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Abstract
Building a usable radio monitoring automatic speech recognition (ASR) system is a challenging task for under-resourced
languages and yet this is paramount in societies where radio is the main medium of public communication and discussions.
Initial efforts by the United Nations in Uganda have proved how understanding the perceptions of rural people who are
excluded from social media is important in national planning. However, these efforts are being challenged by the absence of
transcribed speech datasets. In this paper, The Makerere Artificial Intelligence research lab releases a Luganda radio speech
corpus of 155 hours. To our knowledge, this is the first publicly available radio dataset in sub-Saharan Africa. The paper
describes the development of the voice corpus and presents baseline Luganda ASR performance results using Coqui STT
toolkit, an open source speech recognition toolkit.
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1. Introduction
In sub-Saharan Africa, low internet penetration makes
radio the most preferred medium of social communica-
tion. Radio provides an opportunity for people’s con-
cerns, particularly in rural communities, to get heard
through the various radio talk shows where they can
call in. Uganda has over 309 licensed radio stations,
which creates a unique platform where views that could
potentially harness the development of better policies
are discussed (BBC, 2019). Therefore, there is a need
to retrieve such valuable perceptions for national devel-
opment.
Previous work in the area of radio browsing using Au-
tomatic Speech Recognition (ASR) has been done by
the United Nations (Menon et al., 2018a). They have
also experimented with Keyword Spotting (KWS) sys-
tems in Uganda, and Somalia (Menon et al., 2018b).
KWS for radio monitoring was developed as an alter-
native to ASR systems due to the lack of a large corpus
of transcribed radio data. In this case, the conventional
approach of using ASR to perform speech-to-text and
then search through the lattices for the presence or ab-
sence of these keywords is not possible.
In the last decade, the increase in the availability of
large open-source speech datasets has propelled the
application of deep learning in speech recognition re-
search. As a result, research using various state-of-art
ASR systems (Hannun et al., 2014) (Li et al., 2021) has
produced better results compared to the traditional ma-
chine learning approaches. However, the data demands
of deep learning are well documented. Research on
neural speech research for under-resourced languages
is affected by the absence of speech datasets. On the
other hand, this also frustrates the efforts to develop
and adopt speech technologies in sub-Saharan Africa.

Our target language in this research is Luganda, which
is a Bantu language spoken in the African Great Lakes
region by more than fifteen million people (UBOS,
2016). Luganda faces the absence of publicly avail-
able speech and text resources like other low-resourced
languages in sub-Saharan Africa. Currently, there are
no open-source Luganda speech datasets that are avail-
able. To fill this gap, Makerere AI lab1 in partnership
with Mozilla, has made efforts to add Luganda as a lan-
guage on the Common Voice platform2. However, the
Common Voice dataset (Ardila et al., 2019) is different
compared to a radio dataset. Building ASR models for
radio requires a radio-specific dataset. Such a dataset
should be able to capture unique radio settings such
as background noise, telephone speech, studio speech,
news reports, and adverts. In this paper, we collect
speech and text data, as well as using transfer learn-
ing, an approach that is optimized for under-resourced
training. We use the openly available Kinywarwanda
ASR model (Meyer, 2019) and fine-tune the check-
points to use the collected Luganda Common Voice
dataset and radio corpus.
The main contributions of this paper are:

1. We present the methodology used to collect and
create the Luganda radio speech corpus.

2. We openly release 155 hours of the radio dataset.

3. We present the first radio monitoring Connec-
tionist Temporal Classification (CTC) end-to-end
ASR model for Luganda using transfer learning
with 203 hours of read speech data and 120.7
hours of radio data.

1https://www.air.ug
2https://commonvoice.mozilla.org/lg
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4. We evaluate the performance of the ASR model
on a COVID-19 radio conversation test set to es-
tablish the model’s effectiveness in monitoring
COVID-19 related keywords.

5. We show how hotword boosting can improve key-
word detection in a COVID-19 use case-based ra-
dio monitoring system and evaluate the model’s
performance on gender.

The remainder of the paper is organized as follows: In
Section 2, we discuss related work in ASR concerning
the datasets used, then we discuss our corpus develop-
ment approach in section 3. In Section 4, we present the
Luganda Automatic Speech Recognition model. Sec-
tion 5 discusses the model performance and evaluation.
Finally, Section 6 concludes the paper.

