
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 2498–2506
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

2498

The CLAMS Platform at Work:
Processing Audiovisual Data from the American Archive

of Public Broadcasting

Marc Verhagen, Kelley Lynch, Kyeongmin Rim, James Pustejovsky
Department of Computer Science,

Brandeis University,
Waltham, Massachusetts,

{verhagen,kmlynch,krim,jamesp}@brandeis.edu

Abstract
The Computational Linguistics Applications for Multimedia Services (CLAMS) platform provides access to computational
content analysis tools for multimedia material. The version we present here is a robust update of an initial prototype implemen-
tation from 2019. The platform now sports a variety of image, video, audio and text processing tools that interact via a common
multi-modal representation language named MMIF (Multi-Media Interchange Format). We describe the overall architecture,
the MMIF format, some of the tools included in the platform, the process to set up and run a workflow, visualizations included
in CLAMS, and evaluate aspects of the platform on data from the American Archive of Public Broadcasting, showing how
CLAMS can add metadata to mass-digitized multimedia collections, metadata that are typically only available implicitly in
now largely unsearchable digitized media in archives and libraries.

Keywords: Multimedia platforms, Web services, Archives, Interoperability

1. Introduction

The CLAMS project provides access to tools that an-
alyze multimedia content. The intended audiences for
the platform are (1) researchers focused at processing
multimedia content and (2) organizations like archives
and libraries that seek to enrich their materials with
metadata. It would be beneficial for those organiza-
tions to be able to process their sources and improve
the search functionality that they offer their customers
and the public at large. The processing tools that allow
that need to be affordable and relatively easy to use,
and ideally it should be possible to adapt the tools to
the data in question.
In this paper we describe the first stable version of the
CLAMS platform, following up on work in (Rim et al.,
2019). We first give an overview of the system as it is
now, pointing out the differences with its previous in-
cantation. Then we describe some of the results of our
work on the American Archive of Public Broadcasting
(AAPB). We focus on what workflows were valuable
for the AAPB data and which issues came up while
processing the data. Finally we give an overview of
related work.

2. CLAMS Architecture

The main ingredients of the CLAMS platform are the
applications, the REST API, the MMIF specifications
and its associated Software Software Development Kit
(SDK), the workflow managers, and the visualization
components. An overview of those components and
some of their interactions is shown in Figure 1.

Figure 1: CLAMS Architecture

2.1. Applications
Applications are processing services that are typically,
but not always, based on off-the-shelf publicly avail-
able processing tools with permissive licenses. We use
the term application or app to refer to the software that
takes a processing tool and embeds it as a CLAMS web
service and we use tool to refer to the embedded pro-
cessing tool.
CLAMS uses a microservices architecture where each
application performs a specific processing task on
video, audio, image or text data, or a combination
thereof. Each application exposes a RESTful API on a
Flask or Gunicorn server and has access to all CLAMS
protocols, which include mechanisms for parameter
passing, error handling, metadata definition and input
data handling, as well as an interface to the MMIF in-
terchange format. Typically, an application runs as a
Docker container, but technically all the platform re-
quires is access to a RESTful server listening to GET



2499

and POST requests and responding with either service
metadata or an output file in the MMIF format.
For our current purposes, the most useful applications
have been the following: (1) audio segmenters that
distinguish between speech and non-speech, (2) Au-
tomatic Speech Recognition (ASR) and alignment of
transcripts with video time frames, using Kaldi (Povey
et al., 2011) and the Gentle forced aligner1, (3) the
post-ASR component that introduces capitalization and
punctuation, which is not available in the Kaldi out-
put, based on the Python fastpunct module2, (4) com-
ponents that recognize the bars-and-tone and slate sec-
tions in a video3, (5) Optical Character Recognition
(OCR) with EAST (Zhou et al., 2017) and Tesseract4,
and (6) Named Entity Recognition (NER) with spaCy.5

