Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 2166-2176
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

SpecNFS: A Challenge Dataset Towards Extracting Formal Models from
Natural Language Specifications

Sayontan Ghosh, Amanpreet Singh, Alex Merenstein, Wei Su,
Scott A. Smolka, Erez Zadok, and Niranjan Balasubramanian
Stony Brook University, Stony Brook, New York
{saghosh, amanpsigh, mmerenstein}@cs.stonybrook.edu
{suwei, sas, ezk,niranjan}@cs.stonybrook.edu

Abstract
Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing
Network File System (NFS) specifications. We define a semantic-dependency problem over SpeclR, a representation language
we introduce to model sentences appearing in NFS specification documents (RFCs) as semantic dependency structures, and
present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this prob-
lem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with
the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction
sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these
additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches,

suggesting fruitful directions for further research.

Keywords: specifications dataset, semantic dependency parsing, formal verification

1. Introduction

Complex software systems are often designed and im-
plemented based on well-defined specifications. A first
step towards the formal verification of such a system is
to convert its specification, which is often specified in
natural language, into a formal model (Soeken et al.,
2014). This conversion process is often laborious and
error-prone, and a major hindrance to systematic ver-
ification of complex systems (Drechsler et al., 2012
Soeken et al., 2014). We ask here if Natural Language
Processing (NLP) techniques can assist with automat-
ing the process of building formal semantic represen-
tations of specification texts. We introduce an instance
of this problem in the context of verifying Network File
System (NFS) implementations.

NFES (Shepler et al., 2008) is a widely used protocol
that provides access to files across local and wide-
area networks. Implementations of this protocol are
expected to meet certain specifications that are de-
scribed in detail in what are called RFC (Request for
Comment) documents, published by the IETF. These
lengthy RFCs (for e.g. NFS RFC 3 is 126 pages long,
NFS RFC 4.0 323 pages and NFS RFC 4.1 617 pages
long) specify in natural language how each NFS oper-
ation must behave under certain inputs and conditions.
Verifying an NFS implementation involves building a
semantic representation of these specifications, which
can then be used to construct formal models.

As with any complex system, NFS protocols, imple-
mentations, and specifications undergo multiple draft
iterations during a multi-year design process, which
includes prototype development and regular interoper-
ability testing (Viho et al., 2001). Providing tools that
can assist with the construction of the formal models
can greatly speed up the development and verification
of these complex systems.

IF/PRE
THEN/POST

If current file handle is an object of type NFSDIR
NFS4ERR_ISDIR is returned.

IF/PRE
THEN/POST

If there are no more entries in the directory
The EOF flag has a value of True.

Figure 1: Example specifications from an NFS RFC
text viewed as pre- and post-conditions.

Our contributions. We formulate a semantic-
dependency parsing problem over sentences in NFS
RFC documents. We first introduce an intermediate
semantic representation language, SpecIR, which
captures the specifications for NFS operations (e.g.,
READ, WRITE) as semantic dependency structures. To
understand how the underlying logical representation
is abstracted from specification sentences, consider the
example specifications in Figure [l These example
expresses an implication logic with a pre (IF) and
post-condition (THEN). The IF-part asserts certain
pre-conditions, typically defined over the variables
involved in the operations, which when satisfied should
lead to a post-condition captured by the THEN-part.
The pre- and post-conditions are expressed using
predicates, functions, and basic logical operators
such as conjunction and disjunction. To assist with
the development of semantic parsing systems, we
introduce SpecNFS, a dataset of natural language
specification sentences annotated with their semantic
representations. We formulate two tasks over this
dataset []_1 The first is a “sequence tagging” task that
involves identifying spans of text that correspond to
the main elements in the semantic representation. The
second is a “semantic dependency parsing” problem

'The SpecNFS dataset can be downloaded from https :
//github.com/StonyBrookNLP/specnfs

2166

https://github.com/StonyBrookNLP/specnfs
https://github.com/StonyBrookNLP/specnfs

NFS RFC Text

In the case current file handle represents an object of type NFS4DIR, NFS4ERR_ISDIR is returned

Semantic dependency parser

Pre-Clause

Post-Clause

SpecIR

(Arg Y Arg Return-Val
[In the case] [current file handle]represems an object of (ES4DIR) [NFS4ERR ISDIR] E’s returned
If-else Variable Predicate Value Value Op-Return

Formal language converter

Formal Logic

|

if(pred::type(var::cth, value::NFS4 DIR)):
READ_return(NFS4ERR_ISDIR)

Figure 2: Overview of the envisioned process for converting a logical statement in natural language to a system-
executable form. Sentences are first converted into a system-agnostic logical representation using a semantic-
dependency parser (this work). This representation can then be converted into an executable formal logic statement.

that involves identifying named dependencies between
these spans in the sentence.

In terms of building formal models from specifications,
SpecNFS poses multiple difficulties. The texts are
heavily domain-specific as they talk about components
of a complex network software system. Also, given the
difficulty of annotation and the overall amount of text
available, the amount of labeled data will be relatively
limited. To help address these challenges, SpecNFS
also includes a collection of unlabeled, broadly related
texts that can be used for domain adaption and transfer-
learning strategies.