2. Related Work
This section reviews related work in Automatic Speech
Recognition systems for radio monitoring and ap-
proaches taken in corpus creation. Previous work with
radio data has proven valuable for plant disease mon-
itoring, and prediction (Akera et al., 2019) using a
keyword spotter model. In this case, radio monitor-
ing using Keyword Spotting System (KWS) model was
used together with the Adhoc mobile surveillance ap-
proach (Mutembesa et al., 2018) to replace traditional
surveying methods. Efforts have been made to develop
KWS solutions for under-resourced languages for radio
monitoring. Work has been carried to develop quickly
deployable systems for ASR-free keyword spotting
approaches. The system uses a multilingual bottle-
neck feature extractor trained on well-resourced out-
of-domain languages (Menon et al., 2018c). The aim
of this work was to support United Nations humanitar-
ian relief efforts by using radio data in parts of Africa
with severely under-resourced languages. (Menon et
al., 2018b) proposes a KWS radio browsing system that
uses dynamic time warping (DTW) as supervision for
training a convolutional neural network (CNN) based
keyword spotting system using a small set of spoken
isolated keywords.
Research by (Menon et al., 2017) (Saeb et al., 2017)
(Menon et al., 2018a) has been done in using machine
learning for radio monitoring. (Menon et al., 2017)
presents the initial efforts of extracting information
from broadcast radio speech in Uganda for Ugandan
English, Acholi, and Luganda. The ASR monitoring
system uses Hidden Markov Model (HMM), Gaussian
Mixture Model (GMM), Subspace Gaussian mixture
Model (SGMM), and Deep Neural Network (DNN)
based acoustic models as keyword spotters (Menon et
al., 2017). They used a train set of 9 hours and a
62 min test set resulting into a 52.47% best word er-
ror rate (WER) with SGMM-BMMI and 53.54% word
error rate with a DNN and HMM models. (Saeb et
al., 2017) also presents a radio browsing system de-
veloped on a tiny corpus of annotated speech by us-
ing supervised training of multilingual DNN and HMM

acoustic models. The research in (Saeb et al., 2017)
presents interesting examples of using radio for human-
itarian monitoring by carrying out different pilots on
various topics discussed on the radio like natural dis-
asters, refugees, health service delivery, and malaria.
(Menon et al., 2018a) also presents initial efforts in de-
veloping an ASR system for Somali using 1.57 hrs of
annotated radio speech data. The research by (Menon
et al., 2018a) uses a combination of CNNs, Time-delay
Neural Networks (TDNNs), and Bi-directional Long
Short Term Memory (BLSTMs) to achieve a WER of
53.75%.
The related work discussed in this section presents
applications of radio monitoring. However, this
work does not mention any publication of open ra-
dio datasets. Furthermore, the research uses tradi-
tional approaches and KWS that can manage to feed
off small annotated datasets. In this paper, we collect
read speech and radio speech to mitigate challenges
with limited data. This enables us to experiment with
deep learning approaches that have led to significant
improvements in word error rates.
The advent of Deep Learning toolkits like Mozilla’s
DeepSpeech, which is based on Baidu’s Deep Speech
(Hannun et al., 2014) has recently been improved
as Coqui STT3. Other toolkits like SpeechBrain (Ra-
vanelli et al., 2021), NVIDIA NeMo (Kuchaiev et
al., 2019) are a result of increased research in end-
to-end speech recognition. Recent research in speech
for African languages by (Dossou and Emezue, 2021)
presents OkwuGbé, an end-to-end approach for build-
ing ASR systems for low resourced African languages
with the case study of Igbo and Fon.
Coqui STT has presented a higher performance at
higher efficiency for various languages (Tyers and
Meyer, 2021). Coqui STT has been tested for both
research and production. Recent research with Coqui
STT has produced good results for the German (Agar-
wal and Zesch, 2019) and English languages. A WER
of 21.5% is presented for German on a combination
of Tuda, Voxforge, and Mozilla datasets (Agarwal and
Zesch, 2019). A WER of 4.5% for English4 on the Lib-
rispeech clean dataset5.
We use the Coqui STT toolkit to develop a Luganda
model using 203 hours of read speech data from the
Common Voice dataset and 120.7 hours of transcribed
radio speech data.

