Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1444—1453
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

Holistic Evaluation of Automatic TimeML Annotators

Mustafa Ocal, Adrian Perez, Antonela Radas, & Mark A. Finlayson
Knight Foundation School of Computing and Information Sciences
Florida International University
CASE Building, Room 362, 11200 S.W. 8th Street, Miami, FL. USA 33199
{mocal001, apere946, arada002, markaf}@fiu.edu

Abstract
TimeML is a scheme for representing temporal information (times, events, & temporal relations) in texts. Although automatic
TimeML annotation is challenging, there has been notable progress, with Fs of 0.8—0.9 for events and time detection subtasks,
and Fis of 0.5-0.7 for relation extraction. Individually, these subtask results are reasonable, even good, but when combined to
generate a full TimeML graph, is overall performance still acceptable? We present a novel suite of eight metrics, combined
with a new graph-transformation experimental design, for holistic evaluation of TimeML graphs. We apply these metrics to
four automatic TimeML annotation systems (CAEVO, TARSQI, CATENA, and CLEARTK). We show that on average 1/3 of the
TimeML graphs produced using these systems are inconsistent, and there is on average 1/5 more temporal indeterminacy than
the gold-standard. We also show that the automatically generated graphs are on average 109 edits from the gold-standard, which
is 1/3 toward complete replacement. Finally, we show that the relationship individual subtask performance and graph quality is
non-linear: small errors in TimeML subtasks result in rapid degradation of final graph quality. These results suggest current

automatic TimeML annotators are far from optimal and significant further improvement would be useful.

Keywords: TimeML, Timelines, Evaluation Metrics

1. Introduction

TimeML is an annotation scheme for representing tem-
poral information in natural language texts. Automatic
TimeML annotation is a challenging task, not only be-
cause it comprises three subtasks (time expression de-
tection, event detection, and TimeML relation extrac-
tion), but also because temporal information is often
implicit in the commonsense meaning of the language.
There are several systems that can automatically gener-
ate TimeML graphs by combining the output of compo-
nents that each focus on one of the individual subtasks.
When evaluated in isolation, the components perform
well on event detection (0.80-0.85 Fj score) and time
expression detection (0.82—0.93 Fy score), while au-
tomatic relation extraction trails both in performance
(0.50-0.63 F1) and coverage (4—11 out of 25 relation
types extracted). Despite these respectable individual
performances, the question remains of how the perfor-
mance of the individual components relates to overall
performance, and how that affects a logical next task,
namely, timeline extraction. Limited coverage of rela-
tion types is especially problematic, because while a
reported F for relation extraction might be respectable,
even good, all extant systems only extract a subset of
relation types, and how these omissions effect later tasks
has not been evaluated. Furthermore, running each com-
ponent in isolation and then combining the results does
not attend to question of consistency, which is critical
to the utility of the final TimeML graphs.

We present a new suite of methods for evaluating
TimeML graphs and, consequently, measuring the holis-
tic performance of existing TimeML annotation suites.
Our evaluation methods include four graph-based met-

rics (relation distribution, number of closure links, edit-
distance from gold standard, and the overall consistency
of the graph) and four timeline-based metrics (timeline
length, missing times and events, subordination struc-
ture, and temporal indeterminacy). We combine five
of these metrics with a novel graph-transformation ex-
perimental design that allows us to investigate how the
metrics vary as TimeML graphs degrade.

In our experiments, we used the TimeBank corpus
(Pustejovsky et al., 2003) which is the original TimeML
reference corpus. We evaluated four automatic TimeML
annotation systems: TARSQI (Verhagen et al., 2005),
CLEARTK (Bethard, 2013), CAEVO (Chambers et al..
2014)), and CATENA (Mirza and Tonelli, 2016)). These
systems collectively represent the state-of-the-art in au-
tomatic TimeML graph annotation.

The paper is organized as follows. First, we review
TimeML, prior work on automatic TimeML annotation,
and approaches for timeline extraction (§2). Next, we
explain our suite of metrics in detail (§3), and we present
our experimental evaluation, including our novel exper-
imental design involving transforming gold standard
graphs step-by-step into automatically generated graphs
to probe how the metrics vary as graph fidelity degrades
(§4). Finally, we discuss the results (§5)) and provide a
summary of the contributions (§6). We release our code
and data to enable reproduction of our resultsﬂ

"https://doi.org/10.34703/gzx1-9v95/
ZXHACI

1444

https://doi.org/10.34703/gzx1-9v95/ZXHACI
https://doi.org/10.34703/gzx1-9v95/ZXHACI

2. Related Work

2.1. TimeML

TimeML is an SGML-based markup language designed
to annotate temporal information in natural language
texts (Sauri et al., 2006). TimeML is built upon Allen’s
Interval Algebra, a calculus for temporal reasoning that
defines 13 possible relations between time intervals
(Allen, 1983). TimeML has five types of objects. An
EVENT object is used to represent events and changing
states in documents, where an event is a situation that
happens or occurs. A TIME object is used to represent
temporal expressions such as dates, time intervals, time
points, and durations. Temporal expressions can be a
single word or a whole phrase.

LINK objects are used to identify relationships between
two events, two times, or between an event and a time.
There are three types of TimeML links: Temporal Links
(TLINK), Aspectual Links (ALINK), and Subordination
Links (SLINK). A TLINK object represents temporal
relationship between events and times, of which there
are 14 types: BEFORE, AFTER, SIMULTANEOUS, IDEN-
TITY, I_.BEFORE, I_AFTER, INCLUDES, IS_INCLUDED,
DURING, DURING_INVERSE, ENDS, ENDED_BY, BE-
GINS, and BEGUN_BY. An ALINK object represents
an aspectual relationship between an event and one
of its subevents, of which there are five types: INITI-
ATES, REINITIATES, CULMINATES, TERMINATES, and
CONTINUES. An SLINK object represents counterfac-
tual, conditional, or possible events, as well as mark-
ing factuality. There are six types: MODAL, FACTIVE,
COUNTER_FACTIVE, CONDITIONAL, EVIDENTIAL, and
NEGATIVE_EVIDENTIAL. An SLINK does not imply
temporal semantics; two events can be related by both a
subordinating and temporal link.