To benchmark the challenges of this dataset, we first
evaluate the performance of the sequence-tagging task
when fine-tuning large pre-trained language models.
Then, for semantic-dependency parsing, we evalu-
ate a neural arc-factored model (Dozat and Man-
ning, 2018), (Dozat and Manning, 2017), and a neu-
ral transition-based parser (Fernandez-Gonzalez and
Gomez-Rodriguez, 2020). Our evaluations show that
(1) there is significant room for improvement in both
tasks, and that (2) transfer-learning and simple domain
(and task) adaptive pre-training strategies (Gururangan
et al., 2020) show significant improvements. Error
analyses reveal multiple difficulties arising from entity
errors, pipeline errors, and long-term dependencies.

2. Towards Formal Models via Semantic
Parsing

Formal modeling refers to the process of stating the ex-
pected behavior of a system in a precise formal lan-
guage. The text of an NFS RFC describes the expected
behavior of NFS operations in terms of the input-output
characteristics of the system variables and constants
under different operating conditions.

We can view the process of translating the specifica-
tions in text to formal statements as a form of seman-
tic parsing. There are a multitude of formal verifica-
tion systems such as Rhapsody (Schinz et al., 2004),
SPIN (Holzmann, 1997), etc., each with their own for-
mal language. Rather than use a specific formal lan-
guage, we introduce SpeclR, a system-agnostic inter-
mediate representation.

Figure [2] presents an overview of the system we envi-
sion for converting specifications in natural language
to an executable logical form. A semantic-dependency
parser converts text into a structured SpeclR represen-
tation, which can then be converted into a target formal
language by a system-specific parsing step

2.1. Data Source Description

We discuss how we tackle the problem of converting
specifications expressed in textual form to a structured
representation given in SpecIR. In particular, we focus
on the core operations expected of an NFS implemen-
tation. An NFS RFC provides a comprehensive array
of definitions and descriptions of various concepts per-
taining to the implementation, operation, and use of
NFS. More specifically, the sentences in the description
and Implementation section of NFS operations contain
the logical constraints and the recommended strategies
for their correct implementation. For example, con-
sider the following sentence from the description sec-
tion of the READ operation: In the case that the cur-
rent filehandle represents an object of type NFS4DIR,
NFS4ERR ISDIR is returned. This statement spec-
ifies an expected behavior through an implication, an
IF-THEN statement, where the IF and THEN clauses
themselves are asserted via conditions on the values
of variables. The IF-part checks if the variable cfh
takes on the value NFS4DIR. The phrase “current file-
handle” in the text refers to the variable cfh. If the
condition is satisfied, then the operation (whose de-
scription is being considered) should return the value
NFS4ERR_ISDIR. This constraint can be expressed
through a dependency graph as shown in the output of
the semantic parser in Figure 2]

2.2. Representing Specifications with SpecIR
We introduce SpeclR, an intermediate representation
for specifications, as a step towards expressing the un-
derlying logical meaning of specification sentences.

Note that this second step can involve non-trivial chal-
lenges in grounding to the elements of the target domain de-
pending on the intended use and target formalisms. This work
focuses only on the first intermediate representation.

2167

Table 1: Types of entities and links in SpecIR.

The elements of this representation and the annotation
scheme we describe next are designed based on in-
puts from domain experts (researchers who focus on
NFS). As mentioned earlier, the specifications assert
constraints over elements in the NFS RFC (e.g., vari-
ables, constants, method names). Accordingly, SpecIR
includes NFS elements, uses logical operators (And,
Or) to connect constraints, and uses an IF-ELSE con-
struct to convey the overall specification. SpecIR in
essence is a semantic dependency structure that can be
layered over a given specification sentence. The var-
ious constructs in SpecIR enable representing the un-
derlying logic of the sentence as intended by its author.
More generally this can be seen as representing se-
mantic relations specific to the NFS domain, similar to
predicate-argument structures (Marcus et al., 1994)) and
AMR relations (Banarescu et al., 2013)) etc. To scope
the semantic dependency problem, we ignore specifica-
tions that require connecting information from multiple
sentences. As can be seen from the example in Fig-
ure 2| representing a specification in SpecIR involves
labeling spans with entities and links:

(i) Entities: Words or phrases in a sentence that belong
to specific categories that indicate their semantic type
and role in the overall semantics of the sentence.

(i) Links: Labeled directed edges that convey how the
individual entities compose to express the overall logi-
cal semantics of the sentence.

3. SpecNFS Dataset

The annotation process had three phases: initial anno-
tation, review, and disagreement resolution.

Initial Annotation. We annotated about 1,600 sen-
tences that express some logical constraint over the
NFS elements, that are required in a working NFS im-
plementation. We discard cases where the specification

Entity Types | Coarse Description Type #Analyzed | #Edits | Percentage

Value Numbers, Constants etc Entities 497 20 4%

Variable Place-holder for values Links 460 25 5.4%

Op-name NFS operations as objects

Function Assert event or attribute getter Table 2: Annotation quality in terms of edits required

Predicate Assert property about an object by an expert for correcting discrepancies.