3. Corpus Development
The following section outlines the development of the
Makerere Radio Speech Corpus which we release un-
der a Creative Commons license, as well as other cor-
pora (e.g. Common Voice) used during the training
and testing phases of experimentation. Statistics for the
Makerere Radio Speech Corpus can be found in Table 1

3https://github.com/coqui-ai/stt
4https://coqui.ai/english/coqui/v1.0.0-huge-vocab
5https://www.openslr.org/12
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Gender Duration (hrs)
Transcribed — 20

Untranscribed
Women 1.4

Men 4.6
— 129

Total 155

Table 1: Release statistics for the Makerere Radio
Speech Corpus. Number of hours are reported across
gender where known. Most data we present in this re-
lease of the corpus is untranscribed, but still has gone
through multiple filtering steps to ensure it is high-
quality (e.g. not broadcast music, split on pauses, etc.)

First we will discuss the creation of the Makerere Radio
Speech Corpus and then our use of Common Voice.

3.1. Makerere Radio Speech Corpus
Summary statistics for the Makerere Radio Speech
Corpus can be found in Table 1.

3.1.1. Radio Data Collection
We collected radio data by recording streams from on-
line Luganda radio stations. We did this daily from
06:00 to 23:00 for a minimum period of three months
for over ten radio stations. The priority for which times
to record was based on the public radio live broadcast-
ing schedules.

3.1.2. Radio Data Transcription
After audio recording, the next step was transcription.
The transcription process follows precise rules around
the transcriber writing all the words they hear with ex-
ceptional cases on the numbers, titles, dates, and punc-
tuation. All numbers have to be written as words, titles
(e.g. Luganda equivalents of ”Mrs.” and ”Dr.”) have
to be written out in full just as they sound in speech,
dates and times are written out in the way they were
spoken, and no punctuation was used. Transcription is
a very resource-intensive process, and it becomes more
challenging with radio data. Radio data is character-
ized by background noise/music, overlapping speech,
filler pauses, breaths, incomplete or partial words, tele-
phone speech, and unintelligible speech. We worked
around this by using an automated data selection crite-
ria and creating transcription guidelines that the tran-
scribers followed. The guidelines defined how all the
posed challenges and edge cases had to be transcribed
by Luganda linguists.
We developed an audio selection tool6 based on py-
webrtcvad (Sredojev et al., 2015) and DeepSpeech7 to
automatically identify sections of audio that are likely
to have human speech. We randomly sampled audio
transcriptions from every transcriber to calculate the
transcription WER. We obtained a WER of 0.3%. The

6https://github.com/AI-Lab-Makerere/COVID-19-ASR
7https://github.com/mozilla/DeepSpeech

radio data was transcribed using the Praat annotation
tool8 as shown in Figure 1.

Figure 1: Data transcription using the Praat tool.

3.1.3. Radio Data Preparation
The transcribed audio data was saved in MP3 format.
The audio files were saved along with the transcript in
Textgrid file format. The audio files were then con-
verted to WAV file, mono-channel with a sampling rate
of 16kHZ, and the results saved to a CSV file. The tran-
scripts were cleaned to remove all known encoding er-
rors and extra-linguistic tags like “um”, and “laughter”,
which were added as part of the transcription guide-
lines. During the process of exporting transcripts, en-
coding errors were observed. These encoding errors
resulted from foreign words and names, where diacrit-
ics interacted with vowels. These were changed to the
base vowel (e.g. “ö” was replaced by “o”). Table 2
shows an example of a sample CSV file.

wav filename wav filesize transcript
audio 5fbb5.wav 316844 kwegamba ensigo zino
audio 5fb42.wav 188204 osobola okugamba nti
audio 5fbb5.wav 201644 wekatandika okukula

Table 2: Sample metadata for a cleaned and filtered
dataset.

The initial radio dataset of 95.0 hours was split into
82.7 hours for training, 10.5 hours for validation and
1.8 hours for testing. The testing set was obtained from
a radio station which was not part of both the training
and validation set. We carried out a listening exercise
using 5 people. These listened to 82.7 hours of training
data and established the gender of speaker(s)’s voice(s)

8https://www.fon.hum.uva.nl/praat/
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in the audio file. Table 3 shows the number of hours in
the Training, Validation and Testing sets. It also shows
the number of hours of women and men’s voices in the
training set.

