metric where a window of
three sentences is considered, which allows for a bit of
leniency with respect to the transition location. How-
ever, this window length is arbitrary and will still rank
a terrible system on par with an OK system that pro-
poses transitions just outside the window. Alterna-
tive measures have been proposed by Beeferman et al.

(1999), Pevzner and Hearst (2002) and Georgescul et
al. (2008), each building upon one another. The advan-
tages and shortcomings of each is discussed in detail in
Purver et al. (2011).
To take into account the distance between the proposed
transition and the true transition, we follow Heyns and
van Zaanen (2021) and use the Root Mean Square Error
(RMSE). RMSE takes distance between proposed and
true transitions into account, allowing for a fine-grained
comparison of systems. RMSE is defined as follows:

RMSE =

√∑n
i=1 (pi − r)

2

n

where n is the number of times the experiment is run,
pi is the position of the proposed transition position
(which can range from one to 49) in run i (which ranges
from one to 100) and r is the position of the real transi-
tion (at position 25 for the ST data set, and positions 13
and 38 for the MT data set). To calculate the RMSE for
multiple transitions, the RMSE is computed for each
transition and these values are combined using the av-
erage. The scikit-learn Python package5 was used to
calculate the RMSE.

4. Results
The results of all the experiments is provided in Ta-
ble 5. We first consider the performance of the existing
STI system on the ST data set that requires identifica-
tion of a single transition. These results are compara-
ble to the previous results as provided in Heyns and van
Zaanen (2021), although the use of entropy to identify
boundaries has improved performance. The differences
between the texts are marginal, indicating that the STI
system is robust.
Next, we can compare the performance of both STI and
MTI systems on the ST data set. Here we see that the
new MTI system consistently outperforms the STI sys-
tem (with the exception when only two LDA topics are
used where both systems have the same perfect perfor-
mance).
When increasing the number of LDA topics the perfor-
mance starts to decrease as can be seen by the increase
of the mean and median of RMSE values. This holds
for both STI and MTI systems. However, the results of
the MTI system degrade more slowly.
Next, we compare the performance of the STI and MTI
systems on the MT data set, which requires the identi-
fication of multiple boundaries. Here, the performance
of the STI system is worse than that of the MTI system.
Similarly to the results on the ST data set, the MTI sys-
tem shows a perfect performance when identifying the
intersections using two LDA topics. The performance
starts to decrease as the number of topics increase, al-
though the mean for each number of LDA topics is not
much higher than the mean of the MTI system when a
single boundary is identified.

5https://scikit-learn.org

https://scikit-learn.org
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ST data set MT data set
System # topics MED M SD MED M SD
STI 2 0.000 0.000 0.000 1.000 2.250 3.284

4 0.000 0.000 0.000 2.000 2.875 2.900
6 0.000 0.000 0.000 4.500 5.125 4.291
8 0.000 0.000 0.000 5.000 5.250 2.435
10 0.000 0.000 0.000 1.000 3.375 4.779
12 0.000 0.000 0.000 5.000 5.000 4.408
14 0.000 0.000 0.000 4.500 5.125 2.100
16 0.000 0.000 0.000 6.000 6.375 3.583
18 0.000 0.000 0.000 6.500 6.875 4.324
20 0.500 0.000 0.000 4.000 6.125 4.643
22 0.000 0.000 0.000 8.500 8.000 4.660
24 0.000 0.250 0.000 8.000 8.500 3.464
26 0.000 0.125 0.463 12.000 10.625 4.534
28 0.000 0.375 0.354 12.000 11.875 1.853
30 0.050 0.050 1.061 12.000 11.750 1.581

MTI 2 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.691
6 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.230 0.332 1.000 0.333 0.873
12 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.641 0.732 1.000 0.610 1.002
16 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 1.031 1.732 0.500 0.833 1.102
20 0.000 0.750 1.500 1.200 1.050 1.321
22 0.000 1.000 1.732 2.000 1.267 1.845
24 0.000 1.000 1.732 2.300 1.714 1.500
26 3.000 2.333 2.082 2.000 1.667 1.800
28 0.500 1.000 1.414 1.650 1.200 2.004
30 0.000 0.667 1.155 2.000 1.004 2.679

Table 5: RMSE results (MED: median, M: mean, SD: standard deviation) of the STI and MTI systems on both
single (ST) and multiple (MT) transitions data sets, for the range of LDA topics.

5. Discussion
Being able to identifying the high level structure of a
text is an important and useful aspect of distant reading
analyses. With the aim of identifying the structure of
a text, we start by identifying transitions within a text.
Previous work (Heyns and van Zaanen, 2021) proposed
a system that can identify a transition using topic infor-
mation extracted using LDA.
In this article we extend the system, so that it can iden-
tify multiple transitions. We also introduce a new sys-
tem specifically designed to identify multiple transi-
tions in a text.
We compare both systems on data sets requiring sin-
gle transitions as well as multiple transitions. This
showed that the MTI system consistently outperformed
the STI system when multiple transitions occur in the
text. Both systems rely on LDA topic information
assigned to snippets of the text under consideration.
However, the MTI system performs a more complex,
and as a result, more robust analysis of the behavior of
the LDA topics over the snippets. The variation of the
assigned LDA topics to the snippets in the text has a

larger impact on the performance of the STI system as
a result. What could be seen as noise in the assignment
of LDA topics has a larger effect on the STI system
compared to the MTI system. This is emphasized by
the fact that this influence becomes larger when a larger
number of LDA topics is assigned.
In contrast to previous work, the systems are evaluated
on more than one text (created by concatenating snip-
pets from two source texts). The fact that the results are
highly comparable means that (even) the STI system is
robust with respect to different texts.
Finally, as could be expected, the task of identification
of multiple boundaries in a text is more complex than
that of the identification of a single transition. How-
ever, the performance of the MTI system shows that
multiple transitions can be identified with a reasonable
performance (in particular if a low number of LDA top-
ics is assigned).

6. Conclusion
In this article, we tackle the task of automatically iden-
tifying high level transitions in texts, which, for in-
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stance, indicates locations of changes in scenery, flash-
backs, etc. This is an essential task in the context of
distant reading as it provides information on the high
level structure of texts.
We build on an existing system that has been shown
to be able to identify one transition in a text (Heyns
and van Zaanen, 2021) and extend it to handle multiple
transitions. Additionally, we proposed a novel system
that is specifically designed to identify multiple transi-
tions. Both systems build on information provided by
LDA, a topic modeling system.
The systems are evaluated on multiple texts which
are created by concatenating snippets from two source
texts (in contrast to the existing system which had only
been evaluated on one text in previous work), showing
that they lead to robust results.
The novel MTI system consistently outperforms the
STI system for the identification of two transitions in
the text. Also, the performance of the MTI system
is comparable in the experiments requiring the assign-
ment of one or two transitions.
With respect to future work, Heyns and van Zaanen
(2021) indicated that further investigation is needed re-
garding the influence of the length of the snippets used
to assign the LDA topics. This particular question has
not been addressed in this article and still remains an
open question. Given the robust results which are based
on the LDA topics, we believe that the snippets may be
made shorter allowing for a more fine-grained assign-
ment of transitions.
We realize that concatenating snippets into a text in or-
der to evaluate the systems’ performance is artificial.
In particular, when the source texts are very different
semantically, LDA might provide exaggerated differ-
ences. Transitions in texts identified by human judge-
ment should lead to a more natural means to evaluate
the performance. However, one has to keep in mind
that previous work indicated low agreement between
annotators on such a task.
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