Using TimeML annotations, we can represent the tem-
poral information of the text in a graph, called TimeML
graph. A TimeML graph is a graph whose nodes are
events and times, and its edges are TimeML links. Take
the text shown in Example which is a snippet of
the TimeML-annotated text from the TimeBank cor-
pus. The TimeML graph corresponding to the snippet
is shown in Figure[I] where we can see that nodes of
the graph are either events or times, and the edges are
TimeML relations (DCT = Document Creation Time).

@)) [DCT:11/02/89,]: Pacific First Financial Corp.
said, shareholders approved; its acquisitiony
by Royal Trustco Ltd. of Toronto for $27 a
share, or $212 million. The thrift holding com-
pany saids it expectss to obtain; regulatory
approvalg and completey the transaction;y by
year-end;;. [from WSJ.0006.tml]

2.2. Automatic TimeML Annotators & Data

Creating a full TimeML graph from texts includes three
subtasks: temporal expression (time) detection, event
detection, and TimeML link extraction. There has been

BEFORE _BEFORE AFTER

@ o 60\)?/ EVIDENTIAL MODAL
" S
FACTIVE 8

@ BEFORE <9>M>
————
CULMINATES

Figure 1: Visualization of the gold-standard TimeBank
TimeML graph for Example|(1)} TLINKs and ALINKs
are given in bold, and SLINKSs are in italic. Numbers
correspond to events and times numbered in the ex-
ample. The five temporally and aspectually connected
subgraphs are separated by dashed lines.

quite a bit of work addressing each of these subtasks in-
dividually (Verhagen et al., 2006} [Seker and Dir1, 2010;
Lenzi et al., 2012, for example), but there are only a few
systems that can provide integrated capabilities. Of the
systems that tackle an individual subtask, there are:

Time Expressions HeidelTime recognizes temporal
expressions using regular expressions as well as POS
tags and handcrafted rules, achieving 0.86 F; (Strotgen
and Gertz, 2010). SUTime, part of the Stanford
CoreNLP pipeline, recognizes and normalizes times
in documents using regex rules, POS tags, and named
entity tags, and achieves 0.92 F} (Chang and Manning|
2013). SynTime is also a rule-based time recognition
tool, additionally using token types to achieves 0.92
Fy (Zhong et al., 2017). PTime generates patterns and
selects them using the Extended Budgeted Maximum
Coverage (EBMC) model, achieving 0.93 F on tweets
and 0.87 F} on a TimeML annotated corpus (Ding et
al., 2019).

Events NavyTime detects events using POS tags, n-
grams, lemmas, WordNet events, parse path, and typed
dependencies with a MaxEnt Classifier, achieving 0.80
Fy (Chambers, 2013). |Sprugnoli and Tonelli (2019)
detects events using a CRF classifier with lemma, POS
tags, and text genre as features, achieving a 0.83 F}
in historical texts. Multilingual Sequence Tagger (M-
LiST) is a deep learning model which uses word align-
ment, feature encoder, and sequence tagger and achieves
0.86 F} on event recognition (Goud et al., 2019).

Temporal Relations |Galvan et al. (2018]) presented
a bidirectional LSTM-RNN end-to-end neural model
for medical domain texts to extract five types of
TLINKs: BEFORE, BEGINS, INCLUDES, ENDS and
OVERLAP. The system uses event attributes as fea-
tures and achieves 0.62 F}. Ning et al. (2019) im-
plemented a semi-supervised system combining a struc-
tured perceptron algorithm and constraint-driven learn-
ing (CoDL) to extract TLINKs from documents. The sys-
tem achieves 0.67 F} on event to event relations on five
TLINKs: BEFORE, AFTER, INCLUDES, IS_INCLUDED,

1445

and SIMULTANEOUS—notably, the system does not ex-
tract event to time or time to time relations.

Integrated Systems There are four systems that in-
tegrate multiple subtasks. The TARSQI toolkit (Ver;
hagen et al., 2005) takes raw texts as input and rec-
ognizes time expressions and normalizes their values
using a component called GUTIME. TARSQI recog-
nizes events using a component called EVITA, which
is a domain-independent event tagger, and identifies
SLINKS, ALINKS, and TLINKs between temporal entities
using supervised classification models. TARSQI merges
the links using its SPUTLINK component, which applies
constraint propagation algorithms to obtain a consistent
annotation. TARSQI generates all types of SLINKs and
ALINKS. It also generates 9 types of TLINKS: BEFORE,
AFTER, INCLUDES, IS_INCLUDED, SIMULTANEOUS,
IDENTITY, BEGUN_BY, ENDS, and ENDED_BY.
CLEARTK (Bethard, 2013) ranked first for temporal re-
lation identification on TempEval-2013, and comprises
three modules. The first module identifies events in texts
and determines their attributes using event text, stem,
part-of-speech tags, n-grams, and other related features.
The second module identifies time expressions as well
as time type and value using time-related features and
the temporal type of each alphanumeric sub-token of
time words. The third module predicts (only) TLINKS be-
tween each event and the DCT, between events and times
in the same sentence, and between events in the same
sentence. CLEARTK generates four types of TLINKS:
BEFORE, AFTER, INCLUDES, and IS_INCLUDED.
CAEVO (Chambers et al., 2014) works similarly to
TARSQI across four substeps: (1) time expression detec-
tion, (2) event detection, (3) temporal relation extraction,
and (4) transitive inference over TLINKS. CAEVO uses
the SUTIME to extract times, and NAVYTIME to ex-
tract events. CAEVO then extracts (only) TLINKS be-
tween temporal entities in the same sentence and neigh-
boring sentences using a supervised classifier. It also
extracts TLINKs between the document creation time
(DCT) and every temporal entity. Finally, it applies tran-
sitive rules on TLINKS to extract dense TimeML annota-
tion. CAEVO produces five types of TLINKs: BEFORE,
AFTER, INCLUDES, IS_INCLUDED, and SIMULTANE-
Oous.

