When Can Models Learn From Explanations?
A Formal Framework for Understanding the Roles of Explanation Data

Peter Hase and Mohit Bansal
Department of Computer Science
University of North Carolina at Chapel Hill

{peter,

Abstract

Many methods now exist for conditioning
models on task instructions and user-provided
explanations for individual data points. These
methods show great promise for improving
task performance of language models beyond
what can be achieved by learning from indi-
vidual (x,y) pairs. In this paper, we (1) pro-
vide a formal framework for characterizing
approaches to learning from explanation data,
and (2) we propose a synthetic task for study-
ing how models learn from explanation data.
In the first direction, we give graphical mod-
els for the available modeling approaches, in
which explanation data can be used as model
inputs, as targets, or as a prior. In the second
direction, we introduce a carefully designed
synthetic task with several properties making
it useful for studying a model’s ability to learn
from explanation data. Each data point in this
binary classification task is accompanied by a
string that is essentially an answer to the why
question: “why does data point = have label
y?7" (Miller, 2019). We aim to encourage re-
search into this area by identifying key consid-
erations for the modeling problem and provid-
ing an empirical test bed for theories of how
models can best learn from explanation data.’

1 Introduction

A long line of past work has sought to use free-
text explanations, rationales, and other similar data
to improve machine learning models. Proposed
methods use explanations to constrain or regularize
the learned model (Zaidan et al., 2007; Small et al.,
2011; Baetal., 2015; Zhang et al., 2016; Srivastava
et al., 2017; Liang et al., 2020), to automatically
label data for data augmentation (Hancock et al.,
2018; Wang et al., 2019a; Awasthi et al., 2020), as
additional supervision (Narang et al., 2020; Hase

'0ur code and data are publicly available at: https:
//github.com/peterbhase/ExplanationRoles.
An extended technical report on this topic is available at:
https://arxiv.org/abs/2102.02201.

mbansal}@cs.unc.edu

Illustrative Example #1

T : When asked for travel times, give them in terms of travel by car.

Z: How many hours does it take to travel from Addis Ababa to Dessie?
Y About 8 hours.
e:

Addis Ababa and Dessie are 400km apart by road, and assuming you could
average 50kph in a car, the travel time would be about 8 hours.

Illustrative Example #2

T . What are the names of people in the text?

&: She was in particular interested in Babbage's work on the Analytical Engine.
Lovelace first met him in June 1833, through their mutual friend, and her
private tutor, Mary Somerville.

Y: Babbage, Lovelace, Mary Somerville.

€ : Names will refer to people, who can work on things, meet others, and be
tutors. Not all capitalized things are names. Engines are not people, and
here June is a date.

Figure 1: Hypothetical data and explanations. Here, =
is an input that one might expect a model to produce the
correct output for after fitting to (z, y) pairs. For some
models, x may be sufficient, while others may benefit
from additional information provided by e.

et al., 2020; Pruthi et al., 2021) or intermediate
structured variables (Camburu et al., 2018; Rajani
et al., 2019; Wiegreffe et al., 2020), and simply as
model inputs (Rupprecht et al., 2018; Co-Reyes
et al., 2019; Zhou et al., 2020).

However, there are many tasks in NLP where
improvements in performance prove elusive even
when using thousands of explanations as additional
data (Narang et al., 2020; Hase et al., 2020). A
few observations could explain this situation: (1)
the modeling space has not been fully explored for
these tasks, but improvements are possible; (2) pre-
trained language models already store the knowl-
edge that the explanations would have provided, so
they do not need them; (3) the language models do
not need any information that is not already learn-
able from the task’s input-output pairs. We do not
yet know which explanation is best, and therefore
it would be helpful to more deeply understand the
motivations behind existing modeling approaches.

In this paper, we (1) present a formal framework
for characterizing approaches to learning from ex-
planation data, and (2) we propose a synthetic task
for studying how models learn from natural lan-
guage data. Specifically, we first present graphical

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 29 - 39
May 26, 2022 ©2022 Association for Computational Linguistics

https://github.com/peterbhase/ExplanationRoles
https://github.com/peterbhase/ExplanationRoles
https://arxiv.org/abs/2102.02201

models for various approaches where explanation
data is used either as model inputs, targets, or pri-
ors, and we characterize existing methods accord-
ing to these graphical models. Then, based on past
results, we suggest which models might be most
appropriate for explanation data. Next, we present
a synthetic task which shares important properties
with NLP tasks involving explanation data. Con-
structing this task helps us carefully specify the
manner in which we expect explanations to be use-
ful to models. We provide simple experimental
verification that the task is solvable by existing
Transformer models when using explanations as
additional data but very difficult to solve without
them. Our aim is to outline promising approaches
in the area and contribute a concrete test bed to
assist others in developing new models for learning
from natural language explanations.

2 Formalizing the Roles of Explanations

In what follows, we discuss our framework for
modeling with explanations and relevant work
(Sec. 2.1), as well as promising approaches for
learning from explanations (Sec. 2.2).

What Is an Explanation? We use the term “ex-
planation” to refer to the data one might collect if
asking a person to answer the question, “Why does
data point x have label y?” This is a formulation of
the explanation as an answer to a why-question of
the kind discussed in Miller (2019). Rather than try
to give a formal definition of the kind of data gen-
erated from this question, we proceed with some
illustrative examples, shown in Fig. 1.