2.2. The Multi-Media Interchange Format
All applications use the MMIF format6 to store anno-
tations created by the processing tools. The format is
a JSON-LD format based on the LAPPS Interchange
Format (LIF) for text processing tools (Verhagen et al.,
2015), which separated the primary text source from
the annotations on the text. MMIF does the same but
also allows for image, audio and video data. Primary
data of all types are stored in the MMIF file as refer-
ences to files and those files are considered read-only.
Annotations are added in views (sometimes referred
to as annotation layers), which contain metadata and
a list of annotations. Metadata include the creator of
the view, a specification of the contents of a view in
terms of what annotation types are contained in it, the
creation date, and an error message if the application
failed. Each annotation in the annotation list either ref-
erences another annotation or is anchored to primary
data by character offset, image coordinates, or time
segments and time points. An application can add any
number of views to a MMIF file, but views previously
generated by other applications cannot be altered by the
application.

1https://github.com/lowerquality/gentle.
2https://github.com/notAI-tech/fastPunct.
3A slate is a board showing the identifying details of a

take of a motion picture or TV program, which is held in
front of the camera at its beginning.

4https://github.com/tesseract-ocr.
5https://spacy.io.
6Our data interchange format shares its acronym with a

W3C open standard, Multimodal Interaction Framework by
the W3C Multimodal Interaction Working Group. W3C-
MMIF is a specification for Web accessibility on systems
that have multiple modes of input and output devices (key-
board, haptic, voice, etc). W3C-MMIF is based on an XML-
based markup language, Extensible MultiModal Annotation
(EMMA), for the representation and interpretation of user in-
put and production of system output. On the other hand, our
MMIF format is a JSON-based specification for representing
manual and automatic annotation on audiovisual multimedia
data. Hence our MMIF and W3C-MMIF are completely dif-
ferent creatures.

Figure 2: Example annotation

All annotations have a type, which refers to a defini-
tion in the CLAMS vocabulary, which is part of the
MMIF specifications7, and a dictionary of properties,
as shown in the example in Figure 2, which depicts a
time frame with start and end offsets in milliseconds,
where the time unit used is defined in the metadata of
the view. Note that for many MMIF fragments in this
paper we take some liberties and divert a bit from the
MMIF standard, this is both for explanatory and space
purposes.

Figure 3: The CLAMS Vocabulary

The vocabulary is purposely kept as small as possi-
ble and new categories are only added when the need
arises, the screenshot of the vocabulary in Figure 3 ac-
tually shows the entire vocabulary. But application de-
velopers are free to define their own categories and use
the @type field to point to their own definition. In
fact, note there there are no categories in the CLAMS
vocabulary that seem relevant to text annotations, this
is because for text annotations we refer to categories
already defined in the LAPPS vocabulary (Ide et al.,
2014b).
Since all applications depend on reading and creating
MMIF representations we have created a MMIF Soft-
ware Development Kit (SDK) for application develop-
ers, which is available as a Python package.8

7The current version as of April 2022 is available at
https://mmif.clams.ai/0.4.0.

8https://pypi.org/project/mmif-python.

https://github.com/lowerquality/gentle
https://github.com/notAI-tech/fastPunct
https://github.com/tesseract-ocr
https://spacy.io/
https://www.w3.org/TR/mmi-framework/
https://www.w3.org/2002/mmi/
https://www.w3.org/TR/emma20/
https://www.w3.org/TR/emma20/
https://mmif.clams.ai/0.4.0/
https://pypi.org/project/mmif-python/


2500

2.3. Processing Pipelines
It is perfectly viable to start up a single application
with, say, the Tesseract OCR tool, and then programat-
ically or via a command line9 send MMIF files with
POST request to that application. However, in many
cases archivist’s needs require a pipeline of applica-
tions. One of the pipelines that has been generally use-
ful in our work is the following:

Segmenter → ASR → post-ASR → NER

In this section we will run through an example of how
applications interact in a pipeline, in particular we look
at how a text processing tool is grafted upon an au-
dio processing tool. For brevity’s sake, we will take
a shortened version of the pipeline above with just
speech recognition and entity extraction. Consider the
pipeline as represented in some more detail in Figure 4.