Dataset Hours
Training 82.7
Validation 10.5
Testing 1.8
Total 95.0

Table 3: Statistics for the dataset used in the first round
of training. We have statistics on gender representation
for the training set. In number of hours of training data,
we had: women (7.5), men (67.8), and audio with mul-
tiple speakers where there were both men and women
speaking (7.4).

In addition to the 95.0 hours described in Table 3, we
transcribed more 25.7 hours radio data. These were
combined together to obtain 120.7 hours of transcribed
radio data. Table 4 shows the number of hours, word to-
kens and word types in the final radio dataset. We used
the 1.8 hours transcribed from a radio station which is
not part of the training and validation as the test set. We
then split the remaining 118.9 hours into 90% training
and 10% validation set.

Tokens Types Hours
Training 900,608 135,647 107.1
Validation 99,839 27,939 11.8
Testing 14,117 5,110 1.8
Total — — 120.7

Table 4: Statistics for the transcribed radio dataset used
to train the Luganda radio ASR. Shown are word types,
word tokens, and hours of audio. The Makerere Radio
Speech Corpus includes a 20 hour subset of the data
shown in this table, where we received permission from
the radio station to release the subset under a Creative
Commons license.

3.1.4. Open Radio Data Corpus
We release a corpus of 155 hours publicly available
online under the Creative Commons BY-NC-ND 4.0
license and can be downloaded from Zenodo9. The
dataset release comprises of:

1. 20 hours of human transcribed radio speech. The
audio is sampled at 16kHZ, mono-channel.

2. Two CSV files for the 20-hour human transcribed
dataset - cleaned.csv contains cleaned transcripts
and uncleaned.csv contains uncleaned transcripts.
The uncleaned transcripts contain extra speech de-
tails included in tags like [laughter] for laughter,

9https://doi.org/10.5281/zenodo.5855017

and [um] for filler pauses, which speaker is talk-
ing, where each speaker is assigned an identifier
A or B.

3. A transcription guideline.

4. A multi-speaker untranscribed dataset of 6 hours
of radio data. 1.4 hours of women voices and 4.6
hours of men voices. Each audio is a ten-seconds
clip with a single speaker.

5. 135 hours of multi-speaker untranscribed radio
data.

The 20 hours of human transcribed radio dataset were
used in our experiments. The rest of the dataset was not
used.

3.2. Common Voice Dataset
Common Voice is a crowdsourcing project started by
Mozilla to create a free database for speech recogni-
tion software (Ardila et al., 2019). It is a platform10

where anyone can donate their voice to an open-source
data bank11. We collected 300 hours of Luganda voice
on the Common Voice platform. The Common Voice
dataset has each entry consisting of a unique MP3 file
and a corresponding text file. Part of the recorded hours
in the dataset also include demographic data like age,
and gender. The Luganda Common Voice dataset was
contributed by 39.2% women and 33.5% men while the
remaining 27.3% were anonymous contributors. Table
5 shows a detailed breakdown of the Luganda Common
Voice dataset based on the age of the contributors.

Age Percentage (%)
19-29 41.4
30-39 21.1
40-49 5.8
50-59 3.0
Unclassified 28.7
Total 100.0

Table 5: Luganda Common Voice (CV) corpus demo-
graphics. CV dataset was used together with radio data
to train the Luganda ASR model

3.2.1. Common Voice Data Preparation
The Common Voice dataset is released with a clips
folder, invalidated.tsv, reported.tsv, train.tsv, dev.tsv,
other.tsv, validated.tsv and test.tsv files. The dataset
splits are done by the Mozilla’s CorporaCreator12 in
the form of 80% train, 10% validation and 10% test
sets. The dataset contains MP3 audio files. The
proposed speech recognition toolkit expects the au-
dio files to be in WAV format, mono-channel, and
with a 16kHz sampling rate. Using the Common

10https://commonvoice.mozilla.org/lg
11https://commonvoice.mozilla.org/lg/datasets
12https://github.com/mozilla/CorporaCreator
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Voice importer python script, the Common Voice data
was processed to comma-separated values (CSV) files
(train, dev and test) and the audio files were con-
verted to WAV format. The CSV file has the for-
mat of (wav filename,wav filesize,transcript). The
wav filesize in bytes is used to group audio of sim-
ilar lengths for efficient batching. We used the En-
glish alphabet as our output alphabet. We used the
commonvoice-utils13 package to perform basic linguis-
tic checks to identify characters that were not defined in
the alphabet. We only used 203 hours out of 300 hours
of Common Voice data because the remaining hours
were not validated. Table 6, shows the number of word
tokens, types and hours in the Common Voice dataset
used for training.