2.1 Formal Framework and Relevant Work

In this section, we lay out our theory of how ex-
planations may be used in modeling a task, in a
standard supervised learning setup for obtaining a
MAP estimate of model parameters:

0 = arg maxp(A|X,Y)
0
p(O1X,Y) o< p(Y]X, 0)p(0)

where Y is a set of labels for inputs X. We refer
to the role of Y in this probabilistic model as the
target, X as an input, and p(f) as a prior. Below
we describe existing approaches to adding expla-
nations into this framework. An overview of the
corresponding graphical models is shown in Fig. 2.

Using Explanations as Targets. Explanations
are often used as additional supervision (shown

30

Explanation as Target Explanation as Prior

Regularizer
or Hypernetwork

Multi-Task Data Augmentation

9'9

me {1:M}

® o

O+

me {1: M}

°) : i€ {1:Ny} je{1:Na} @ i
iet:N) ie{l:N}
Explanation as Input
Global Set Retrieval Per Data Point Input
ﬁ /.H Je{1:NF\{i}
je{1:M}

@‘@

i {1:N}

ie{1:N}]

ie{1:N}

Few-shot
In-context Learning

Per Label

Structured Variable Structured Variable

Figure 2: Graphical models for several approaches to
using explanations as fargets, as inputs, and as priors.
Typically past works do not condition on human-given
explanations at test time, unless they are designed to
not leak the data point label.

as Multi-Task in Fig. 2). For instance, Pruthi
et al. (2021) consider using attention weight ex-
planations (from a model) as targets in a multi-
task framework, and they observe accuracy im-
provements in what is essentially model distillation.
Meanwhile, natural language explanations appear
as targets in a multi-task framework, using datasets
with explanations for each data point (Camburu
et al., 2018; Narang et al., 2020; Hase et al., 2020;
Wiegreffe et al., 2020). None of these works find
improvements in task performance from incorpo-
rating explanations. It is perhaps even concern-
ing that a model could learn to generate coherent
“explanations” without the learning of this ability
influencing the models that are found for the task.

Using Explanations as Inputs. Additional inputs
may be valuable for solving some tasks. One fam-
ily of approaches uses explanations as model in-
puts for each data point (Per Data Point Input in
Fig. 2). Talmor et al. (2020) systematically study
RoBERTz’s ability to combine pieces of knowledge
for a task by including relevant factoids in the text
input. Co-Reyes et al. (2019) provide online natu-
ral language feedback to RL agents, and Rupprecht
et al. (2018) take a similar approach to interactive

image segmentation with language feedback.

More commonly, approaches do not use human
explanations at test time. In ExpBERT (Murty
etal., 2020), a model conditions on vector represen-
tations of an input x and a single “global” set of ex-
planations in order to make each prediction (Global
Set in Fig. 2). This approach may not scale well to
large numbers of explanations, however. Zhou et al.
(2020) treat explanations as latent variables, and
at inference time they retrieve explanations from
the training data (Retrieval in Fig. 2). A number of
works condition on explanations generated at test
time using generative models learned with human
explanations as supervision, which are represented
as Structured Variable and Per-Label Structured
Variable in Fig. 2 (Camburu et al., 2018; Rajani
et al., 2019; Kumar and Talukdar, 2020; Hase et al.,
2020; Wiegrefte et al., 2020; Zhao and Vydiswaran,
2021). While such structured variables could be
useful in principle, these methods have not pro-
duced sustained improvements in model accuracy.

Lastly, large language models have recently
opened the door for using explanations in few-shot
in-context learning (Brown et al., 2020). We repre-
sent this approach as Few-shot In-context Learning
in Fig. 2. We do not draw the dependencies be-
tween distinct data points in the context that would
be implied by the attention graph of Transformers,
but instead represent the dependence of each data
point on the unknown task 7, which models evi-
dently do inference over at test time. Initial work in
this direction suggests that models of a sufficiently
large size (280B parameters) can learn from expla-
nations provided in a few-shot in-context learning
setting (Lampinen et al., 2022).

Using Explanations as Priors. We group together
approaches to defining a distribution over model
parameters, including those conditioning on data,
p(0|data). This is a prior over model weights not
in the sense that the distribution is independent of
data (which it is not), but rather that the posterior
parameters are conditioned on the prior. Expla-
nations have been used to constrain the learned
model (Srivastava et al., 2017, 2018) or to place
priors over how features are weighted or extracted
(Zaidan et al., 2007; Small et al., 2011; Zhang et al.,
2016; Ross et al., 2017; Bao et al., 2018; Selvaraju
et al., 2019; Liang et al., 2020; Stammer et al.,
2020; Pruthi et al., 2021; Stacey et al., 2022). Other
works map directly from text to model parameters
(Baet al., 2015; Andreas et al., 2018). These meth-

31

ods are all effectively described by Regularizer or
Hypernetwork in Fig. 2. Lastly, a few approaches
learn to use explanations for automatically label-
ing data for data augmentation purposes (Hancock
et al., 2018; Wang et al., 2019b; Awasthi et al.,
2020), which is effectively fitting to data from a
prior distribution given by the labeling mechanism
(Data Augmentation in Fig. 2).