Figure 4: Simple CLAMS Pipeline

We have a MMIF file on the local machine that refers to
primary data in the documents list. The pipeline script
is part of the Pipeline Runner, which will be described
in a little more detail below, but for now it is enough to
know that the Pipeline script handles the interactions
with the applications. The script fires off an HTTP
POST request to the first application in the pipeline
(step 1 in the diagram). Since it is the application that
deals with the data, the MMIF file points at standard
data locations on the Docker containers (by convention
the /data directory), which is mounted to the data on
the local machine. Note that while the MMIF file is
attached to the request, no primary data are handed in.
The first application wraps the Kaldi speech recogni-
tion tool. It lifts the needed data from the MMIF file
and the mounted primary sources and hands those data
to Kaldi (step 2), which will process them on the con-
tainer and hand the result back to the application (step
3), which will fold the results into the MMIF file in a
new view and hand the view back to the pipeline script
that sent the HTTP request (step 4).

9Using the curl command-line utility for transferring data
to and from a server.

Figure 5: Kaldi output – the text document

The new view will have a text document as an anno-
tation type, which is aligned with the entire audio or
video document that it was created from, as shown in
Figure 5. Note that TextDocument is both a document
type and an annotation type. As a document type it
would be part of the multimedia primary sources that
the MMIF document was created for, and as an anno-
tation type it would be added to a view as the result of
processing. But as we will see below this annotation
can be input to further processing. This by the way is
one of the reasons that annotations in views cannot be
altered once they have been added because it could give
rise to inconsistencies and the MMIF SDK ensures that
it is impossible to do this.

Figure 6: Kaldi output – tokens and time frames

In addition to the text document and its alignment to a
primary source the ASR app also adds tokens and time
frames in the audio that the tokens are aligned to, as
shown in Figure 6.
Once the pipeline script gets these results back it takes
the updated MMIF file and sends it off to the second
application in the pipeline (step 5), which in our exam-
ple wraps the spaCy named entity recognizer. At this
point it is worthwhile to point out that although the two
applications apply in sequence, the second application
knows nothing about the pipeline and has no knowl-
edge of what happened before. It does however know



2501

what kind of data it wants to run on since the metadata
associated with an application specify input and output
requirements and the app uses the input requirements to
mine the MMIF file for annotations in views that match
the requirements. It then uses those views to extract
the information that the embedded tools needs. One of
the requirements of all language processing tools is that
there be text document to process (and potentially the
tool may require certain annotations to be available for
those text documents. Since the spaCY NER app only
requires text documents, it will look for text documents
in both the primary sources and in each view, and then
apply the spaCy tool to each of them apply, add results
to a set of views in the MMIF file, and return the up-
dated MMIF file (steps 6-8). Note that while the tool
would have had access to the primary audio file, it was
not instructed to do so by the NER app.

2.3.1. Workflow Management Components
Beyond using Unix shell scripts to run applications
and manage pipelines, we have two more user-friendly
ways to do this, the Pipeline Runner and the CLAMS
Appliance.

Figure 7: Pipeline specification

The Pipeline Runner allows the user to define a work-
flow of CLAMS apps. It assumes that there is a pre-
built container image available for each application,
which is a reasonable requirement since each CLAMS
app is bundled with a Docker specification file that has
all instructions needed to build the image. The user
then defines a specification as in Figure 7, which gives
the names of the images we want to use, the names of
the running containers created from the images, and the
local mount point into the /data directory on the con-
tainers. The Pipeline Runner then provides two Python
scripts to start and run a pipeline. The first script uses
the Docker compose command to start the containers
and the second script takes care of managing the pro-
cessing, as previously exemplified in Figure 4. The run
script also allows addition of parameters for individual

services, which could be specified when running the
script or when creating the specification in Figure 7.

The CLAMS appliance is a tool that creates a CLAMS-
Galaxy instance. Galaxy (Giardine et al., 2005) pro-
vides a web-based graphical user interface that allows
users to import data, construct complex workflows, and
explore and visualize the metadata generated by apply-
ing workflows to their data. The Galaxy platform was
originally developed for genomic research, but has suc-
cessfully been used for the deployment and integration
of NLP tools (Ide et al., 2016), we extend it to multi-
modal data.