Dataset Tokens Types Hours
Training 414,129 74,340 162.4
Validation 92,969 25,040 20.3
Testing 92,708 24,700 20.3
Total — — 203.0

Table 6: Statistics for the Luganda Common Voice
(CV) dataset. Shown are word types, word tokens, and
hours of audio.

4. Luganda Automatic Speech
Recognition Model

The section presents the Luganda ASR model trained
and evaluated on the radio dataset. We describe the
model architecture, the training process, and the lan-
guage model.

4.1. Model Architecture
The Luganda ASR model is a Coqui Speech-to-Text
(STT) model. Coqui STT’s architecture is based on
Baidu’s Deep Speech research (Hannun et al., 2014).
However, further improvements have been made, and
the core of the engine is now of recurrent neural net-
work (RNN) trained to ingest speech spectrograms and
generate text transcriptions14 (see Figure 2).
Coqui STT uses a probabilistic algorithm called
Connectionist temporal classification (CTC)(Hannun,
2017). An algorithm commonly used to train deep neu-
ral networks. The algorithm aligns input sequences of
audio and output sequences of characters.
The model architecture is setup as follows. Let a single
utterance x and label y be sampled from a training set:

S = {(x(1), y(1)), (x(2), y(2)), ...}

Each utterance, x(i) is a time-series of length T (i)

where every time-slice is a vector of audio features,
xt

(i) where t = 1, . . . , T (i).

13https://github.com/ftyers/commonvoice-utils
14https://stt.readthedocs.io/en/latest/

Figure 2: Coqui STT architecture (adapted from Coqui
STT Docs).16

Mel-frequency cepstral coefficients (MFCC) are used
as the features whereby xt,p

(i) denotes the pth MFCC
feature in the audio frame at time t. The purpose of the
Recurrent Neural Network (RNN) is to convert an input
sequence into a sequence of character probabilities for
the transcription, with ŷt = P(ct|x)t, where for Lu-
ganda ct ∈ {a, b, c, ..., z, space, apostrophe, blank}.
The Connectionist Temporal Classification (CTC) loss
uses blank to indicate transitions between characters.
The RNN model has five layers of hidden units. Con-
sider a given input x, the hidden units at layer l are
denoted with the convention that h(0) is the input. The
first three layers are not recurrent. For the first layer,
at each time t, the output depends on the MFCC frame
xt along with a context of C frames on each side. We
use C = 9 for our experiments. The remaining non-
recurrent layers operate on independent data for each
time step. Thus, for each time t, the first three layers
are computed by:

ht
(l) = g(W lht

(l−1) + b(l))

where g(z) = min{max{0, z}, 20} is a clipped
rectified-linear (ReLu) activation function and {W (l),
b(l)} are the weight matrix and bias parameters for
layer l. The fourth layer is a recurrent layer. The layer
includes a set of hidden units with forward recurrence
h(f) as:

ht
(f) = g(W (4)ht

(3) +Wr
(f)ht−1

(f) + b(4)))

Note that h(f) must be computed sequentially from
t = 1 to t = T (i) for the ith utterance. The fifth (non-
recurrent) layer takes the forward units as inputs:

h(5) = g(W (5)h(f) + b(5))
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The output layer is standard logits that correspond to
the predicted character probabilities for each time slice
t and character k of the alphabet:

ht,k
(6) = ˆyt,k = (W (6)ht

(5))k + (bk)
(6)

Here bk
(6) denotes the kth bias and (W (6)ht

(5))k the
kth element of the matrix product. Once we have com-
puted a prediction for ŷt,k′ , we then compute the CTC
loss L(ŷ, y) to measure the error in prediction. The
CTC loss requires the above to indicate transitions be-
tween characters. During training, we can evaluate the
gradient ∇L(ŷ, y) with respect to the network outputs
given the ground-truth character sequence y. From this
point, computing the gradient with respect to all of the
model parameters may be done via back-propagation
through the rest of the network. We used the Adam
method for training.