2.2 Promising Models

Based on our review of existing approaches, we
make a few key observations that we believe will
assist in the design of future techniques:

1. Using free-text explanations as structured vari-
ables and as targets do not appear to be promis-
ing approaches at the moment (Hase et al., 2020;
Narang et al., 2020).

. Free-text explanations may be useful as priors
in computer vision (Liang et al., 2020), but we
know of no successful use case for tasks besides
Stacey et al. (2022), which effectively reduces
free-text explanations to a bag of words.

The only cases we know of where free-text ex-
planations improve model performance on NLP
tasks is when they are used as model inputs via
the Global Set model, (Murty et al., 2020) a
Retrieval model (Zhou et al., 2020), and an In-
Context Learning model using 280B parameters
(Lampinen et al., 2022).

The upshot of these results is that the most promis-
ing approaches for learning from explanation data
are likely those treating explanations as inputs (in
a manner that does not require new explanations
at test time). However, we recommend that other
graphical models not be ruled out completely, in
case there are promising methods in those families
that have yet to be explored.

3 Synthetic Task

Following recent work using synthetic data to in-
vestigate sequence modeling questions (Liu et al.,
2021; Lovering et al., 2021), we design a synthetic
dataset so that we can carefully control several
important data properties. In Fig. 3, we show an
example data point and description of how it gets
its label. The premise of our task is to classify
sequences by counting different integers in them.

Core Idea Behind Data. We wish to design a
task where, for a data point (x, y), an explanation

Synthetic Task

T: Count whether there are more of integer @ than integer b

&: 962 1 80 80 34 40 99 67 50 27 27 17 17 17 17 17 17 53 17 54
Y. 1

e: (962, 80, 40, 17, 27)

Description: The sequence x has label 1 because there are more 80s than 40s.
The index 962 maps to (80,40,17,27), and indicator 1 says to count (80, 40)
rather than (17, 27). If there were more 40s than 80s, the label would be 0.

There is a one-to-one map between index values and e =(indez, m,n,r,d) tuples.

Analogous Components to Real Data

An easily computable feature connecting

Index 962 <= the input to its explanation

A feature indicating what information from

Indicator 1 <= o explanation is relevant for the input's label

An explanation that says why the input

€: received its label, when understood properly

(962, 80, 40, 17, 27) <>

Figure 3: An example of our synthetic task.

e communicates information about why input x
receives label y. The premise of the task is that
a binary label for a sequence of integers x is de-
termined by whether there are more of an integer
a in the sequence than there are of an integer b.
We refer to integers (a, b) that need to be counted
as the label reason. This label reason forms the
basis of the explanation for each data point, and
it is always exactly specified by the first two in-
tegers in x, which we term the index and indica-
tor. For every data point z, there is an explanation
e = (index,m,n,r,d) where the label reason is
given by either (m,n) or (r,d). Whether the la-
bel reason is the (m,n) integer pair or the (r,d)
pair is dictated by the indicator. As represented
in Fig. 3, (a,b) = (m, n) if the indicator is 1 and
(a,b) = (r,d) if the indicator is 2. We call the data
e an explanation because it is a direct encoding of
a natural language explanation for the data (x,y).
For the data point in Fig. 3, this natural language
explanation is “input x receives label 1 because it
contains more 80’s than 40’s, and we do not need
to count 17’s or 27’s for this sequence."

Proposed Dataset. We describe the proposed

dataset using some default data parameters for pre-

liminary experiments, but any specific numbers ap-
pearing below are easily adjusted. See Supplement

D for the full generative process.

1. Train set: 5000 sequences of 20 integers (in-
cluding index and indicator), each accompa-
nied by an explanation. There are 500 unique
values of index in the dataset drawn from
unif(1,10000), so there are 10 points for
each index, whose values of m,n,r, and d are
drawn from unif(1,100) while requiring that
m#n#r#d. The corresponding 10 values of
indicator are split between 1 and 2. Half of the
points have label y=1, i.e. either #m>#n or

32

#r>#d, depending on which feature is causal.

In each zx;, after m, n,r, and d have been ran-

domly placed into the sequence, unfilled slots

are filled with samples from uni f(1, 100).

Dev set: 10,000 points, none appearing in Train,

with the same 500 index values, and twice the

number of points per index as Train.

. Test set: 50,000 points of similar construction
to the Dev set, but with five times the points per
index as Train.

Analogous Properties to Human-Curated Data.
We claim that aspects of our synthetic task are anal-
ogous to properties that natural language data might
take on, which we represent in Fig. 3. First, e is
an explanation in the sense that, when understood
properly, it is a plausible answer to the question:
“why does point x have label y?” The explanation
describes the feature that causes the label, i.e. the
integers that should be counted. We suggest that
the index in a sequence is analogous to the topic of
some text or the things it refers to: it is an easily
computable feature that connects the input to the
appropriate explanation. Meanwhile, the indica-
tor is a feature that tells how information from an
explanation is relevant to deciding the label. Simi-
larly, an explanation might only be understood in
the context of the input it explains.