Figure 8: Linking a named entity to a video time frame

Configuring a CLAMS instance is done via a YAML
file and the appliance will generate a container orches-
tration script (currently with the Docker compose com-
mand). The appliance configuration takes care of the
local directory structure issue mentioned before. Users
can also configure the appliance to include only se-
lect CLAMS apps that users need for their workflow.
Within an appliance instance, workflow creation and
manipulation is done via the Galaxy GUI, which means
that upon deployment of the instance, users are guided
to access Galaxy via a web browser of their choice
to access all apps and start experimenting with work-
flows. Once a user is satisfied with the workflow they
came up with after the experiments, they can use the
CLAMS Pipeline Runner for running it in batch mode
for a larger collection of media.

2.4. Summarization and Visualization
MMIF is designed to allow a variety of processing tools
to add annotations using a common format. And be-
cause annotations are in the end always anchored to lo-
cations in the primary data you can view a MMIF file
as a set of graphs rooted in primary data locations and
therefore all graphs are connected to each other. How-
ever, the connections are often not explicit and it needs
some traversing to connect, for example, a named en-
tity to a time frame in an audio or video stream. Con-
sider the graph in Figure 8, which schematically shows
the result of ASR and NER processing.



2502

The Kaldi app generates tokens from the video stream
and aligns each token to a time frame that points to a
begin and end time point in the video. It also creates
a text document from the tokens, which is by default
aligned to the entire video. The spaCy app takes the
created text document, generates its own tokenization
(not shown in the figure) and extracts a named entity
that it anchors to begin and end character positions in
the text. But note that the MMIF structure does not pro-
vide a direct path from the entity to a time frame in the
video and that we have to some work to make that ex-
plicit, which in the worst case may include generating
alignments between the named entity and the tokens.

Moreover, MMIF is not what we would call a com-
pact format and MMIF files can easily be millions of
megabytes in size (which is still orders of magnitudes
smaller than the primary data). In addition, they con-
tain a lot of redundancy. For example, the Tesseract
OCR application samples images from the video, typi-
cally one for every second, and then generates text from
those images. For cases when some text is projected on
the screen for a while, for example with credits on a
slate, some name can be on the screen for many sec-
onds. So if the name Bill Clinton was on screen for 10
seconds we will have a MMIF file with 10 text bound-
ing boxes and ten results of the OCR, which includes
alignments from the text to the bounding boxes and
then for each of the texts two tokens and one named
entity, for a grand total of 60 annotations.10

To deal with the complexity of MMIF and allow users
to easily inspect the results of processing, we have
built summarizers and visualizers. All applications
mentioned in section 2.1 are MMIF producers, that is,
they take MMIF as input and return MMIF as output,
where the output is the same as the input modulo added
views. Summarizers and visualizers are MMIF con-
sumers, which are applications that take MMIF as input
and create another format as output.
We have two summarizers, one that take the MMIF
annotations and creates a condensed graph and one
that produces the PBCore format which is used by the
AAPB. But here we focus on the four visualizers that
we have implemented so far: closed captions on video
files, time segments on videos, highlights of text spans
in text documents, and rectangles on images.
Closed captions. The ASR app generates tokens, time
frames and alignments between them. We use those to
create a WebVTT file, a World Wide Web Consortium
standard for displaying timed text11, and then use the
HTML <video>, <source> and <track> tags to dis-
play the transcript of the video as it plays.

10You may have noticed in Figure 3 that CLAMS does
have the notion of a video object, which in this case might
soften the pain a bit by replacing 10 bounding boxes with
one video object, but we hesitate throwing out the results of
any processing and using a video object does not deal with
all redundancies.

11https://www.w3.org/TR/webvtt1/.