Finally, CATENA (Mirza and Tonelli, 2016) is a state-
of-the-art sieve-based system for temporal relation ex-
traction which takes texts pre-annotated with times and
events and generates TLINKS between all event-event,
event-time, DCT-event, and DCT-time pairs using a Sup-
port Vector Machine (SVM) and a temporal reasoner.
CATENA generates 10 types of TLINKS: BEFORE, AF-
TER, INCLUDES, IS_.INCLUDED, SIMULTANEOUS, BE-
GINS, BEGUN_BY, ENDS, ENDED_BY, and DURING.
Although there are a number of manually annotated
TimeML corpora (Pustejovsky et al., 2003; [Finlayson et
al., 2014; [Minard et al., 2016), in our experiments we
used the TimeBank corpus (Pustejovsky et al., 2003)) be-
cause it is the largest gold-standard TimeML-annotated

corpus available, comprising 183 texts, 68,555 words,
7,935 events, 1,414 temporal expressions, and 9,615
TimeML links including all types of TimeML links.

2.3. Timeline Extraction Systems

The final four metrics we present below rely on ex-
tracting a timeline from the TimeML graph, where a
timeline is a structure that gives a total order of events
and times. There have been a number of attempts to
develop automatic systems for timeline extraction from
TimeML annotated texts. |Do et al. (2012)) provided a su-
pervised machine learning-based system to extract time-
lines from TimeML annotations using lexical, syntactic,
semantic, and event coreference features. The system
achieves roughly 73% accuracy for TimeML annota-
tions, but only works on three temporal relation types:
BEFORE, AFTER, and SIMULTANEOUS. Kolomiyets et
al. (2012) presented two different timeline extraction
models: one based on shift-reduce parsing and another
on graph parsing. Both models produce a temporal de-
pendency tree (TDT) structure from the text order of
the events. Their system achieved 70% accuracy on
six temporal relations: BEFORE, AFTER, IDENTITY, IN-
CLUDES, IS_INCLUDED, and OVERLAPS. [Leeuwenberg
and Moens (2020) presented an approach to extracting
timelines from TimeML annotated clinical texts. Their
timeline system is built on the system’s subtasks of
predicting duration of events and anchoring start time
points of events. Although the system achieves an ac-
curacy of 77%, the system only deals with BEFORE,
AFTER, and OVERLAPS temporal relations.

Instead of these approximate methods, for this work,
we use the exact method of |[Finlayson et al. (2021)) to
generate timelines. This technique takes a consistent
TimeML graph as input, and has three steps to extract a
timeline.

Step 1: Partitioning Partitioning the TimeML graph
is achieved by walking the graph, setting aside all
SLINKs. SLINKs do not imply a temporal ordering
between nodes, and therefore they do not affect the
structure of the timeline. SLINK information is retained
only to indicate how to separate timelines are related
(as shown by the gray regions in Figure[3). Our running
example contains five temporally connected subgraphs,
as shown by the dashed lines in Figure[I]

Step 2: Transformation Second, each temporally
connected subgraph is transformed into a point algebra
(PA) graph, which is a constraint graph where the nodes
are time points and the edges are one of the two temporal
primitive constraints less than (<) or equals (=). To
transform each subgraph to a PA graph, first, each time
and event (representing an interval) are replaced by start
(I7) and end points (I 1), linked by a < relation. Then,
each TLINK and ALINK is transformed into primitive
constraints according to Table 3 provided in|Ocal and
Finlayson (2020). Each TLINK and ALINK link can be
expressed as no more than two primitive constraints (<
,=). For example, A BEFORE B is equivalent to A~ <

1446

? 09 09 9

O ® @)
®+0 @@ ©-O

Figure 2: Visualization of the output of the transforming
temporally connected subgraphs to PA graph.

O+
10- 9- 10+ 11- 11+
A

5 5+
¢ 4 r 3w 3B v
1 1 1 1 T 1 1 1

6|—_(?+
0+

8- 8+

Figure 3: Visualization of the timeline of the gold-
standard TimeML graph. Grey areas indicate subor-
dinating timelines.

A% < B~ < B%. The PA graph for our example
gold-standard TimeML graph is shown in Figure 2]

Step 3: Solving Finally, the timeline is generated by
solving the point algebra graph using a constraint solver,
assigning integers to each time point that satisfies the
constraint links. The sorted list of these integers is the
order of time points. Because there may be multiple
solutions, we take the shortest timeline as the reference.
As previously noted, SLINKs are used to identify at-
tachment regions between different timelines. The final
set of timelines of the gold-standard TimeML graph is
shown in Figure 3| Constraint solving can only find a
timeline if the temporal subgraphs are consistent. While
all gold-standard graphs in the corrected TimeBank are
consistent, we observed temporal inconsistency in many
cases in our experiments, as discussed in Section@

3. Metrics

We present eight different metrics: four graph-based
metrics, where we assess (1) relation distribution, (2)
closure links, (3) edit-distance from the gold standard,
and (4) graph consistency; and four timeline-based met-
rics, where we assess (5) timeline length, (6) missing
time points, (7) subordination structure, and (8) tem-
poral indeterminacy. In the descriptions of the metrics
below, the target graph refers to the graph on which
the metric is being computed, namely, the graph being
evaluated.