4 Initial Experiments

We include experiments below that (1) show expla-
nation data is helpful for solving our task and (2)
demonstrate why the task is hard without explana-
tion data. We make use of a retrieval-based model
similar to Zhou et al. (2020), which learns to re-
trieve explanations from the training dataset to help
with prediction at test time (details in Appendix B
and C). This model is composed of a RoBERTa-
base classifier (Liu et al., 2019) and a SentenceR-
oBERTa model used for retrieval (Reimers and
Gurevych, 2019). The baseline in our experiments
is the RoBERTa classifer on its own.

4.1 Explanation Retrieval Enables a Model
to Solve Our Task

Design. Using our default dataset containing one
explanation per training point, we measure model
accuracy with retrieval in a 3 x 2 design. There
are three conditions for the retrieval model: (1)
fixed, where the Sentence-RoBERTa retriever is
fixed and only the classifier is trained, (2) learned,
where both classifier and retriever are trained end-

Is Explanation Retrieval Helpful?

£ =
J z ‘ z

Baseline H-MEaN TexTCAT

100

%0 Retrieval Model

B No Retrieval
No Retrieval
(10x Train)
Fixed
Learned

M Optimal

80

70

60

50

Figure 4: Synthetic task accuracy for our baseline and
retrieval model with two conditioning mechanisms, H-
MEAN and TEXTCAT.

to-end, and (3) optimal where the optimal retrieval
model is used and the classifier is trained. We know
the optimal retrieval model retrieves explanations
with an index matching the query point’s index.
The two conditioning mechanisms, H-MEAN and
TEXTCAT, differ in how they combine information
across multiple retrieved explanations to produce a
final prediction (see Appendix B.1).

Results. The results in Fig. 4 show that expla-
nation retrieval can reach accuracies above 98%,
improving accuracy by around 37 points over a
no-explanation baseline. We also find that the
learned retrieval model does as well as the optimal
retrieval model, improving over the fixed condition
by about 7 points. Thus, access to explanations
allows the model to perform much better than a
no-explanation baseline. In fact, the explanation
retrieval model outperforms a no-explanation base-
line with as many as 50,000 training data points (a
10x increase), which obtains 87.11% accuracy.

4.2 Why Is The Task Hard Without
Explanations?

Design. We measure test accuracy as a function
of how many unique explanations (and therefore
label reasons) there are in the data. While keep-
ing the train set size fixed at 5000 points, we
vary how many points share the same explana-
tion (index,m,n,r,d). By default there are 10
points per index, and with 5000 points this means
that there are 500 unique explanations in the data.
We use many as 2500 points per index, meaning
using two unique explanations. The experiment
conditions also vary in how task information is
available in the input: (1) for With Explanation,
each 20-integer sequence z; has its explanation ap-
pended to it; (2) for No Explanation, only x; is
given, which requires the model to learn the map

33

When Can the Label Reason Be Inferred?

100 |4
N

\

90

Model Input

With Explanation
No Explanation
- No Index

80

70

60

50

100 200 300 400
Unique Explanations

500

Figure 5: Synthetic task accuracy as a function of the
number of unique explanations for data point labels.

index — (m,n,r,d); (3) for No Index, the index is
omitted from the input, so the model must infer the
label reason from the sequence’s contents alone.

Results. The results are shown in Fig. 5. We see
that, when the number of unique explanations (and
therefore possible label reasons) is small, the No
Explanation model can achieve an accuracy as high
as if it had been directly given the label reason, i.e.
as high as the With Explanation condition. Yet,
No Explanation model accuracy falls off quickly
with the number of unique explanations, reaching
accuracies as low as 62.2% with 500 explanations.
Evidently, with this many unique explanations, it
is too difficult to learn the map between the index
and the latent label reason. Without the index in
the input (No Index condition), it is even harder
to infer the label reason. While accuracy does rise
significantly with the size of the training data (see
Fig. 4), even using 10x as much train data does not
close the gap with the explanation retrieval model.

5 Discussion & Conclusion

We present a synthetic dataset with key similarities
to natural language explanation data, and we show
that our explanations are highly useful for model
learning. However, we emphasize that if a model
already “knew" the information in some explana-
tions, it might not need them. This may plausibly
occur with sufficiently large pretrained models that
store a great deal of factual knowledge (Petroni
et al., 2019). Similarly, the necessary information
might be learnable from (X,Y’) data alone. Fu-
ture work on modeling approaches we outline in
this paper (Fig. 2) will benefit from testing their
methods on controlled synthetic tasks as a test of
their ability to learn from explanation data. Then,
further analysis will be helpful for understanding
how explanations contain novel information that is
not learned elsewhere in pretraining or finetuning.

Acknowledgements

We thank Miles Turpin and Ethan Perez for help-
ful discussion of the topics represented here, as
well as Xiang Zhou, Prateek Yadav, and our
anonymous reviewers for helpful feedback on the
work. This work was supported by NSF-CAREER
Award 1846185, DARPA Machine-Commonsense
(MCS) Grant N66001-19-2-4031, a Google PhD
Fellowship, Microsoft Investigator Fellowship, and
Google and AWS cloud compute awards. The
views contained in this article are those of the au-
thors and not of the funding agency.