Time segments. The SMPTE Bar detection app and
the Slate detection app generate time segments. The
Universal Viewer visualization tool converts a MMIF
file that contains time segment annotations to an IIIF
manifest12 which is then displayed using the Universal
Viewer.13

Text highlights. To highlight named entities we use the
spaCy named entity visualizer, which creates an HTML
document with colored highlights for a variety of entity
types.
Rectangles on images. To visualize bounding boxes we
use a Python string template that we feed the image and
a set of bounding boxes. Javascript code in the template
takes the coordinates from the bounding boxes and then
superimposes rectangles on the image.

The visualization code traverses the MMIF file looking
for primary data and annotation content to visualize.
Each type of annotation that it knows how to visualize
will then be put in a separate tab, as the example in
Figure 9 shows.

2.5. Advancement since the prototype
In this section we touch upon the improvements made
for CLAMS relative to the prototype version in (Rim et
al., 2019). These improvements can be summarized as
follows:

• Added a few more applications to the line up:
forced alignment, slate parsing, post-ASR.

• A more definite metadata specification for apps
and tools that helps their interoperability in
pipelines.

• Further developed the MMIF format and designed
the interaction between text processing applica-
tions and image, audio and video processing ap-
plications.

• Created the Pipeline Runner and the CLAMS Ap-
pliance as workflow managers. The latter was
available in an embryonic form but depended on
manually setting up Galaxy.

• Streamlined visualizations and made them less ad
hoc. Included visualization of named entities (and
other text spans) and bounding boxes.

• Added parameter passing and error handling to the
platform.

• Made containerization a more integral part of the
platform.

And of course we also went through many cycles of
code review and refactoring and kept adding to the doc-
umentation.

12https://iiif.io/.
13https://universalviewer.io/.

https://www.w3.org/TR/webvtt1/


2503

Figure 9: Example visualization of a MMIF file with video, audio and text primary data. The pane on the left
contains the video with the transcript shown as closed captions, the entities from the transcript are on the right.

3. The AAPB

The American Archive for Public Broadcasting
(AAPB) is a collaboration of the Library of Congress
and GBH, a public broadcasting foundation in Boston,
Massachusetts. It aims to preserve for posterity the
most significant public television and radio programs
of the past 60 years. Video assets have been digitized
and made accessible on the web where users can search
the collection.14 The user experience would improve
if more metadata can be brought into the search index.
One problem here is the uneven availability of metadata
for many of the videos. Hence GBH and the CLAMS
team have set out to extract metadata from the video,
in particular, from the perspective of GBH, there was
clear value in the following:

• Finding the beginning of a video and skipping the
bars and tone section that can span minutes at the
beginning of the video.

• Create transcripts for all videos and mine the tran-
scripts for metadata.

• Add metadata from slates, rolling credits and
other text elements on screen.

Having the text extracted via OCR or ASR allows us to
run language processing tools like named entity recog-
nition and use the results to enrich the metadata. To that
end we have experimented with a variety of workflows,
two of the most useful ones are:

• Segmenter → ASR → post-ASR → NER

• Bars-and-tones → Slate detection → ASR →
post-ASR → NER

We report here on the first two components of the sec-
ond workflow, partially because they were developed
in-house.

14https://americanarchive.org/

Many video assets in the AAPB begin with a period
of SMPTE Bars, also called ”bars and tone”. These
segments have historically been used for calibration
of equipment. On the AAPB website, these segments
lead to a negative user experience, as users must skip
over these segments or wait for the content of the pro-
gram to begin. In order to improve the user experi-
ence, we have developed a CLAMS application to de-
tect SMPTE Bars. The bars detection application uses
the structural similarity index measure (SSIM) to pro-
duce a similarity score to an image of SMPTE bars.
The timeframe annotation produced by the application
can then be used to begin the video at the point where
the bars segment has ended. This functionality is cur-
rently being added to the website.