Op-Return Return value of NFS operation

And/Or Logical operations is spread over multiple sentences, and ones that require

If-else Implication indicator complex temporal logic that are outside the scope of

Link Types Coarse Description SpeclR. These sentences were collected from the oper-

Pre-Clause Points to pre-condition ations description in NFS RFC 4.0, 4.1 and 4.2. Five

Post-Clause Points pre- to post-condition annotators and two domain experts were involved in the
Points to arguments of functions, annotation process. Of the two experts, one is a Profes-

Arg predicates etc. sor who has more than 30 years of extensive research

And-Or-Arg Points to arguments of And/Or. experience in network file systems and operating sys-
Points to the value returned by tems. The experts designed the annotation scheme,

Return-Val functions, NFS operations etc. reviewed the annotations, and resolved disagreements

among annotators. Each annotator was given around
320 sentences to annotate, a detailed set of guidelines
(Appendix[/.1), and an initial round of training.

Review. The annotations were jointly reviewed by
the experts and the annotators after 200 sentences were
annotated. Each annotator reviewed 10 sentences anno-
tated by another annotator. Any disagreement between
the reviewer and the original annotator was delegated to
an expert to be resolved. Also, during this review, an-
notators collected sentences that were difficult to pre-
cisely annotate under the current annotation scheme.

Disagreement resolution. An expert decided on the
correct annotation when a disagreement arose between
the annotator and the reviewer. If the disagreement sig-
naled a systematic annotation error by one of the anno-
tators, the expert conducted a further review of a ran-
dom set of sentences of that annotator to check for the
presence of such a systematic error. In cases where the
annotation scheme was the cause of the disagreement,
the scheme was updated and the previous annotations
were reviewed and adjusted to reflect the new changes.

Annotation quality. After multiple iterations, we
ended up a with collection of 1,198 annotated sen-
tences having 9,358 entities and 6,872 links. Due to
the iterative nature and complexity of the annotation
process, rather than measure the inter-annotator agree-
ment, here we focus on the overall annotation quality of
the dataset, as determined by the expert annotators. We
collected 50 annotated sentences, 10 from each annota-
tor, and had an expert analyze them. For each sentence,
the expert judged whether they agree with the annota-
tion and computed the minimum edits in the annotation
required to fix discrepancies if any.

Table [2 shows the results of the expert’s review of the
annotation quality. The overall low numbers of edits re-
quired to fix the annotation discrepancies indicates low
label noise in the annotation. The main source of label
noise for the entity labeling is identification of the cor-
rect span boundary and the ambiguity in the usage of
Predicate and Function labels. For the label noise for

2168

https://tools.ietf.org/html/rfc7530
https://tools.ietf.org/html/rfc5661
https://tools.ietf.org/html/rfc7862

Source Description #Tokens Model base NFS- NFS-

RFCs Internet standards 23.2m DAPT TAPT

Man pages | Docs for other NFS-like | 5.5m BERT 59.5+£0.3 | 59.5+0.3 | 59.5+0.3
file systems DistilBERT | 58.6+£0.3 | 58.9+£0.3 | 59.4+£0.3

Research Articles on file systems | 4.7m CodeBERT | 59.1+0.3 | 59.3+£0.4 | 60.1£0.4

SRS Project requirements 1.1m CS

Github Open source code 129.5m RoBERTa 598405 | 60.2+03 | 60.5+0.3

Table 3: Domain-relevant texts used to fine-tune the
models for downstream NFS tasks.

the dependency links, this is mainly due to the sparsity
of links between any two entities in a sentence.
Unlabeled Domain Relevant Texts. Interpreting spec-
ification texts requires reasoning about concepts in the
target system domain (i.e. NFS), in addition to tack-
ling the linguistic aspects and other usual difficulties
that arise in producing semantic representations (e.g.
annotation accuracy, inducing consistency). This is not
unique to the NFS systems that we target and highlights
the difficulty in obtaining large-scale annotated data for
this type of problem. One way to address this is to
leverage additional domain-relevant unlabeled data. To
this end, we collected texts broadly related to the NFS
domain shown in Table[3] As we show later, these unla-
beled texts help when used for domain-adaptive trans-
fer (Gururangan et al., 2020).

4. Semantic Dependency Parsing

We formulate the task of converting textual speci-
fications into statements in SpecIR as a semantic-
dependency parsing problem consisting of two steps.
The first step identifies the spans of entities in the
text, and the second identifies semantic-dependency
links between these entity spans. We benchmark stan-
dard approaches for each step (subsection 4.1| [subsec-|
tion 4.2) and then present error analyses that reveal

their respective challenges (subsection 4.3).
4.1. Named Entity Recognition

This is a standard sequence-tagging task, where the
task is to identify spans referring to the various enti-
ties in our annotation scheme listed in Table [l We
benchmark sequence-tagging solutions using four large
language models: BERT (Devlin et al., 2019), Distil-
BERT (Sanh et al., 2020), CS RoBERTa (Gururangan
et al., 2020) trained on articles from CS Research, and
CodeBERT trained on github data(Feng et al., 2020)).

We also explore domain-adaptation strategies that can
utilize other unlabeled domain-relevant texts. Even
though BERT-like models generalize fairly well across
many domains (Beltagy et al., 2019), (Lee et al.,
2020) have shown that pre-training on such domain-
specific corpora boosts model performance on down-
stream tasks. Table [3] gives a brief overview of the
various resources (Miceli Barone and Sennrich, 2017),
(Gelman et al., 2019), (Ferrari et al., 2017)) we used to

Table 4: Mean and std. deviation macro F1 scores for
named entity recognition across 5-Folds CV.

further fine-tune the four base models on the Masked
LM task as in (Devlin et al., 2019).