Ethical Considerations

There are several positive broader impacts from
designing methods for learning from human expla-
nations. Foremost among them is the promise of
better aligning learned models with human priors
on what kinds of behaviors are good, which could
be especially helpful when these priors are hard
to robustly encode in supervised learning objec-
tives or unlikely to be learned from the available
data. Explanations can also greatly improve model
sample efficiency, which is broadly beneficial for
difficult, time-consuming, or human-in-the-loop
tasks where acquiring a large amount of data is
expensive and slow.

There are still some possible risks to this method-
ology, mainly involving overconfidence in what ex-
planations can provide. For instance, just because
explanations improve a model’s performance does
not mean the model will behave exactly as a hu-
man would. We risk anthropomorphizing machine
learning models when we suppose their learned
interpretations of explanations matches our own.

References

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.
Learning with latent language. In NAACL-HLT
2018.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal,
and Sunita Sarawagi. 2020. Learning from rules
generalizing labeled exemplars. In ICLR 2020.

Lei Jimmy Ba, Kevin Swersky, Sanja Fidler, and Rus-
lan Salakhutdinov. 2015. Predicting deep zero-shot
convolutional neural networks using textual descrip-
tions. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015, pages 4247-4255. IEEE Com-
puter Society.

34

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In ACL, pages 2895-2905, Florence, Italy. As-
sociation for Computational Linguistics.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ratio-
nales. In EMNLP, pages 1903—1913, Brussels, Bel-
gium. Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In NeurIPS.

Oana-Maria Camburu, Tim Rocktischel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In NeurIPS 2018.

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev,
Nick Altieri, Jacob Andreas, John DeNero, Pieter
Abbeel, and Sergey Levine. 2019. Guiding policies
with language via meta-learning. In /CLR 2019.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher
Ré. 2018. Training classifiers with natural language
explanations. In ACL.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit
Bansal. 2020. Leakage-adjusted simulatability: Can
models generate non-trivial explanations of their be-
havior in natural language? In Findings of EMNLP.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. I[EEE
Transactions on Big Data.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP, pages
6769-6781, Online. Association for Computational
Linguistics.

Sawan Kumar and Partha Talukdar. 2020. Nile : Natu-
ral language inference with faithful natural language
explanations. In ACL 2020.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X

https://doi.org/10.18653/v1/n18-1197
https://arxiv.org/pdf/2004.06025.pdf
https://arxiv.org/pdf/2004.06025.pdf
https://doi.org/10.1109/ICCV.2015.483
https://doi.org/10.1109/ICCV.2015.483
https://doi.org/10.1109/ICCV.2015.483
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/D18-1216
https://doi.org/10.18653/v1/D18-1216
http://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/1812.01193.pdf
https://arxiv.org/pdf/1812.01193.pdf
https://arxiv.org/pdf/1812.01193.pdf
https://openreview.net/forum?id=HkgSEnA5KQ
https://openreview.net/forum?id=HkgSEnA5KQ
https://arxiv.org/pdf/1805.03818.pdf
https://arxiv.org/pdf/1805.03818.pdf
https://arxiv.org/abs/2010.04119
https://arxiv.org/abs/2010.04119
https://arxiv.org/abs/2010.04119
https://arxiv.org/pdf/1702.08734.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://arxiv.org/abs/2005.12116
https://arxiv.org/abs/2005.12116
https://arxiv.org/abs/2005.12116

Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktidschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Weixin Liang, James Zou, and Zhou Yu. 2020. ALICE:
active learning with contrastive natural language ex-
planations. In EMNLP, pages 4380-4391. Associa-
tion for Computational Linguistics.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang.
2021. Can small and synthetic benchmarks drive
modeling innovation? a retrospective study of ques-
tion answering modeling approaches. CoRR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie
Pavlick. 2021. Predicting inductive biases of pre-
trained models.

Tim Miller. 2019. Explanation in artificial intelli-
gence: Insights from the social sciences. Artif. In-
tell., 267:1-38.

Shikhar Murty, Pang Wei Koh, and Percy Liang. 2020.
Expbert: Representation engineering with natural
language explanations. In ACL, pages 2106-2113.
Association for Computational Linguistics.

Sharan Narang, Colin Raffel, Katherine J. Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
WTS5?! training text-to-text models to explain their
predictions. ArXiv, abs/2004.14546.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463-2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares,
Michael Collins, Zachary C. Lipton, Graham Neu-
big, and William W. Cohen. 2021. Evaluating expla-
nations: How much do explanations from the teacher
aid students? TACL, abs/2012.00893.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain yourself!
leveraging language models for commonsense rea-
soning. In ACL 2019.

35

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In EMNLP-IJCNLP, pages 3982-3992,
Hong Kong, China. Association for Computational
Linguistics.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons:
Training differentiable models by constraining their
explanations. In IJCAI pages 2662-2670.

Christian Rupprecht, Iro Laina, Nassir Navab, Gre-
gory D. Harger, and Federico Tombari. 2018. Guide
me: Interacting with deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018.

Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin
Shen, Hongxia Jin, Shalini Ghosh, Larry P. Heck,
Dhruv Batra, and Devi Parikh. 2019. Taking a
HINT: leveraging explanations to make vision and
language models more grounded. In ICCV, pages
2591-2600. IEEE.

Kevin Small, Byron C Wallace, Carla E Brodley, and
Thomas A Trikalinos. 2011. The constrained weight
space svm: learning with ranked features. In ICML,
pages 865—-872.

Shashank Srivastava, 1. Labutov, and T. Mitchell. 2017.
Learning classifiers from declarative language. In
NeurIPS 2017.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2018. Zero-shot learning of classifiers from natural
language quantification. In ACL 2018.

Joe Stacey, Yonatan Belinkov, and Marek Rei. 2022.
Supervising model attention with human explana-
tions for robust natural language inference. In AAAL

Wolfgang Stammer, Patrick Schramowski, and Kristian
Kersting. 2020. Right for the right concept: Re-
vising neuro-symbolic concepts by interacting with
their explanations. CoRR, abs/2011.12854.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically rea-
son over implicit knowledge. In NeurIPS 2020.

Cunxiang Wang, Shuailong Liang, Yue Zhang, Xiao-
nan Li, and Tian Gao. 2019a. Does it make sense?
and why? a pilot study for sense making and expla-
nation. In ACL 2019.

Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi-
ang Ren. 2019b. Learning from explanations with
neural execution tree. In ICLR.

Sarah Wiegreffe, Ana Marasovic, and Noah A. Smith.
2020. Measuring association between labels and
free-text rationales. CoRR, abs/2010.12762.

https://arxiv.org/pdf/2204.02329.pdf
https://arxiv.org/pdf/2204.02329.pdf
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://www.aclweb.org/anthology/2020.emnlp-main.355/
https://www.aclweb.org/anthology/2020.emnlp-main.355/
https://www.aclweb.org/anthology/2020.emnlp-main.355/
http://arxiv.org/abs/arXiv:2102.01065
http://arxiv.org/abs/arXiv:2102.01065
http://arxiv.org/abs/arXiv:2102.01065
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://openreview.net/pdf/5f8e7508b216ea50a36e7f4584e4e6d8953917be.pdf
https://openreview.net/pdf/5f8e7508b216ea50a36e7f4584e4e6d8953917be.pdf
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://www.aclweb.org/anthology/2020.acl-main.190/
https://www.aclweb.org/anthology/2020.acl-main.190/
https://arxiv.org/pdf/2004.14546.pdf
https://arxiv.org/pdf/2004.14546.pdf
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://arxiv.org/abs/2012.00893
http://arxiv.org/abs/2012.00893
http://arxiv.org/abs/2012.00893
https://arxiv.org/pdf/1906.02361.pdf
https://arxiv.org/pdf/1906.02361.pdf
https://arxiv.org/pdf/1906.02361.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://arxiv.org/abs/1803.11544
https://arxiv.org/abs/1803.11544
https://doi.org/10.1109/ICCV.2019.00268
https://doi.org/10.1109/ICCV.2019.00268
https://doi.org/10.1109/ICCV.2019.00268
http://www.cs.cmu.edu/~shashans/papers/srivastava17-lldworkshop.pdf
https://doi.org/10.18653/v1/P18-1029
https://doi.org/10.18653/v1/P18-1029
https://arxiv.org/pdf/2104.08142.pdf
https://arxiv.org/pdf/2104.08142.pdf
http://arxiv.org/abs/2011.12854
http://arxiv.org/abs/2011.12854
http://arxiv.org/abs/2011.12854
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
https://arxiv.org/pdf/1906.00363.pdf
https://arxiv.org/pdf/1906.00363.pdf
https://arxiv.org/pdf/1906.00363.pdf
https://openreview.net/pdf?id=rJlUt0EYwS
https://openreview.net/pdf?id=rJlUt0EYwS
http://arxiv.org/abs/2010.12762
http://arxiv.org/abs/2010.12762

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “Annotator Rationales” to Improve Machine
Learning for Text Categorization. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main
Conference, pages 260-267, Rochester, New York.
Association for Computational Linguistics.

Ye Zhang, lain Marshall, and Byron C. Wallace.
2016. Rationale-Augmented Convolutional Neural
Networks for Text Classification. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 795-804, Austin,
Texas. Association for Computational Linguistics.

Xinyan Zhao and VG Vydiswaran. 2021. Lirex: Aug-
menting language inference with relevant explana-
tion. In AAAIL

Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiao-
dan Liang, Maosong Sun, Chenyan Xiong, and Jian
Tang. 2020. Towards interpretable natural language
understanding with explanations as latent variables.
In NeurlPS.

A Additional Experiments

We give additional experimental results with our
synthetic dataset in an extended technical report

on this topic, available here: https://arxiv.

org/abs/2102.02201. Additional experi-
ments are conducted to answer a research questions
including:

1. Can explanations help models learn to use
strong (causal, generalizable) features rather

than weak ones?

. What is the best way to compute explanation
representations for prediction?

. Can models aggregate information across sev-
eral retrieved explanations?

. What makes an explanation relevant across data
points? What enables a retrieval model to find
relevant explanations for a new data point?

. How does the co-dependence between classifier
and retrieval model influence the viability of
joint training?