Figure 10: Example slates

Slates are segments of a video during which production
related metadata is shown on screen. The prototypical
slate is a physical clapperboard, such as the one shown
on the left in Figure 10. The slate on the right is a dig-
ital slate. The slates vary in format and in the particu-
lar information they contain, but they all serve the pur-
pose of recording information about the production that
follows. Within the AAPB there are a variety of pro-
grams from different public television stations. Often
the slates used by an individual program or by all the
programs from an individual station follow a template
that may vary in content, color, and font over time. We
have approached extracting metadata from slates with

https://americanarchive.org/


2504

a pipeline consisting of slate detection, text component
detection, and OCR.
Archivists from GBH annotated 301 videos with times-
tamps of when slates begin and end. These annotations
were used to sample slate and non-slate frames from
the videos. The frames were used to train a classi-
fier where 20% of the frames were held out for eval-
uation. The detection model consists of a pre-trained
Resnet-50 backbone with two fully-connected layers.
The model was trained with the Adam optimizer for 20
epochs using a dropout of .2 and an initial learning rate
of 0.003. The model was evaluated against the test set
and correctly classified 98% of the frames.
After detecting slates, the next task in our slate process-
ing pipeline is text localization, generating bounding
boxes surrounding text in the frame. We evaluate text
localization performance against our dataset by calcu-
lating the MAP at different IOU and maximum detec-
tion thresholds. One limitation of using this evalua-
tion for our task is that it unfairly punishes algorithms
that split text regions into more fine grained elements
than were annotated. This issue is illustrated with the
following example. Given our annotation strategy, the
text in 10 is annotated with one bounding box and tran-
scribed as “Air Date”. When comparing the perfor-
mance of two text localization algorithms, an algorithm
that detects “Air” and “Date” as two separate compo-
nents will have a lower score than an algorithm that
detects “Air Date” as a single component.
We compare the performance of the EAST (Zhou et al.,
2017) pretrained text detection model, and a finetuned
Faster-RCNN model (Ren et al., 2017). We fine-tuned
a pretrained Faster-RCNN model with Resnet-50 back-
bone for 5 epochs. The classification head of the model
was trained with 2 output classes: background and text.
We used a stochastic gradient descent optimiser with a
learning rate of 0.005, momentum of 0.9 and weight
decay of 0.0005. In Table 1 we show the performance
of this model evaluated against our test set and compare
these results to the results from the EAST model.

Method Max
Detec-

tions

Conf. Avg.
Preci-

sion

Avg.
Recall

EAST 10 0.001 0.015
EAST 100 0.001 0.020
FRCNN 10 .5 0.709 0.756
FRCNN 100 .5 0.709 0.761
FRCNN 10 .9 0.497 0.527
FRCNN 100 .9 0.707 0.759

Table 1: Text Localization Results

These results show that text components in slates can
be effectively identified by the Faster-RCNN model.
Although the EAST model identifies the text, the
grouping of characters does not correspond to the keys
and values we would like to extract from the frame. In
order to effectively use the EAST model, it would be

necessary to introduce another step in the pipeline to
group related text boxes.

4. Related work
On the computational linguistics side, our work is
inspired in part by long-standing popular NLP tool-
chaining platforms like UIMA (Ferrucci et al., 2009)
and GATE (Cunningham et al., 2013). More recently,
web-based platforms such as the LAPPS Grid (Ide et
al., 2014a) and WebLicht (Hinrichs et al., 2010) not
only offer tool repositories of various levels of state-of-
the-art NLP tools for textual data, such as CoreNLP
(Manning et al., 2014) and OpenNLP (OpenNLP,
2017), but also implement open source SDKs for tool
developers to promote adoption. These workflow en-
gines can operate different tools that are separately de-
veloped but can interact because of common data in-
terchange formats. In particular, our format is based
on LIF (Verhagen et al., 2015), the format used by the
LAPPS Grid. Additionally the LAPPS Grid defines a
semantic linked data vocabulary that ensures semantic
interoperability (Ide et al., 2014b) and we borrow from
that as well.
On the multimedia side of things, MALACH (Oard et
al., 2002) was one of the early studies that used compu-
tational linguistics tools to build an automatic metadata
extraction system. In MALACH, oral history recording
data was processed through ASR and NLP pipelines
that extracted relevant information for cataloging. In
prototyping its World Service Archive (Raimond et al.,
2014), the BBC developed COMMA, a metadata ex-
traction and linked data-based interlinking system for
public radio broadcasts. Its outcome is now in use by
the BBC (BBC, 2015), however it is not publicly avail-
able.
More recently, the EU funded MiCO project (Aichroth
et al., 2015) aimed at accomplishing a media analy-
sis platform for multimodal media that supports cus-
tomized workflows leveraging on assorted open and
closed source content analysis tools. An interoperabil-
ity layer, MiCO Broker, was developed based on RDF
and XML structures to chain different tools.
The format is a JSON-LD format based on the LAPPS
Interchange Format (LIF) for text processing tools
(Verhagen et al., 2015), which separated the primary
text source from the annotations on the text. MMIF
does the same but also allows for image, audio and
video data. Primary data of all types are stored in the
MMIF file as references to files and those files are con-
sidered read-only.
The Audiovisual Metadata Platform Pilot Development
(AMPPD) project (Dunn et al., 2018) has worked to
enable more efficient generation of metadata to support
discovery and use of digitized and born-digital audio
and moving image collections. AMPPD is noteworthy
as it is designing and developing a platform that ex-
ploits chains of automated tools and human-in-the-loop
to generate and manage metadata at institutional scale.