We follow the domain-adaptive (DAPT) and task-
adaptive (TAPT) formulations described in (Gururan-
gan et al., 2020). For the experiments with DAPT, our
goal is to expose the model to a broad collection of
texts related to system specifications, NFS RFCs, and
code elements. To this end, we fine-tune on a collective
corpus of ~850 MB. For TAPT, the goal is to focus on
a narrower collection of task domain text. We only use
the NFS RFCs, a ~2 MB subset of the RFC dataset, as
they are highly representative of the target task data.

4.1.1. Benchmarking Results

We fine-tune and evaluate the models from Section [4.]
on the NER task for the entities specified in Table[I] We
treat the task as a multi-class classification problem,
following the B-I-O labeling scheme (Ramshaw and
Marcus, 1995)) at the word-level. For a sentence with n
tokens wy, ..., wy, the computation involves produc-
ing a contextual token representation x; for each token
w; which is then passed through a softmax classifier to
predict a B-I-O token label sequence ¢4, ..., c,. Note
that the tokenizer might break a word into sub-tokens;
so only the head token of a word is tagged, while the
rest are labeled as “[X]” and ignored while calculating
loss. During inference, we derive the label of a word
based only on its head token.

Given the small size of the dataset, we evaluate the
models using stratified five-fold cross-validation re-
peated for five different initialization.

Table Wl shows the results for all models in terms of
word-level F1 scores obtained as a macro-average over
all entity types. Similar to the results in (Gururangan
et al., 2020), combined DAPT and TAPT fine-tuning
(referred to as NFS-TAPT) performs better than both
the base and DAPT-only (referred to as NFS-DAPT)
fine-tuning. While some entity types are easier to rec-
ognize (e.g. Value), there are multiple types that are
harder (e.g. Function, Predicates), resulting in overall
low F1 scores. Overall while large language models
show promise, this NER task presents a difficult chal-
lenge with a clear room for improvement.

4.2. Dependency Link Prediction

Predicting the dependency link between entities can
be framed as a dependency parsing task defined over

2169

multi-word spans. Consider a sentence with n tokens
S = {wi, - ,w,} and k entities ey, ..., e, wWhere
each entity corresponds to a contiguous sequence of
one or more tokens. The task, then, is to predict the de-
pendency link I;; € L between the entity pairs e; and
e; Vi, j € {1, ..., k}, where L is the set of possible link
types. Note that the task is defined only over entity
pairs: words that are not part of entities are not consid-
ered for link prediction. We evaluate two complemen-
tary approaches: arc-factored parsing and transition-
based parsing.

4.2.1. Arc-Factored Parsing

We benchmark a variant of the arc-factored model de-
scribed in (Dozat and Manning, 2018)) and (Dozat and
Manning, 2017). The core idea is to get head and de-
pendent representations from the contextual represen-
tations of each word using two separate feed-forward
transformations (MLP layers). The head and depen-
dent representations of an entity e; = wy, ..., w;4p in a
sentence S is given by :

wo_
e; = max(z, ..

W T
u; = e @ej

de e cad ea
ul®? = MLPUP) (u;), uleot = MLP" D) (1)

. "rl-‘rp)

Here, LM is a standard pre-trained language model
(e.g. BERT), e}’V is the contextual representation of
e; using the LM and ejT is the entity type emedding
of e;. The probabilities of the dependency link labels
from entity e, to e, is computed as follows:

Ups = uﬁead @ ugep

Qrs = (uﬁead)TWI (Ugep) + Waurs + b
Yrs = softmax(g,) (1)

The parameters of the model are learned by minimizing
the cross-entropy between the true and the predicted
link label between the entities.

4.2.2. Transition-Based Parsing

For the transition-based parsing method, we adapt
the system developed by (Fernandez-Gonzalez and
Gomez-Rodriguez, 2020). This system uses an
encoder-decoder model with LSTM Networks. The
encoder is a bi-directional LSTM (BiLSTM) which
generates the contextual representations of the tokens
in the input sentence. The decoder is another LSTM
which uses the encoder’s outputs and a pointer net-
work (Vinyals et al., 2015)) to make sequential linking
decisions.

Given an input sentence S = {wy,...,wy,}, for each
token w;, we obtain a token-level embedding (e}/V) ei-
ther using BERT-base or using Glove (Pennington et
al., 2014), character-level embedding (ef), the embed-
ding for the lemmatized version of the token (ef), and
the embedding for its entity type (el). We concate-
nate all four embeddings and feed it to a BILSTM to

get contextualized representations. The entities are rep-
resented by the encoder hidden states (i.e. the contex-
tual representations) of the first token in their respective
spans.

/' = LM(uws;) or GLOVE(u; 9)
xz:er/GBe?@e?@ef
h; = BiLSTM(z;)

The decoder generates a sequence of transition deci-
sions using these hidden states, following the steps
in (Fernandez-Gonzalez and Gomez-Rodriguez, 2020).
At time ¢, attention score a; is predicted between the
current focus word h; and other tokens in the sentence,
using the last predicted head word hy,. This is followed
by predicting the link label between the token with the
highest attention score, h,, and s;.

ri = hi + hp

st = LSTM(r;)

i = [T (s)W fa(hy) + UT fi(se) + VT fa(hy) +b
a; = softmax(v")

Qip = gf(St)W[gg(hp) + Ungl<5t) + ‘/ETg2(hJ> + bl

Yp = softmax(qyp)

where j € 1,..,n and yip is the probability of word w,,
being the head of a focus word at time ¢ through link
type [. For decoding, we use beam search with a beam
size of five. The parameters are learned by maximiz-
ing the likelihood of generating the correct sequence of
decisions for the corresponding parse tree.