4.2. Model Training
We utilized a cross-lingual transfer learning approach
(Meyer, 2019) to get a good performing model. We
used a two-tier pre-training approach for transfer learn-
ing. We chose to transfer learn from a pre-trained
English DeepSpeech model to Kinyarwanda. Kin-
yarwanda and Luganda are linguistically related. They
are both tonal Bantu languages that have. This can
be expressed at different language dimensions: Pho-
netically, both languages are tonal (Jerro, 2018), and
syntactically some words have got similar meanings,
for example: “abantu” meaning “people” or “humans”,
“akantu” meaning “little thing”. Morphologically, they
have some similar noun classes. They also follow the
same grammatical principles for one noun class (sin-
gular) to shift into another noun class to give the plural
of that noun class. Table 7 shows two examples where
Kinywarwanda and Luganda show similarities in noun
classes.

Class Number Kiywarwanda Luganda
1 Singular umu- (umuntu) (o)mu-

(omuntu)
2 Plural aba- (abantu) (a)ba-

(abantu)

Table 7: Luganda noun class morphology.

We trained the model using both the Luganda radio and
the Luganda Common Voice datasets described in sec-
tion 3.
First, a pre-trained English release model was down-
loaded and fine-tuned using Kinywarwanda Common
Voice data. The English model checkpoints were fine-
tuned multiple times, first to Kinyarwanda, then ul-
timately to Luganda. We used the English alphabet
across all the languages to ease the fine-tuning process.
For Luganda, we replace all occurences of “NN” with

“ng” so that all text characters in the training data cor-
respond to the English alphabet. We trained the pre-
trained English model for 200 epochs to get a Kin-
yarwanda model. We then fine-tuned the Kinyarwanda
model to Luganda for 200 epochs.
We performed two training rounds. In the first train-
ing round, we used the radio dataset described in Ta-
ble 3. It has 82.7 hours of training data, 10.3 hours of
the validation data and 1.8-hours held out test set. In
the second round of training, we used the final radio
dataset described in Table 4 and the Common Voice
dataset described in Table 6. The training was done
with 107.1 hours of training, 11.8 hours of validation
and 1.8-hours of test data from radio. We also com-
bined this with 162.4 hours of training, 20.3 hours of
validation and 20.3 hours of test data from Common
Voice. For the hyperparameters, we use a dropout of
0.1 with batchsize of 64 for training and validation and
a learning rate of 0.0001. We also performed time and
frequency mask augmentation during training.

4.2.1. Luganda Language Model
We used a probabilistic language model to build a
scorer for our acoustic Luganda model. Using a Kenlm
toolkit (Heafield, 2011), we build a 3-gram Language
Model(LM). We used a text corpus of 80,000 sentences
for the first language model and initial tests. We then
use a text corpus of 500,000 sentences for the second
round of tests. The Luganda sentences were extracted
from online news Luganda websites, PDF documents
from authors, and the Luganda Bible. The corpus was
cleaned with one sentence per line. Table 8 shows the
counts for sentences, word tokens and word types in
each text corpus used to build the language model.

Language Model Word Tokens Word Types
80,000 sentences 972,104 151,281
500,000 sentences 6,682,657 609,755

Table 8: Number of sentences, word types and tokens
in each text corpus that was used to build the language
model.

5. Model Performance and Evaluation
We trained the Luganda ASR model with 82.7 hours of
radio data as shown in Table 3 and obtained a WER of
65.1% on the radio test set of 1.8 hours. In this case,
we use a text corpus with 80,000 sentences to create the
language model. The details of the corpus are provided
in Table 8.
In the second round of training, the training set was
three times of that used in the first round of training.
We also increased the number of sentences in the text
corpus from 80,000 to 500,000. The details of the text
corpora are showed in Table 8. In Table 9, we present
much better results for the Luganda ASR model during
this training phase. The WER was calculated on both
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the 1.8 hours radio test set and 20.3 hours Common
Voice test set.

Dataset WER (%)
Common Voice 33
Radio 47

Table 9: WER on Common Voice and Radio dataset.

The model performs better on Common Voice data be-
cause this is read speech data containing one speaker
for every audio clip and less background noise. As
earlier discussed, radio data is conversational and has
unique characteristics which explains the differences in
the WER on both datasets.