2505

5. Conclusion and Future Plans

We have described the CLAMS project and its current
use to enhance metadata for the AAPB. The results of
our processing have already been shown useful to the
AAPB, but much remains to be done to make CLAMS
a better asset to archivists and librarians. In the course
of our work and our collaboration with GBH it has be-
come clear that several enhancements to the platform
would be very beneficial.
On the developer side we believe that while CLAMS
makes running pipelines relatively easy, it can still be
made more user-friendly. We want to make it even eas-
ier to experiment with workflows by providing an App
Directory that stores all relevant information, including
location of pre-built container images, and then make
it almost trivial to select components and create a lo-
cal working CLAMS platform that embodies the work-
flows created.
One aspect we have only touched upon recently is in
designing workflows that include manual components.
For example, we run ASR over the audio stream of
the video and then feed the result into post-processing
and named entity recognition. However, we will exper-
iment with how much adding results of manual fixes
will enhance downstream processing.
One problem with many of the tools is that they do
not necessarily translate well to a new set of videos.
We have found that for some tools it would be easy to
adapt the tools by providing some samples of correct
outcomes, for example by identifying what slates look
like for a new data set.
We are always working on adding new tools, includ-
ing tools for topic segmentation (chaptering), text ex-
traction (recognizing rolling credits and other text on
screen), more language processing tools (high on our
wish list is to improve linking of entities to authority
files), and new visualizations (for example by extend-
ing the spaCy entity visualizer to other categories).
Finally, we are currently writing up detailed evalua-
tion plans for all the components we use. In the ini-
tial stages of CLAMS the focus was on building the
platform and integrating third-party processing tools,
we have some evaluations but in many cases these are
somewhat informal. Even though we have not devel-
oped many of the embedded tools ourselves, it is still
important to identify what tools are bottlenecks in over-
all quality of the metadata.

6. Acknowledgements

This work has been supported by two grants from
the Andrew W. Mellon Foundation. We also like to
thank our collaborators at GBH Boston, in particular
Karen Cariani, Casey Davis Kaufman, Timothy Lep-
czyk, Kevin Carter, Samantha Driscoll, Henry Neels
and Andrew Myers.

7. Bibliographical References
Aichroth, P., Weigel, C., Kurz, T., Stadler, H., Drewes,

F., Björklund, J., Schlegel, K., Berndl, E., Perez, A.,
Bowyer, A., et al. (2015). Mico-media in context.
In 2015 IEEE International Conference on Multime-
dia & Expo Workshops (ICMEW), pages 1–4. IEEE.

BBC. (2015). COMMA - BBC R & D. https://
www.bbc.co.uk/rd/projects/comma. Ac-
cessed: 2019-02-20.

Cunningham, H., Tablan, V., Roberts, A., and
Bontcheva, K. (2013). Getting more out of biomed-
ical documents with gate’s full lifecycle open
source text analytics. PLoS computational biology,
9(2):e1002854.