4.2.3. Benchmarking Results

To benchmark the effectiveness of above approaches,
we use stratified 5-fold cross-validation, repeated five
times with different parameter initialization, on the
same folds that were used to report the named entity
recognition model performance. We compute mean
macro F1 scores by averaging the F1 scores of each
of the five link types listed in Table 1| and averaging it
over the five initializations.

For the arc-factored system, we also assess the benefits
of task transfer learning and domain adaptation strate-
gies and the utility of adding type constraints during
inference. We report results on five variants:

1. LM Base — the system where pre-trained language
model (LM) is initialized with it’s standard pre-
trained weights.

2. LM Base + NER — pre-trained language model
(LM) base is initialized with the weights of the
LM fine-tuned on the Named Entity Recognition
(NER) task.

3. LM Base + NER + DAPT - pre-trained LM base
is initialized with the LM fine-tuned on the NER
task with DAPT strategy.

2170

Base + NER
Model class Language Base Base + | Base + NER | Base + NER | + TAPT +
Model NER + DAPT + TAPT Link Con-
straints
BERT 16.1+1.7 | 320£1.1 | 31.7+£0.7 32.8+£2.0 33.3+21
Arc factored DistilBERT 142+0.7 | 15.1+£1.2 | 14.2+£0.7 155 +1.2 15.7+£1.2
CSRoBERTa | 6.3£2.0 31.6£1.1 | 32.8+£0.08 32.1+£1.0 32.4+£0.01
CodeBERT 18.0£2.1 | 32.0£08 | 30.8+14 31.1+£1.3 31.7£1.1

Table 5: Benchmarking results for arc-factored systems: Mean macro F1- scores and standard deviation values

computed over five different random initializations.

Ret And-
Link tvoe | Pr® | Arg vael " | Post | Or-
yp Arg
BERT 18.7 | 11.2] 20.5 | 1.9 28.1
TAPT+LC | 45.5 | 28.3 | 379 | 11.9 | 43.0

Table 6: Link-wise F1 scores for the Dependency Link
Prediction task for BERT-base and transfer-learning
with link constraints (TAPT+LC).

4. LM Base + NER + TAPT + Link Constraints
— pre-trained LM base is initialized with the LM
fine-tuned on the NER task with TAPT strategy.
During the inference time, the model only consid-
ers the link labels that are valid for the types of the
entity pair under consideration.

We report results with BERT, CSRoBERTa, Distil-
BERT and CodeBERT as the LM in all these variants.
For all variants, the entity type embedding and other
non-pre-trained LM components of the model are ini-
tialized with the Xavier method (Glorot and Bengio,
2010) and trained end-to-end.

For the transition-based system, we report results for
two variants that differ in the inputs to the BiLSTM
layer: (i) Glove Embeddings — uses 100 dimensional
Glove embeddings as input to the BiLSTM. (ii) BERT-
base — uses frozen embeddings from pre-trained BERT-
base as input to the BiLSTM. Due to the difficulty
of replicating standard fine-tuning within this system’s
implementation, we do not report transfer-learning ex-
periments here. Our initial transfer-learning experi-
ments with frozen embeddings were also unsuccess-
ful. Table [5] shows the results of all the systems. Us-
ing task-transfer and adaptive training strategies, we
observe substantial increases in F1 over directly using
the pre-trained LMs. Initializing with the NER fine-
tuned weights nearly doubles the F1 compared to the
pre-trained weights alone, for all the pre-trained LMs
except for DistilBERT. For BERT and CSRoBERTA
based models, adding task-adaptive training (TAPT)
results in a ~0.5 to 1% increase in F1 relative to the
NER fine-tuned initialization. Furthermore, enforcing
the type constraints on the link prediction during in-
ference yields small additional gains in F1. Table [§]

Model Class | Language Model | Macro-F1
Transition BERT 10.3£0.4
Glove 23.3+£1.5

Table 7: Benchmarking results for transition-based sys-
tems: Mean macro F1- scores and standard deviations
computed over five different random initializations.

shows the break-down across the different link types.
The post link which often requires long-distance track-
ing, turns to out to be the most difficult. For the
transition-based system, as shown in Table [/| using
the high dimensional frozen BERT-embeddings fares
poorly compared to Glove embeddings as input to the
LSTM. While contextual embeddings from large lan-
guage models tend to outperform static embeddings in
general, in our setting there are two key differences that
could have caused the unexpected result. First, the BiL-
STM is able to provide some contextual information
even with Glove embeddings, and second training with
large frozen embeddings on relatively smaller dataset
such as ours can be tricky.

Note that the dependency link prediction task we eval-
uated here assumes that the gold label for the entity
spans are given as input. The results here should be
seen as an upper bound for performance of end-to-end
systems that produce the dependency parse from the in-
put sentence annotated with the automatically labeled
named entities.