5.1. Hotword boosting
Using Coqui STT’s hotwords weighting feature, we bi-
ased the predictions of our Luganda ASR model on se-
lected keywords using the hotword boosting technique.
The algorithm “boosts” the likelihood of a selected hot-
word. During decoding, the language model assigns
likelihoods to words as they are recognized. The boost
is an additive factor to the language model’s original
likelihood. It makes the keyword more likely in the
beam search. We performed these tests using the model
after the first round of training. When a negative boost
value is applied, there are chances that homophones
might be used instead in case they exist in the audio.
As a result, the behaviour of the keywords of interest
was observed by adjusting different boost values to ob-
tain the best boost values for a given keyword. This
was also analysed to understand how the boost values
affected specific keywords that are homophones in na-
ture.
While boosting the hotwords, we used a range of -1000
to +1000. The boost values for each keyword were de-
termined by assigning a boost range of values from -
1000 to + 1000 for each keyword. We then observed
the model results on applying values between -1000 to
+1000. In the case where the keyword was boosted, we
recorded the boost value. We logged the results of the
different boost values in the range to understand which
boost values worked best. Table 10 shows an exam-
ple of hotword boosting for the word “ekifo” by chang-
ing it to “ekifuba” (”cough” in English) which was the
word mentioned in the audio file. The change hap-
pened at the +200 to +1000.0 boost values. The origi-
nal transcript obtained with STT model was: “eno oba
ne virus eno eyitibwa covid okolola ebifuba enayumba
abantu balina okwegendereza ekifo tulina gugaawulira
e emabegako”.

5.2. Comparison of ASR performance with
hotword boosting

In this section, we evaluate the performance of the Lu-
ganda ASR model with hotword boosting (HTWD-B)
verses using ASR without hotword boosting (ASR).

The evaluation was done on five prominent COVID-
19 keywords from radio discussions. The purpose was
to find out whether hotword boosting can assist in de-
tecting COVID-19 keyword mentions which might be
missed by the ASR model, in which case we may
choose to run inference using the ASR model while
boosting certain keywords for which the ASR model
is under performing.
We created two test datasets of 10 second audio clips.
The test dataset was created using new unseen audio.
In the first dataset, each audio file was listened to by
a linguist to confirm the presence of the keywords of
interest. The dataset included the following mentions
of keywords:

• Eighty three (83) audio files contained “covid” or
“kovidi” (English “covid”)

• Sixteen (16) audio files contained “ekirwadde”
(English “disease”).

• Six (6) audio files contained “kolona” (English
“corona”).

• Five (5) audio files contained “ssennyiga” (En-
glish “flu”).

• Two (2) audio files contained “ekifuba” (English
“cough”).

For each audio file, we provided a boost range of -
1000 to +1000 for the boost values and specified the
keyword of interest. We then observed the keyword
behaviour across 6 different boost values of -1000.0,
-600.0, -200.0, 200.0, 600.0 and 1000.0.
Table 11 shows the results based on the tests carried
out with the five keywords. We observe that using ASR
with hotword boosting returns more True Positive (TP)
results. All the False Negatives that returned True Pos-
itives results did so at boost values of 200.0, 600.0 and
1000.0. However, both approaches perform well on the
“covid” keyword.

Keyword ASR HTWD-B
TP FN TP FN

“covid” 71 12 71 12
“ekirwadde” 11 5 14 2
“kolona” 3 3 6 0
“ssennyiga” 5 0 5 0
“ekifuba” 1 1 2 0

Table 11: True Positive (TP) and False Negative (FN)
results on COVID-19 test set based on a Luganda ASR
model with hotword boosting (HTWD-B) and the ASR
without hotword boosting (ASR).

In the second dataset, each audio was listened to by the
linguist in order to confirm that the keywords of interest
were absent. We collected 122 10-second random radio
recordings as our test set in this dataset. The results in
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Boost Value Transcript Verdict
-1000 ... abantu balina okwegendereza ekifo tulina gugaawulira ... false negative
-600 ... abantu balina okwegendereza ekifo tulina gugaawulira ... false negative
-200 ... abantu balina okwegendereza ekifo tulina gugaawulira ... false negative

0 ... abantu balina okwegendereza ekifo tulina gugaawulira ... false negative
+200 ... abantu balina okwegendereza ekifuba e u o i na gugaawulira ... true positive
+600 ... abantu balina okwegendereza ekifuba e u o i na gugaawulira ... true positive

+1000 ... abantu balina okwegendereza ekifuba e u o i na gugaawulira ... true positive

Table 10: How the transcript changes with boosting the keyword “ekifuba” using boost values of -1000.0, -600.0,
-200.0, 0.0 200.0, 600.0 and 1000.0. A boost value of 0.0 effectively means that no boost was used.The keyword
was mentioned in the audio but the Luganda ASR had failed to transcribe it properly.