3.1. Metric 1: Relation Distribution

This metric computes the difference in the number of
TLINK, ALINK, and SLINK relations in the graph in com-
parison to the gold standard, expressed as a fraction of
the number of links in the gold standard. A positive

fraction means there are more relations in the target;
negative means fewer. This metric can be broken into
28 sub-metrics: 3 metrics measuring TLINK, ALINK,
and SLINK categories overall, and 25 metrics each corre-
sponding to each individual relation type (e.g., BEFORE,
AFTER, etc.).

3.2. Metric 2: Closure Links

This metric is the number of closure links that can be
generated from a graph. In temporal algebra, transitive
closure is a relationship between three time points z, y,
and z where the temporal link from x to z is inferable
from the temporal links = to y and y to z. For example,
if z is AFTER y and y is AFTER z, we can infer x is
AFTER z. Unlike gold-standard annotations, automatic
TimeML annotators use transitive closure to produce
more TLINKs. If the existing two links are incorrect,
transitive closure can produce another incorrect link.
While the existing links are correct, transitive closure
generates a link that does not provide any additional
information to global order, overall consistency, or the
temporal indeterminacy. We exclude links generated
by transitive closure when comparing the automatically
generated graphs with the gold-standard graphs since
the gold-standard graphs do not have transitive closure
links.

To compute this metric, we followed |Chambers et al|
(2014)’s transitive closure rules and implemented a sys-
tem that counts the extra links (which also allows us to
eliminate them during other comparisons). Figure[7]il-
lustrates the case where there are two extra links that are
generated by transitive closure: 2—AFTER—4 (since 2
is AFTER 3 and 3 is AFTER 4) and 5—BEFORE—7 (since
5is IS_INCLUDED 6 and 6 is BEFORE 7).

3.3. Metric 3: Edit Distance

The third metric captures the edit distance of the tar-
get from the gold standard, represented as a fraction:
the number of graphs edits required to transform a tar-
get graph into the gold-standard graph divided by the
number of nodes and edges in the gold standard. This
metric will always be positive. To compute the raw edit
distance, we compute the maximum common subgraph
between the target and the gold-standard (Bunke and
Shearer, 1998)). Next, we count both (a) the number of
relations and nodes that are present in the target, but not
in the gold-standard, and (b) the number of relations
and nodes that are present in the gold-standard, but not
in the target. The edit distance is the sum of these.

To illustrate this, compare the example gold-standard
graph (Figure 1) with the automatic graph computed
using CAEVO (Figure[7). The maximum common sub-
graph between these two graphs comprises Nodes 2—-10
and AFTER3_,4. There are seven relations (all other
relations) in the target that are not present in the gold
standard, however, two of them are extra links and they
are eliminated by the previous process, therefore, we
have five. And there are two nodes and thirteen relations

1447

6- 5-

I I I I I I
8- 8+

—

Figure 4: Visualization of the timeline of the CAEVO an-
notated TimeML graph. Three different timelines for
three temporally connected subgraphs.

that are present in the gold standard but not in the target.
This means that the edit distance is 20.

3.4. Metric 4: Graph Consistency

Bartak et al. (2014) showed that a timeline can be ex-
tracted if and only if the temporal graph is inconsistent.
If the timeline cannot be extracted, that means the graph
is consistent. [Zaidi (1999) showed that temporal consis-
tency is caused by a cycle of relations which indicates
no assignment is possible for the graph.

In this metric, using Algorithm 1 provided in (Ocal and
Finlayson, 2020), we calculated the number of incon-
sistent files of each automatic TimeML annotator’s files
as well as the total number of inconsistent cycles of
relations that automatic annotations have.

3.5. Metric 5: Timeline Length

This metric computes the difference in length of the
longest timeline of a target TimeML graph compared
to that of the gold standard. For example, the longest
timeline of the gold-standard graph of the example text
(Figure[3) has a length of eight while the longest time-
line of the CAEVO annotated graph (Figured) has six,
which means the target timeline is two units shorter than
the gold-standard timeline.

3.6. Metric 6: Missing Timepoints

This metric computes the difference between the num-
ber of unique timepoints across all timelines of a target
graph and that of the gold standard. For example, ac-
cording to the timeline of the gold-standard graph of the
example text (Figure[3), the timeline of the CAEVO an-
notated graph (Figure) misses four time points which
are 1—, 14+, 11—, and 11+.

3.7. Metric 7: Subordination Structure

This metric computes the number of subordinated time-
lines, which can be compared with the number of subor-
dinated timelines in the gold standard.

3.8. Metric 8: Temporal Indeterminacy

One of the most useful features of the timeline extrac-
tion technique in|Ocal and Finlayson (2020) is its ability
to measure temporal indeterminacy. Temporal indeter-
minacy arises because, in many cases, TimeML graphs
lack enough information to specify a unique total or-
dering of time points. This can be a natural function

FORE e BEF,
Dt o D20
BEFORE BE\:oRE

Figure 5: A temporal graph that results in temporal
indeterminacy. While the global ordering of 1, 4, and 5
are fixed, the relative order of 2 and 3 are indeterminant.

N
N
-
lll\)+<a)+
IN
o
o
IN

Figure 6: Visualization of an indeterminant graph. Be-
tween 2 and 3, there’s a temporal indeterminacy.

of linguistic ambiguity, and does not necessarily im-
ply an incorrect graph. A simple example of temporal
indeterminacy is shown in Figure[5} In this TimeML
graph, the order of time points would be 1~ < 1T < 2
and 3 < 4= < 5~ < 5T < 4%, However, the order
between 2 and 3 is not fixed. There could be fourteen
possible TLINK types between 2 and 3. The correspond-
ing timeline is shown in Figure[6] where indeterminant
time points on timeline are highlighted in bold.