4.3. Error Analysis

Named Entity Recognition We analyzed 1,471 mis-
classified samples from the BERT-NFS-TAPT model.
The analysis reveals two main sources of errors: (i)
Functions vs. Variables: About 19% of the Functions
are predicted as Variables. This error stem from the fact
that often function of a variable can be a valid variable.
For example in the phrase size of the file, we can in-
terpret size as a function operating on the variable
file but then, the entire phrase can be interpreted as a
valid variable. (ii) Data imbalance: A closer inspec-
tion of the results show that the model is much better
at predicting the beginning of a entity with a macro F1
score of 65%, while the F1 score for predicting the in-
side of a entity drops to 24%. In fact, for the test set,

2171

Macro avg. f1 score

8-16 16-24 24-32 32-40 ==40

20

15

10
5
0"o-s

(a) F1-score vs link terminal’s span length.

25
[}
S 20
b
=15
=
=
c10
8
= 5
0 "oz 2-4 4-6 6-8 8-10 ==10

(b) F1 vs average no. tokens in the two termi-
nal entities of a link

Figure 3: Figure a) shows that as the span of a link’s
terminals increases, the macro-average F1 score for the
link type prediction decreases. Figure [3(b) shows is-
sues with long-term dependencies. Macro-average F1
scores drop as the distance between the head and the
dependent terminal of a link increases.

the model does not predict any I-{Op-Return, Function,
and Value} tags, indicating the data imbalance issues in
modeling multi-token entities.

Link Prediction We analyzed a random sample of
the 1,183 links predicted by the arc-factored model.
We found two main type of errors: (i) Span informa-
tion smoothing: For 45% of the links that are mis-
classified, either the head or the dependent of the link
spans more than two tokens. Figure [3[(a) shows that
errors increase with the span length of the entities in-
volved, suggesting the need for a more effective means
for aggregating embeddings of the tokens spanned by
an entity. (ii) Long-term dependency: About 40% of
the mis-classified links have their head and dependent
terminals separated by more than 8 tokens. Figure [3(b)
shows that as the distance between the head and the
dependent terminals of the link increases, the model
performance decreases.

5. Related Work

We discuss two types of related work:

(i) NLP for formal verification. (Drechsler et al.,
2012) use syntactic analysis to convert textual specifi-
cations into UML or OCL descriptions. (Pandita et al.,
2012) use pre-defined templates over syntactic struc-
tures to extract semantic representations of API doc-
uments. (Soeken et al., 2014) use an additional clus-
tering step to seed the process for manually crafting
templates. (Harris and Harris, 2016)) uses custom for-
mal grammar instead of manually crafted templates
to capture sentence structure of specifications. Such

manually-engineered templates or grammars are suit-
able for settings with high-level of regularity in the
manner in which specifications are expressed in natu-
ral language. In this work, we seek to further automate
the process and ask if we can train parsing models to
learn from example semantic parse annotations. To this
end, we release a challenge dataset and benchmark the
performance of strong neural parsing baselines for this
task.

(ii) NLP for analyzing RFCs. (Landhosectionuoer
et al., 2012) demonstrate the transfer of modifica-
tions between the specification text and correspond-
ing UML models to avoid inconsistencies. (Jero et al.,
2019) leverage network protocol RFCs to extract rele-
vant packet fields and their properties and use them in
grammar-based fuzzing (Jero et al., 2015) to uncover
system vulnerabilities. (Tahir and Oswald, 2012) and
(Yen et al., 2020) propose systems to convert specifica-
tions into logical representations and eventually code
snippets. While the former simply trains a Penn Tree-
bank (Marcus et al., 1993) parser to represent the text,
the latter uses CCG (Artzi et al., 2014) parsing com-
bined with a domain-specific lexicon to generate the
semantic representations. Both works deal with rela-
tively smaller texts, with 22 and 87 sentences, respec-
tively. With about 1,000 sentences across more than 40
different NFS operations, the source text for SpecIR is
more varied and the resultant model is likely to gener-
alize better.

6. Conclusions

In this paper, we introduced the problem of extract-
ing formal models from Network File System RFCs
and took some significant steps towards addressing
this problem. We designed an intermediate repre-
sentation, SpeclR, that expresses the underlying log-
ical meaning of a specification in terms of a seman-
tic dependency structure, and we introduced a chal-
lenge dataset, SpecNFS, that contains SpecIR anno-
tations of NFS RFC sentences. Benchmarking ex-
periments show that this is a challenging dataset for
the semantic-dependency parsing models we explored.
The improvements we see with basic domain and task-
adaptive methods show promise for further research
into transfer-learning strategies.

Semantic-dependency parsing on RFC documents also
presents unique opportunities to test recent advances
in NLP, motivating future research. One direction lies
in exploiting the rich structure of an NFS RFC using
structure-specific pre-training methods for tables (Yin
et al., 2020) and code elements (Feng et al., 2020). The
difficulty of annotation—and the cost involved in the
process—also warrants exploring human-in-the-loop
processes through active, interactive learning, zero and
few-shot generalization methods. We hope that the
dataset and benchmarks we release will spur further re-
search along these directions.

2172

Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation under Grant# 1918225.

Artzi, Y., Fitzgerald, N., and Zettlemoyer, L. (2014).
Semantic parsing with Combinatory Categorial
Grammars. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing: Tutorial Abstracts, Doha, Qatar, October. Asso-
ciation for Computational Linguistics.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M.,
Griffitt, K., Hermjakob, U., Knight, K., Koehn, P.,
Palmer, M., and Schneider, N. (2013). Abstract
meaning representation for sembanking. In Pro-
ceedings of the 7th linguistic annotation workshop
and interoperability with discourse, pages 178—186.