. Does retrieval of explanations improve model
performance on existing natural language
datasets?

B Our Model for Initial Experiments

Here, we introduce our chosen model for incorpo-
rating explanation data, which makes use of ex-
planations as model inputs after they are retrieved

36

from the training data (the “Retrieval” graphical
model in Fig. 2). Our approach is similar to Lewis
et al. (2020), who marginalize over latent docu-
ments retrieved from Wikipedia for question an-
swering, question generation, and fact verification.
The marginal distribution is given as:

D

ectop-k(py (-|z))

pe(ylz) = po(y|z, e)py(elz)

where top-k gets the top k texts as ranked by the re-
trieval model, p, (e|z). Note that we never retrieve
a data point’s own explanation when predicting its
label. We do so because explanations can leak the
label (Hase et al., 2020) and this approach matches
the test-time distribution, where we assume expla-
nations are not collected for new data points (see
discussion in Sec. 2).

Zhou et al. (2020) also propose to use explana-
tions as latent variables and retrieve explanations
at inference time, but they do not learn the retrieval
model, marginalize over the latents during infer-
ence, or prohibit data point’s own explanations
from being retrieved. In our experiments, we com-
pare with their original approach and a version
where we marginalize over the latents and learn the
retrieval model.

The form of p, (e|x) follows Lewis et al. (2020)
and Karpukhin et al. (2020). Given a query z,
unnormalized probabilities are computed as:

pn(elx) o< exp (fn(e)Tfn($)>

where f; embeds each sequence into a vector.
To compute top-k(py(-|z)), we search through
the training explanations using FAISS (Johnson
et al., 2017). We discuss methods for computing
po(y|x,e) and f;(e|x) in Sec. B.1. Because it may
be helpful to reason over multiple explanations
at once, we extend this model to allow for expla-
nations to be composed into a single “document.”
Assuming explanations to be conditionally inde-
pendent given x, we can compute the probability
of a set of explanations E = {e.}_; as

p(E|z) o exp (Z fn(e)Tfn(CU)):

ecE

where (1) a context size C will control the size of
the explanation set, (2) a value of k£ implies that the
top C'k will be retrieved, and (3) we sort these Ck
explanations into sets in order of their probability

pn(elz).

https://www.aclweb.org/anthology/N07-1033
https://www.aclweb.org/anthology/N07-1033
https://doi.org/10.18653/v1/D16-1076
https://doi.org/10.18653/v1/D16-1076
https://arxiv.org/pdf/2011.05268.pdf
https://arxiv.org/pdf/2011.05268.pdf
https://arxiv.org/abs/2102.02201
https://arxiv.org/abs/2102.02201

{top-Ch(p,(2))} [cLs] x [SEP] e; [SEP] €2 . ec po(ylz, Er) Y,
Dtrain________ J [CLS] = [SEP] €cy1 [SEP] €2 . exc po(y|z, Bs)
T : : : pe(ylz)
[CLS] x [SEP] ec(k—1)+1 [SEP] €C(k—1)+2 .. €Ck po(ylz, Ex)

J

J . J J

-
Retrieval given T

e

k model inputs, with C explanations each

Y Y
Compute classifier Marginalize over F/

Figure 6: A depiction of our retrieval-based method TEXTCAT. A total of Ck explanations are retrieved and
allocated into k latent variables, each a set of explanations F, which are marginalized over to produce a final

prediction.

We represent the overall approach in Fig. 6 for
one method of computing py(y|x, F) (described
fully in Sec. B.1), where explanations are concate-
nated with the query sequence. Flowing from left to
right, Fig. 6 shows how explanations are retrieved
from the training data conditioned on a query se-
quence z, then allocated into k classifier inputs
with C' explanations each. The k classifier pre-
dictions are aggregated by marginalizing over the
latent variable, Z = E.

Modeling Assumptions. In using retrieval, we
make a few assumptions. First, since the number
of forward passes per data point scales with k, we
require a relatively small value of k, i.e. £ < 10,
for reasonable computational efficiency in SGD-
based training. Hence, we must assume that this
summation is sufficiently similar to the full summa-
tion over latent variables. This assumption is more
likely to hold when (1) a small number of docu-
ments account for most of the probability mass in
pp(elx), and (2) a pretrained model p, (e|z) yields
a decent initial rank-ordering, such that some of the
best documents are in the top-k. The exact value
of k we use depends on the experiment. A second,
more basic assumption is that explanations will be
useful in predicting other data points’ labels. Such
an assumption is needed since we never condition
on a data point’s own explanation. Lastly, during
retrieval we assume that explanations are indepen-
dent given z, i.e. p(E|z) = [[.cpp(e|r). This
could be a poor assumption when, for instance,
explanations each contribute one of a number of
needed facts, in which case it would be helpful
to retrieve additional explanations conditioned on
what has already been retrieved.

B.1 Conditioning Mechanisms

In this section we describe the methods used to
compute pg(y|z, £) and py(e|x) (see Sec. B for
the overall model description). For the classifier
po(y|z, E), we use two methods, TEXTCAT and

37

H-MEAN, which are described below. Then we
describe the retrieval model, which is based on
Sentence-BERT (Reimers and Gurevych, 2019).