Ocal and Finlayson (2020) provide an algorithm for
computing temporal indeterminacy given all possible
solutions to a temporal graph (Algorithm 2, p. 2153).
This relies on the ability of most constraint solvers to
produce both the smallest solution as well as all possible
solutions for a constraint graph. The algorithm deter-
mines whether the order of a pair of adjacent timepoints
are the same in all possible timelines as in the smallest
timeline. If they are not always adjacent or in the same
order, this pair is marked as indeterminate time points,
allowing visualization of indeterminate sections of the
timeline, as shown in Figure [6] for the temporal graph
shown in Figure 3]

4. Experimental Results

4.1. Generating TimeML graphs

The TimeBank corpus (Pustejovsky et al., 2003)) has 183
texts in three formats: raw text, pre-annotated texts, and
gold-standard annotated texts. Gold-standard annotated
texts are files where each TimeML component (events,
times, links, etc.) is labeled with TimeML tags while
pre-annotated texts have only TimeML tags for events
and times. Later work showed that 30 texts had errors
and provided corrections (Derczynski and Gaizauskas,
2012); we used the corrected versions.

To generate baseline TimeML graphs for evaluation,
we applied CAEVO, CLEARTK, and TARSQI to the raw
TimeBank texts to generate TimeML-annotated texts.
Only TARSQI has the capability of producing SLINKS
and ALINKs between events. Because CATENA only gen-
erates TLINKS (it does not detect events and times) we
give pre-annotated texts as input. Similar to CAEVO and
CLEARTK, CATENA also can’t generate SLINKS or

1448

+AFTER
® 6® G Em.GEEG

IS_INCLUDED +BEFORE

/\
O)«BEFORE @|s_mcmoeo@ BEFORE @

Figure 7: The TimeML graph generated by
CAEVO when run on Example [(T)] Numbers corre-
spond to events and times numbered in the example.
Underlined TLINKs indicate closure links.

ALINKS between events. We provided an illustration of
the TimeML graph that is extracted from the CAEVO an-
notation of our example text (Example [(T)) in Figure
Comparing Figures [T] and [7] several important differ-
ences are evident. First, the gold-standard graph is a
single connected graph while the generated graph com-
prises three separate graphs. Second, the generated
graph contains no SLINKs and ALINKs because CAEVO,
like nearly all automatic TimeML annotation systems,
does not generate those link types. Third, the generated
graph has more TLINKSs than the gold-standard graph,
because automatic annotators use transitive closure to
generate links consistent with automatically detected
links. For example, in Figure [/ event 2 (said) is BE-
FORE event 3 (approved), which is BEFORE event 4
(acquisition); consequently, CAEVO adds a BEFORE
link between events 2 and 4.

4.2. Results of Graph-based Metrics

First, we analyzed how many types of TLINK automatic
TimeML graphs have and how many total TLINKs they
contain. Second, we calculated the closure links and set
them aside for comparison. Then, as it’s described in
Section [3.3] we calculated the average distance between
automatic graphs and gold-standard graphs. The results
are shown in Table 2]

Metric 1: Relation Distribution The distribution of
TLINK types in the graphs is shown in Table[T} We note
that automatic graphs have many more BEFORE and
AFTER links than the gold-standard graphs. While only
35.9% of gold-standard links are BEFORE and AFTER,
this number goes up to 76.9% in CAEVO graphs, 78.4%
in TARSQI graphs, 69.8% in CATENA graphs, and 76.8%
in CLEARTK graphs. This means the automatic annota-
tors tend to generate BEFORE and AFTER TLINKS more
than any other TLINK type, meaning they miss a large
portion of TLINK types.

We note that TimeML graphs of automatic annotations
don’t have every TLINK type. The state-of-the-art
TLINK detection system - CATENA - produces 10 types
of TLINKs while CLEARTK only produces four types
of TLINKs. This means they’re missing a significant
amount of temporal relations. We also note that al-
though automatic systems produce less types of TLINKS,
they produce more total TLINKs than gold-standard.
While gold-standard graphs have only 6,418 TLINKS,

CLEARTK and CAEVO graphs have more than 9,000
TLINKS. One of the reasons for that is automatic systems
use transitive closure when it produces TLINKS. As we
mentioned earlier, while automatic TimeML annotators
use transitive closure as a feature in their system, gold-
standard annotations do not necessarily include closure
links. This results in automatic annotations having more
TLINKS than gold-standard annotations. However, even
without closure, automatic annotators generate many
more TLINKs than gold-standard annotations. For ex-
ample, CATENA annotated graphs have two times more
TLINKS than gold-standard TLINKs. This suggests auto-
matic annotators generate many incorrect TLINKS.

Metric 2: Closure Links We calculated the extra
links implied by temporal closure. As shown in Ta-
ble |2} CAEVO generated 876 extra links, 9.7% of its
total links. In the meantime, TARSQI generates 268 ex-
tra links (4.2%), CATENA generates 1085 (6.4%), and
CLEARTK generates only 67 (0.7%).

Metric 3: Edit Distance We calculated the edit
distance between gold-standard graphs and automatic
graphs. Table[2|shows that on average, each automatic
graph requires more than 77 steps to generate gold-
standard graphs. Although CATENA is the state-of-the-
art for TLINK identification, CATENA graphs are the
most distant graphs among all automatic graphs. This is
because CATENA produces a large number of TLINKS,
most of which are incorrect.

Metric 4: Graph Consistency In some cases, we can-
not extract timelines from target graphs because they
are temporally inconsistent. Inconsistency in the origi-
nal gold-standard TimeBank annotations are the result
of annotators’ mistakes, and for the timeline metrics
later we use corrected TimeBank gold-standard files
where each inconsistency is manually fixed by Ocal and
Finlayson (2020). For this metric, we measured how
many inconsistent graphs exist in the 183 annotated
texts. As mentioned previously, there were 30 inconsis-
tent files in the original gold-standard TimeBank cor-
pus; we use the corrected versions for comparison in
our experiments. Although CATENA has the highest F}
score for TLINK detection, CATENA annotations have
159 inconsistent files out of 183 files. We note that
TARSQI annotations introduce less inconsistency than
the gold-standard annotations.