Dunn, J. W., Hardesty, J. L., Clement, T., Lacinak, C.,
and Rudersdorf, A. (2018). Audiovisual Metadata
Platform (AMP) Planning Project: Progress Report
and Next Steps. Technical report, Indiana Univer-
sity.

Ferrucci, D., Lally, A., Verspoor, K., and Nyberg, E.
(2009). Unstructured information management ar-
chitecture (UIMA) version 1.0. OASIS Standard,
mar.

Giardine, B., Riemer, C., Hardison, R. C., Burhans,
R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg,
D., Albert, I., Taylor, J., et al. (2005). Galaxy: a
platform for interactive large-scale genome analysis.
Genome research, 15(10):1451–1455.

Hinrichs, E., Hinrichs, M., and Zastrow, T. (2010).
Weblicht: Web-based LRT services for german. In
Proceedings of the ACL 2010 System Demonstra-
tions, pages 25–29. Association for Computational
Linguistics.

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang,
D., Suderman, K., Verhagen, M., and Wright,
J. (2014a). The Language Application Grid. In
LREC2014, Reykjavik, Iceland, may. European Lan-
guage Resources Association (ELRA).

Ide, N., Pustejovsky, J., Suderman, K., and Ver-
hagen, M. (2014b). The Language Applica-
tion Grid Web Service Exchange Vocabulary. In
OIAF4HLT@COLING.

Ide, N., Pustejovsky, J., Suderman, K., Verhagen, M.,
Cieri, C., and Nyberg, E. (2016). The Language
Application Grid and Galaxy. In LREC 2016, pages
51–70.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit.
In Association for Computational Linguistics (ACL)
System Demonstrations, pages 55–60.

Oard, D. W., Demner-Fushman, D., Hajič, J., Ramab-
hadran, B., Gustman, S., Byrne, W. J., Soergel, D.,
Dorr, B., Resnik, P., and Picheny, M. (2002). Cross-
language access to recorded speech in the malach
project. In International Conference on Text, Speech
and Dialogue, pages 57–64. Springer.

OpenNLP. (2017). Apache OpenNLP. https://

https://www.bbc.co.uk/rd/projects/comma
https://www.bbc.co.uk/rd/projects/comma
https://opennlp.apache.org/


2506

opennlp.apache.org/. Accessed: 2019-02-
20.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,
Glembek, O., Goel, N., Hannemann, M., Motlicek,
P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G.,
and Vesely, K. (2011). The kaldi speech recogni-
tion toolkit. In IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE Sig-
nal Processing Society, December. IEEE Catalog
No.: CFP11SRW-USB.

Raimond, Y., Ferne, T., Smethurst, M., and Adams, G.
(2014). The BBC world service archive prototype.
Web Semantics: Science, Services and Agents on the
World Wide Web, 27:2–9.

Ren, S., He, K., Girshick, R., and Sun, J. (2017).
Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
39(6):1137–1149, Jun.

Rim, K., Lynch, K., and Pustejovsky, J. (2019). ”com-
putational linguistics applications for multimedia
services”. In Proceedings of the 3rd Joint SIGHUM
Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Litera-
ture, pages 91–97, Minneapolis, USA, June. Associ-
ation for Computational Linguistics.

Verhagen, M., Suderman, K., Wang, D., Ide, N., Shi,
C., Wright, J., and Pustejovsky, J. (2015). The
LAPPS Interchange Format. In Revised Selected
Papers of the Second International Workshop on
Worldwide Language Service Infrastructure - Vol-
ume 9442, WLSI 2015, page 33–47, Berlin, Heidel-
berg. Springer-Verlag.

Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He,
W., and Liang, J. (2017). East: An efficient and ac-
curate scene text detector. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
Jul.

https://opennlp.apache.org/

	Introduction
	CLAMS Architecture
	Applications
	The Multi-Media Interchange Format
	Processing Pipelines
	Workflow Management Components

	Summarization and Visualization
	Advancement since the prototype

	The AAPB
	Related work
	Conclusion and Future Plans
	Acknowledgements
	Bibliographical References