Beltagy, 1., Lo, K., and Cohan, A. (2019). SciBERT:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615—
3620, Hong Kong, China, November. Association
for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171-
4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Dozat, T. and Manning, C. D. (2017). Deep biaffine
attention for neural dependency parsing. ArXiv,
abs/1611.01734.

Dozat, T. and Manning, C. D. (2018). Simpler but
more accurate semantic dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 484—490, Melbourne, Australia, July.
Association for Computational Linguistics.

Drechsler, R., Soeken, M., and Wille, R. (2012). For-
mal specification level: Towards verification-driven
design based on natural language processing. In
Proceeding of the 2012 Forum on Specification and
Design Languages, pages 53-58. IEEE.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X,
Gong, M., Shou, L., Qin, B., Liu, T, Jiang, D.,
and Zhou, M. (2020). CodeBERT: A pre-trained
model for programming and natural languages. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1536-1547, Online,
November. Association for Computational Linguis-
tics.

Fernandez-Gonzdlez, D. and Goémez-Rodriguez, C.
(2020). Transition-based semantic dependency pars-
ing with pointer networks. In Proceedings of the

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7035-7046, Online, July.
Association for Computational Linguistics.

Ferrari, A., Spagnolo, G. O., and Gnesi, S. (2017).
Pure: A dataset of public requirements documents.
In 2017 IEEE 25th International Requirements En-
gineering Conference (RE), pages 502-505.

Gelman, B., Obayomi, B., Moore, J., and Slater, D.
(2019). Code and comments dataset, October.

Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249-256.

Gururangan, S., Marasovié¢, A., Swayamdipta, S., Lo,
K., Beltagy, 1., Downey, D., and Smith, N. A.
(2020). Don’t stop pretraining: Adapt language
models to domains and tasks. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8342-8360, Online, July.
Association for Computational Linguistics.

Harris, C. B. and Harris, I. G. (2016). Glast: Learning
formal grammars to translate natural language spec-
ifications into hardware assertions. In 2016 Design,
Automation & Test in Europe Conference & Exhibi-
tion (DATE), pages 966-971. IEEE.

Holzmann, G. J. (1997). The model checker
spin. IEEE Transactions on software engineering,
23(5):279-295.

Jero, S., Lee, H., and Nita-Rotaru, C. (2015). Leverag-
ing state information for automated attack discovery
in transport protocol implementations. In 2015 45th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 1-12.

Jero, S., Pacheco, M. L., Goldwasser, D., and Nita-
Rotaru, C. (2019). Leveraging textual specifica-
tions for grammar-based fuzzing of network proto-
cols. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33:9478—9483, Jul.

Landhosectionuoer, M., Kopgfmer, S. J., and Tichy,
W. FE. (2012). Synchronizing domain models with
natural language specifications. In 2012 First Inter-
national Workshop on Realizing Al Synergies in Soft-
ware Engineering (RAISE), pages 22-26.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H.,
and Kang, J. (2020). Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234—1240.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a large annotated corpus of english:
The penn treebank. Comput. Linguist., 19(2):313—
330, June.

Marcus, M., Kim, G., Marcinkiewicz, M. A., Mac-
Intyre, R., Bies, A., Ferguson, M., Katz, K., and
Schasberger, B. (1994). The penn treebank: Anno-
tating predicate argument structure. In Human Lan-
guage Technology: Proceedings of a Workshop held
at Plainsboro, New Jersey, March 8-11, 1994.

2173

Miceli Barone, A. V. and Sennrich, R. (2017). A par-
allel corpus of python functions and documentation
strings for automated code documentation and code
generation.

Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S.,
and Paradkar, A. (2012). Inferring method specifi-
cations from natural language api descriptions. In
2012 34th international conference on software en-
gineering (ICSE), pages 815-825. IEEE.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532-1543.

Ramshaw, L. and Marcus, M. (1995). Text chunking
using transformation-based learning. In Third Work-
shop on Very Large Corpora.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T.
(2020). Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter.

Schinz, 1., Toben, T., Mrugalla, C., and Westphal, B.
(2004). The rhapsody uml verification environment.
In Proceedings of the Second International Confer-
ence on Software Engineering and Formal Methods.
SEFM 2004., pages 174-183.

Shepler, S., Eisler, M., and Noveck, D. (2008). NFS
version 4 minor version 1. Technical Report IETF
Internet-Draft, Network Working Group.

Soeken, M., Harris, C. B., Abdessaied, N., Harris, I. G.,
and Drechsler, R. (2014). Automating the transla-
tion of assertions using natural language processing
techniques. In Proceedings of the 2014 Forum on
Specification and Design Languages (FDL), volume
978, pages 1-8. IEEE.

Tahir, R. and Oswald, J. (2012). Implementing RFCs
using natural language processing.

Viho, C., Barbin, S., and Tanguy, L. (2001). Towards
a formal framework for interoperability testing. In
International Conference on Formal Techniques for
Networked and Distributed Systems, pages 53-68.
Springer.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015).
Pointer networks. In NIPS.

Yen, J., Levai, T., Ye, Q., Ren, X., Govindan, R., and
Raghavan, B. (2020). Semi-automated protocol dis-
ambiguation and code generation.