4.3. Results of Timeline-based Metrics

Metric 5: Timeline Length Some automatic annota-
tors compute shorter timelines than gold-standard time-
lines while others output longer timelines. We report
Root Mean Square Error (RMSE) measures for timeline
length over the corpus for each system, we can clearly
see that RMSE scores for automatic annotations are high.
We also note that timelines of CATENA annotations are
much different than timelines of other annotations. The
main reason automatic annotation timelines are longer
than gold-standard annotation timelines is that auto-
matic annotations produce high number of BEFORE and

1449

& & o N Q
& < . & & & S ® o1 o o
& & & = & & & o $° & é’oe = é’@o & &
» B w S N N © Q 3 < < 9 N
GS 219% 140% 05% 0.6% 10.5% 1.6% 9.1% 21.1% 1% 1.1% 12% 2.8% 47% 0.02%
CAEVO 438% 33.1% - - 1.9% - 2.3% 18.8% - - - -
TARSQI 47.6% 30.8% 0.8% 9.2% 3% 8.4% - 0.1% - 0.03% -
CATENA 445% 253% 6.6% 3.9% 18.6% 02% 02% 02% 0.3% 0.2%
CLEARTK 53.8% 23% - 2.8% 20.4% - - - - -

Table 1: Metric 1: Relation Distribution (TLINKs only).

Metric 1: Metric 2: Metric 3: Metric 4:

Annotations #of TLINK Total Total Total Closure Avg. Edit Distance # of Inconsistent

types TLINKS ALINKS SLINKs Links to GS Graphs Main Graph
Gold-Standard 14 6,418 265 2,932 - -
CAEVO 5 9,062 - 876 125.26 72
TARSQI 8 6,366 93 1,325 268 77.54 9
CATENA 10 16,875 - - 1,085 138.47 159
CLEARTK 4 9,015 67 94.49 34

Table 2: Metrics 1-4: Summary Counts, Closure Links, Edit Distances, and Graph Consistency.

AFTER relations (See §4.2).

Metric 6: Missing Timepoints Our results show that
although automatically generated timelines have a simi-
lar number of time points to gold-standard timelines, the
RMSE is high. This is because state-of-the-art systems
detect incorrect events and times and miss a large num-
ber of correct ones. Since CATENA uses pre-annotated
texts, we didn’t include it in the table.

Metric 7: Subordination Structure As discussed,
SLINKS are critical for timeline extraction: without
them we will include events that may not happen in
the real world in the main timeline. Among state-of-the-
art TimeML annotators, only TARSQI detects SLINKS
between events. Based on TARSQI’s RMSE score for
the number of subordinated branches, our result shows
that TARSQI misses a significant number of SLINKS.

Metric 8: Temporal Indeterminacy We measured
67.9% overall indeterminacy score on gold-standard an-
notations. The reason why the indeterminacy score is
already high for gold-standard annotation is that natural
language texts usually don’t specify the order of some
events. However, as we can see in Table 3] the auto-
matic annotators increased indeterminacy significantly.
CAEVO annotations have 92.2% indeterminacy score,
while CLEARTK annotations have 91% indeterminacy.

4.4. Effect of TimeML Graph Degradation on
Metrics 4-8

We also wanted to investigate how errors in the detec-
tion of events, times, and relations affect the quality
of resultant timelines. To do this we take advantage
of our ability to transform one graph into another by
incrementally removing or adding nodes and links (the
total number of steps between gold-standard graph and
automatically generated graph is captured by the edit
distance metric). To measure this, we begin with the
gold-standard graph and transform it into the automati-
cally generated step-by-step in a random order, at each
step either (i) removing a link or node that is not present

in the automatic graph, or (ii) adding a link or node
that is not present in the gold-standard graplﬂ After
each editing step we run Metrics 4-8 on the new graph,
allowing us to chart the change in those metrics as the
graphs degrade. We can average these measures over
multiple random sequences of edits.

We start with the 183 gold-standard graphs and trans-
form them into the 734 automatically generated graphs
(734 = 183*4, one generated graph for each of the four
systems). We show the results for Metric 4 (Inconsis-
tency) and Metric 8 (Indeterminacy) in Figure [8]and 9]
respectively. As can be seen in Figure 8| for CAEVO,
CATENA, and CLEARTK, the number of inconsistent
graphs increases non-linearly: the number of inconsis-
tencies increases relatively slowly and linearly until a
breakpoint is reached (roughly 35-55% changed), af-
ter which the number of inconsistent graphs increases
rapidly. TARSQI is an outlier to this pattern, we sus-
pect because TARSQI imposes consistency checks in its
pipeline; ultimate TARSQI only generates 9 inconsistent
graphs across all texts.

In contrast, we can see that the increase in indetermi-
nacy follows a smoother, more linear pattern for CAEVO,
TARSQI, and CLEARTK. CATENA is the outlier here, be-
cause CATENA generates an extremely large number of
links (see Table[2} CATENA’s Metric 1, which is 16,875,
more than twice the other systems), and so when grad-
ually adding in these links indeterminacy temporarily
surges, before falling back to the ultimate level found in
the automatically generated graphs.

Note that this graph transformation technique does work
for Metrics 5, 6, and 7, we do not show those results for
several reasons. First, Metric 5 (average main timeline
length) and Metric 6 (average number of time points)
do not reveal any interesting patterns: the graphs are
mainly flat with some noise. This means that when

Naturally we do not add a missing link before the relevant
nodes are present, nor do we remove a node if the relevant
links are still present.