Table 12 show that boosting the word “kolona” results
in 6 False Negatives out of 122 radio recorded files.

Keyword ASR HTWD-B
FP TN FP TN

“covid” 0 122 0 122
“ekirwadde” 0 122 0 122
“kolona” 0 122 6 116
“ssennyiga” 0 122 0 122
“ekifuba” 0 122 0 122

Table 12: False Positive and True Negative results on a
non COVID-19 test set.

Based on the True positives (TP), False Positives (FP),
False Negatives (FN), and True Negatives (TN), we cal-
culated the precision and recall for both approaches
to obtain F-score result of 0.94 with hotword boost-
ing (HTWD-B). From the results shown in Table 13,
we noticed minimal improvement in the F-score for
HTWD-B. However, this still presents the potential of
hotword boosting in under-performing ASR systems
where a given use case is of priority.

Metric ASR HTWD-B
True Positives 91 98
False Positives 0 6
False Negatives 21 14
Precision 1 0.99
Recall 0.81 0.89
Fscore 0.89 0.94

Table 13: Fscore results for hotword boosting (HTWD-
B) and ASR without hotword boosting (ASR).

5.3. Model Evaluation: Gender Bias
Bias mitigation is a serious problem in Artificial Intel-
ligence (AI) research. Over the past decade, academia
has increased the amount of time its researchers have
spent studying bias in machine learning models (Costa-
jussà et al., 2021; Kumar et al., 2021). Academic
studies by researchers with diverse backgrounds have
played a major role in preventing bias in AI models.

Managing bias in speech recognition is a very impor-
tant aspect especially when the speech technology is a
solution that will be used by diverse users. As a first
step to understand gender bias, several datasets like the
Artie Bias Corpus (Meyer et al., 2020) and the curated
subset of the English Mozilla Common Voice corpus
have been released for testing for gender bias.
We therefore carried out gender bias tests to get an un-
derstanding of how our Luganda ASR model gener-
alises on women and men radio speech. We did this by
creating a 28 minutes test set that contained 14 minutes
of women’s speech and 14 minutes of men’s speech.
The test dataset was selected from new unseen radio
data sorted from radio studio discussions by linguists.
The linguists manually listened to each audio file to as-
certain the speaker. We tested the Luganda ASR model
obtained after the first round of training. The results are
shown in Table 14.

Gender WER Duration (mins)
Women 70.6% 14
Men 53.5% 14

Table 14: Model performance on a held-out gender test
set.

As shown in Table 14, our model is biased towards
men’s voices with a better WER of 53.5% compared
to the WER of 70.6% for the women voices. This can
be explained by the existing bias in the training data de-
scribed in Table 3 which was used to train the model.
The training set contains 81.9% of men voices, 9.0% of
women voices and 8.9% of the discussions with both
women and men voices. It is probable that the over-
all WER of the model can be improved significantly if
the model is able to transcribe women’s voices better.
It is apparent that reducing gender bias in the dataset
leads to more effective and accurate models (Meyer et
al., 2020). We suggest that any speech data collection
strategy should ensure that women’s and men’s speech
is equally represented if the model is to generalize well
for real life scenarios.
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6. Conclusion
This paper presents a Luganda radio corpus and Lu-
ganda ASR for radio monitoring. We show how we
utilized transfer learning to fine tune a Kinyarwanda
model on Luganda Common Voice and radio data. We
evaluate the performance of the Luganda ASR model
on a held-out test set to obtain the best WER of 33% on
Common Voice and 47% radio dataset. We evaluate the
model’s performance on a held-out test-set of COVID-
19 keywords to obtain Fscore of 0.94. We highlight
the importance of gender consideration in ASR mod-
els by evaluating our model on women’s and men’s
voices. We release the Makerere Radio Speech Cor-
pus, a Luganda radio corpus of 155 hours. We be-
lieve that this work has the potential to benefit many
researchers working on radio monitoring work in sub-
Saharan Africa.
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