Yin, P.,, Neubig, G., Yih, W.-t., and Riedel, S. (2020).
TaBERT: Pretraining for joint understanding of tex-
tual and tabular data. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8413—-8426, Online, July. Associ-
ation for Computational Linguistics.

2174

7. Appendices

7.1. Annotation Scheme

This section gives a brief overview of the guidelines
followed by the annotators to annotate the sentences
with their SpecIR representation.

SpecIR representation of a textual specification is
based on the concepts of firs-order predicate logic,
which involves predicates and functions, applied to ap-
propriate objects in order express some proposition.
For every sentence in the NFS Operations specifica-
tions, the annotators tried to label entities and then the
link between the entity pairs. Few examples of the de-
pendency parse of the logical specification, generated
following our annotation scheme can be seen in Fig-

ure[d]

7.1.1. Entities

These are the text span that represents potential ele-
ments of SpecIR, where the category they are assigned
indicates their role in the overall underlying logical
meaning of the sentence. Following are the different
types of entities in SpeclR:

1. Objects

1.1 Value: Raw values or constants assigned to vari-
ables or returned from a function. Raw values include
numbers and Boolean values True and False. Constants
include all the NFS4_X or NFS4ERR_X states that in-
dicate the success or failure of an operation.

1.2 Variable: These are similar to the variables used
in a program. While annotating a particular opera-
tion, variables could either be part of the argument and
return sections of the operation, or could be generic
placeholders for the values.

1.3 Op-name: Since these are basically NFS4 oper-
ations, any mentions of the NFS4 operations in a sen-
tence were tagged as such as long as only the name was
mentioned. If the sentence also mentioned its behavior,
Function tag was used.

2. Function: These either denote an action per-
formed during the run of the code or refer to some
attribute of an object. Functions can have values,
variables, and return states of other functions as
arguments—and can return another variable or value.
The semantics of the word or phrase in a sentence that
is tagged as Function is indicative of the nature of the
function.

3. Op-Return: Similar to a function, describes the
behavior of a native NFS4 operation and its return
states. If the a sentence has a mention of a function
returning something, without explicitly mentioning the
function name, then Op-Return has to be used.

4. Predicates: Predicates are used to affirm or deny
some property about a objects, variables, or events. To
decide if a Predicate tag is to be used, the annotator an-
swers a Yes/No question about a value or variable. Ex-
ample cases where predicates should be used are com-

parison of two or more values/variables to satisfy a pre-
condition for an event, confirming a specific state of an
object such as a file is empty or EOF has been reached,
etc.

5. Connectives

5.1 And/Or: Used for conjunction or dis-junction of
multiple logical expression or objects. Functions, pred-
icates and objects are the usual arguments of And/Or
connective. All the arguments of And/Or connective
must be of same type.

5.2 If-else: If-then is an implication connective,
which is used to specify implication relation between
two logical expression (i.e. one logical expression is a
logical consequence of another). The arguments of if-
then (i.e. both the premise as well the conclusion) must
be a truth value. Based on the truth value of the ar-
guments premise and conclusion, If-then evaluates to
True or False.

7.1.2. Links
These denote the dependency relationship between an-
notated entities, if any.

1. Pre-Clause: Links an If-else entity, which indi-
cates an implication, with its relevant precedent.

2. Argument: Links a Function, Predicate, and Op-
Return entity in a sentence, with their corresponding
arguments. The head and the dependent can both have
multiple outgoing and incoming Argument links, as
they can both take arguments as well as act as an argu-
ment for other entities.

3. Return-val: Links a function with its return state.
The return state could be a value like O or an indication
of failure such as NFS4_ERR.

4. Post-Clause: Links a pre-condition to its corre-
sponding post-condition event. The event that it links
can only be of type Function, Predicate, Op-return
and their And/Or conjunction.

5. And-Or-Arg: Links a And/Or entity to the argu-
ments that it conjoins or dis-joins.

2175

Po

sT-Clause

Pre-Clause argument
argument argument
Theflag has value) of TRUE] |f Jthere are [no more enfries]in the {irectory)
predicate value lf else predicate variable
Pre-Clause Post-Clause

return-val

[

argument

)

{ {
[NFS4ERR TOOSMALL]is [returned) the (results) also contain gdir mincount]

if-else value Op-return variable predicate
a If-else Post-Clause N
AR return-val)
T { 1
However, [if] (gdia_maxcount) is| zerd,[NFS4ERR_TOOSMALL| [MUST NOT be returned|
_ if-else variable pred value value Op-return J
e argument I
argument
argument argument el 1
_({ ¥ t I y
This [seqid) value is used for(checking | lock-ownen sequencing/{replay issues.
_ variable function varigble function function %

Figure 4: Examples of dependency parse (SpecIR) of 1

21

ogical specifications following our annotation scheme.

76

	Introduction
	Towards Formal Models via Semantic Parsing
	Data Source Description
	Representing Specifications with SpecIR

	SpecNFS Dataset
	Semantic Dependency Parsing
	Named Entity Recognition
	Benchmarking Results

	Dependency Link Prediction
	Arc-Factored Parsing
	Transition-Based Parsing
	Benchmarking Results

	Error Analysis

	Related Work
	Conclusions
	Appendices
	Annotation Scheme
	Entities
	Links