1450

Annotations Metric 5: Avg. Main. Metric 6: Avg. Time Metric 7: Avg. Sub. Metric 8: %
183 files Timeline Len. (RMSE) Pts / Timeline (RMSE) Branches (RMSE) Indeterminacy
Gold-Standard 8.61 130.79 16.02 67.9%

CAEVO 8.32 (3.10) 138.41 (10.40) 0 (N/A) 92.2%

TARSQI 6.49 (3.85) 100.39 (37.24) 7.28 (17.09) 80.7%
CATENA 12.85 (7.56) - 0 (N/A) 66.7%
CLEARTK 9.62 (3.04) 94.55 (14.96) 0 (N/A) 91%

Table 3: Metric 5-8: Timeline Length, Missing Timepoints, Subordination Structure, and Temporal Indeterminacy
(* excluded since it uses the gold-standard events & times)

of Inconsistencies
of Inconsistencies

Completed Transformation (%) Completed Transformation (%)

(@) 4 (b)

of Inconsistencies
of Inconsistencies

Completed Transformation (%)

© (d)

Completed Transformation (%)

Figure 8: Increase in inconsistency during gradual step-
wise transformation of gold-standard graphs (left side
of each chart) to automatically generated graphs (right
side). Charts represent the number of inconsistent
graphs for (a) CAEVO, (b) TARSQI, (c) CATENA, and
(d) CLEARTK. Each X-axis indicates the percentage
of completed transformation, and each Y-axis indicates
raw number of graphs that are inconsistent. The scale
for each Y-axis is different because the total number of
inconsistent graphs generated by each system is differ-
ent.

the graphs are transformed, the average main timeline
length and average number of time points stays roughly
constant. For Metric 7, only TARSQI generates sub-
ordinating links, and we could discern no pattern: its
graph is extremely noisy, as the number of subordinated
branches should almost directly correlate with the num-
ber of subordinating links, and so addition or removal
of those links will immediately change that metric.

5. Discussion

In this paper we presented a suite of evaluation metrics
for automatic TimeML annotators and we evaluated four
mainstream state-of-the-art automatic TimeML anno-
tators. The results showed that automatic TimeML an-
notators generate many inconsistent annotations, which
does not necessarily correlate with the raw performance
of the detector: for example, even though CATENA has
the best F} performance for TLINK extraction (Mirza
and Tonelli, 2016)), it has 159 inconsistent files, many
more than TARSQI, which has worse TLINK detection
performance but only 9 inconsistent files.

S

L Qo

d 2

< £ s

£ £

o} T 3

o} 3,

3 g,

£ £

Completed Transformation (%) Completed Transformation (%)
(@) (b)

g o

S s S s /___
g s

g ——0 &

5 d

g g

<€ s <

£ 3

@ kol

3 3

£ £

Completed Transformation (%) Completed Transformation (%)
(© (d)

Figure 9: Change in average indeterminacy score dur-
ing gradual, stepwise transformation of gold-standard
graphs (left side of each chart) to automatically gen-
erated graphs (right side). Charts represent the aver-
age indeterminacy across all graphs for (a) CAEVO, (b)
TARSQI, (c) CATENA, and (d) CLEARTK. Each X-axis
indicates the percentage of completed transformation,
and each Y-axis indicates the average indeterminacy
score. Each Y-axis has the same scale.

Unlike the gold-standard annotations, automatic anno-
tations have much more BEFORE and AFTER links (70—
80% of total TLINKSs). This is mainly because the auto-
matic TimeML annotators generate only limited number
of TLINK types, therefore, many links are mislabeled.
Three of the four of the automatic TimeML annotators
do not generate SLINKS, and so they don’t distinguish
real-life events from possible, conditional, or modal
subordinated events in their timelines. The system that
does generate SLINKS, TARSQI, misses more than half
of the ALINKs and SLINKs.

As expected, mislabeled events, times, and links resulted
in graphs that are much different than gold-standard
graphs (78—139 edits distant). We investigated how var-
ious metrics will change during gradual transformation
from the gold-standard to the automatically generated.
This showed that, for inconsistencies, the relationship
is not linear, in particular, that beyond a certain point
inconsistencies rapidly increase.

6. Contributions

Our contributions in this paper are three-fold. First,
we presented eight metrics for evaluating the quality of
temporal graphs—four graph-based and four timeline-

1451

based—and used these metrics to evaluate four main-
stream, state-of-the-art temporal analysis systems. Sec-
ond, we showed that, beyond a certain point, small
errors in the detection of events, times, or relations re-
sult in rapid degradation of the inconsistency of the
final graph. Finally, we showed that current automatic
TimeML annotators are far from optimal and significant
further improvement is potentially needed. We release
our code and data to enable reproduction of the result

7. Acknowledgements

We gratefully acknowledge valuable discussions with Dr.
Karine Megerdoomian, Akul Singh, and Emmanuel Gar-
cia. This work was partially funded by research grants
TO-134841, TO-135998, and TO-139837 to FIU from
MITRE Corporation. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
the views of MITRE Corporation. This work was also
partially supported by DARPA Award HR001121C0186
under the INCAS Program.

8. Bibliographical References

Allen, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832-843, November.

Bartiak, R., Morris, R., and Venable, K. (2014). An In-
troduction to Constraint-Based Temporal Reasoning.
Morgan & Claypool Publishers.

Bethard, S. (2013). Cleartk-timeml: A minimalist ap-
proach to tempeval 2013. In Second joint conference
on lexical and computational semantics (* SEM), vol-
ume 2: proceedings of the seventh international work-
shop on semantic evaluation (SemEval 2013), pages
10-14.

Bunke, H. and Shearer, K. (1998). A graph distance
metric based on the maximal common subgraph. Pat-
tern recognition letters, 19(3-4):255-259.

Chambers, N., Cassidy, T., McDowell, B., and Bethard,
S. (2014). Dense event ordering with a multi-pass ar-
chitecture. Transactions of the Association for Com-
putational Linguistics, 2:273-284.

Chambers, N. (2013). Navytime: Event and time
ordering from raw text. Technical report, NAVAL
ACADEMY ANNAPOLIS MD.

Chang, A. and Manning, C. D. (2013). Sutime: Eval-
uation in tempeval-3. In Second Joint Conference
on Lexical and Computational Semantics (* SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 78-82.

Derczynski, L. and Gaizauskas, R. (2012). Analysing
temporally annotated corpora with cavat. arXiv
preprint arXiv:1203.5051.

*https://doi.org/10.34703/gzx1-9v95/
ZXHACI

Ding, W., Gao, G., Shi, L., and Qu, Y. (2019). A
pattern-based approach to recognizing time expres-
sions. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6335-6342.

Do, Q. X., Lu, W,, and Roth, D. (2012). Joint inference
for event timeline construction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL’12),
pages 677-687.

Finlayson, M., Halverson, J., and Corman, S. (2014).
The n2 corpus: A semantically annotated collec-
tion of islamist extremist stories. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), pages 896-902,
Reykjavik, Iceland, May. European Language Re-
sources Association (ELRA).

Finlayson, M. A., Cremisini, A., and Ocal, M. (2021).
Extracting and aligning timelines. Computational
Analysis of Storylines: Making Sense of Events,
page 87.

Galvan, D., Okazaki, N., Matsuda, K., and Inui, K.
(2018). Investigating the challenges of temporal re-
lation extraction from clinical text. In Proceedings
of the Ninth International Workshop on Health Text
Mining and Information Analysis, pages 55-64.

Goud, J., Goel, P., Antony, A. J., and Shrivastava, M.
(2019). Leveraging multilingual resources for open-
domain event detection. In Proceedings 15th Joint
ACL-ISO Workshop on Interoperable Semantic Anno-
tation, pages 76-82.

Kolomiyets, O., Bethard, S., and Moens, M.-F. (2012).
Extracting narrative timelines as temporal depen-
dency structures. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (ACL’12), pages 88-97.

Leeuwenberg, A. and Moens, M. F. (2020). Towards ex-
tracting absolute event timelines from english clinical
reports. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 28:2710-2719.

Lenzi, V. B., Moretti, G., and Sprugnoli, R. (2012). Cat:
the celct annotation tool. In LREC, pages 333-338.
Citeseer.

Minard, A.-L., Speranza, M., Urizar, R., Altuna, B.,
van Erp, M., Schoen, A., and van Son, C. (2016).
MEANTIME, the NewsReader multilingual event
and time corpus. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’16), pages 4417-4422, PortoroZ, Slove-
nia, May. European Language Resources Association
(ELRA).

Mirza, P. and Tonelli, S. (2016). Catena: Causal and
temporal relation extraction from natural language
texts. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 64—75.

Ning, Q., Feng, Z., and Roth, D. (2019). A structured

1452

https://doi.org/10.34703/gzx1-9v95/ZXHACI
https://doi.org/10.34703/gzx1-9v95/ZXHACI

learning approach to temporal relation extraction.
CoRR, abs/1906.04943.

Ocal, M. and Finlayson, M. (2020). Evaluating in-
formation loss in temporal dependency trees. In
Proceedings of The 12th Language Resources and
Evaluation Conference, pages 2148-2156, Marseille,
France, May. European Language Resources Associ-
ation.

Pustejovsky, J., Hanks, P, Sauri, R., See, A,
Gaizauskas, R., Setzer, A., Radev, D., Sundheim,
B., Day, D., Ferro, L., and Lazo, M. (2003). The
timebank corpus. Proceedings of Corpus Linguistics,
01.

Sauri, R., Littman, J., Gaizauskas, R., Setzer, A., and
Pustejovsky, J. (2006). TimeML annotation guide-
lines, version 1.2.1. https://catalog.ldc.
upenn.edu/docs/LDC2006T08/timeml__
annguide_1.2.1.pdf.

Seker, S. E. and Diri, B. (2010). Timeml and turkish
temporal logic. In IC-Al, volume 10, pages 881-887.

Sprugnoli, R. and Tonelli, S. (2019). Novel event detec-
tion and classification for historical texts. Computa-
tional Linguistics, 45(2):229-265, June.

Strotgen, J. and Gertz, M. (2010). Heideltime: High
quality rule-based extraction and normalization of
temporal expressions. In Proceedings of the 5th In-
ternational Workshop on Semantic Evaluation, pages
321-324.

Verhagen, M., Mani, L., Sauri, R., Littman, J., Knippen,
R., Jang, S. B., Rumshisky, A., Phillips, J., and Puste-
jovsky, J. (2005). Automating temporal annotation
with tarsqi. In ACL, pages 81-84.

Verhagen, M., Knippen, R., Mani, 1., and Pustejovsky, J.
(2006). Annotation of temporal relations with tango.
In LREC, pages 2249-2252.

Zaidi, A. K. (1999). On temporal logic programming
using petri nets. Trans. Sys. Man Cyber. Part A,
29(3):245-254, May.

Zhong, X., Sun, A., and Cambria, E. (2017). Time
expression analysis and recognition using syntactic
token types and general heuristic rules. In ACL.

1453

https://catalog.ldc.upenn.edu/docs/LDC2006T08/timeml_annguide_1.2.1.pdf
https://catalog.ldc.upenn.edu/docs/LDC2006T08/timeml_annguide_1.2.1.pdf
https://catalog.ldc.upenn.edu/docs/LDC2006T08/timeml_annguide_1.2.1.pdf

	Introduction
	Related Work
	TimeML
	Automatic TimeML Annotators & Data
	Timeline Extraction Systems

	Metrics
	Metric 1: Relation Distribution
	Metric 2: Closure Links
	Metric 3: Edit Distance
	Metric 4: Graph Consistency
	Metric 5: Timeline Length
	Metric 6: Missing Timepoints
	Metric 7: Subordination Structure
	Metric 8: Temporal Indeterminacy

	Experimental Results
	Generating TimeML graphs
	Results of Graph-based Metrics
	Results of Timeline-based Metrics
	Effect of TimeML Graph Degradation on Metrics 4–8

	Discussion
	Contributions
	Acknowledgements
	Bibliographical References