TEXTCAT. Represented in Figure 6, this method
takes a straightforward approach to conditioning
on a set of explanations: concatenating C' explana-
tions and the input x to form a longer sequence of
text. Each of the original sequences is separated
by a special token, e.g. [SEP] for BERT. In our
experiments, we pass this longer sequence into a
RoBERTa-base model. After pooling the output
token representations, we pass the resulting vec-
tor to a 1-layer MLP for classification. We use
mean pooling for our synthetic task and NLI; for
relation extraction tasks, we concatenate the repre-
sentations corresponding to the initial tokens in the
subject and object words, since this is an especially
effective pooling technique (Baldini Soares et al.,
2019).

This approach allows the model to reason over
all of the explanations and the input together. While
the method may be limited by the fact that some
models can face difficulties in processing long
pieces of text (Beltagy et al., 2020), this issue is
partly mitigated by marginalizing over k sets of ex-
planations. As a result of the marginalization, the
final prediction can be conditioned on a far higher
number (Ck) of individual explanations than could
fit in the context alone.

H-MEAN. By H-MEAN, we refer to the kind of
unweighted hidden representation averaging used
in Co-Reyes et al. (2019) and Zhou et al. (2020).
H-MEAN works by first obtaining representations
of the input x and a single explanation e at a time,
then passing the unweighted average of these rep-
resentations to an MLP. For a fair comparison with
TEXTCAT, we use the same token pooling and a
1-layer MLP. So with C' explanations to condition
on, ' = concatenate(ac, e), and vector represen-
tations from RoOBERTa(z'), H-MEAN obtains a sin-

gle representation as

C
h= é > RoBERTa(z)
c=1

which is then passed to the MLP for classification.
H-MEAN does not face the same sequence length
limitations as TEXTCAT, but by separately process-
ing of each explanations H-MEAN may fail to inte-
grate information across explanations. This method
also becomes expensive when we marginalize over
FE (which is what allows retrieval to be learned), as
it requires C'k forward passes for a single predic-
tion.

B.2 Retrieval

We use a similar approach to retrieval as in Lewis
et al. (2020), namely using vector representations
of sequences from a pretrained transformer to com-
pute
pn(e|z) oc exp (fn(e>Tfn(w>)7

which is followed by computing top-Ck(py(-|x).
We use an approximate but sub-linear time search
method (FAISS) to find the top-Ck points (John-
son et al., 2017). In our experiments we find that it
is necessary to use Sentence-BERT (Reimers and
Gurevych, 2019) as our pretrained f;, rather than
simply a pretrained RoOBERTa model. Sentence-
BERT is a network trained to produce semantic
representations of sentences that can be compared
under cosine similarity. In our experiments, we use
the Sentence-RoBERTa-base model trained on a
combination of several NLI and semantic textual
similarity tasks, with mean pooling of token repre-
sentations. We normalize the representations we
obtain from this model, so that our inner product is
equivalent to a cosine similarity.

Note that during training, we never condition on
a data point’s own explanation when predicting its
label. This is an important constraint for matching
the train and test-time distributions. At test time,
we assume we have access only to past (training)
explanations, since they can be expensive to collect
and conditioning on explanations at test time can
lead to label leakage, meaning what is essentially
the benefit of human labeling could be mistaken as
improvements in model performance.

C Training Details

C.1 Runtimes.

Regarding training times, we run most experiments
on a single NVIDIA RTX 2080 GPU, with run-

38

times as follows: 4.0 hours for 40 epochs of the no-
retrieval ROBERTa-base using the synthetic dataset;
5.7 hours for 40 epochs of RoOBERTa-large in the
same setting; 8.6 hours for 20 epochs of learned
retrieval with RoOBERTa-base models on synthetic
data.

C.2 Training Hyperparameters and Analysis

For optimization, we use AdamW with a learning
rate of 1e—5 and gradient norm clipping at norm
1. For the LR, we use a linear warmup and decay
schedule peaking at 10% of the training steps for
experiments with synthetic data and at 1% for ex-
periments with existing datasets (given the larger
training set sizes). The batch size is set to 10 across
all experiments.

We decide how often to rebuild the representa-
tions of training explanations while learning the
retrieval model by tuning across frequency values
in the range {10%, 20%, 33%, 50%, 100%} (i.e. to
rebuild at this percentage of every epoch), as well
as never rebuilding. In our synthetic setting, the
only noticeable drop in performance comes from
never rebuilding. As long as representations are
re-encoded at least as often as every epoch, we
notice no difference in final test accuracy, though
in early experiments we observed that rebuilding
more often improved training stability. To err on
the safe side of training stability, we re-encode the
representations every 20% of each epoch in all ex-
periments except e-SNLI with full data, where we
re-encode every 30% of each epoch.

Additionally, we use the stop-gradient function
when computing the gradient of p,(e|x) as follows:

Vyexp (sglfy(e)]” fi(2)).

meaning that we do not differentiate through the ex-
planation embeddings, but only through the query
data point embeddings. In early experiments, we
found that this decision contributed to training sta-
bility, while improving computational efficiency,
and we confirm that we observe no differences in
model accuracy as a result.

C.3 Experiment Confidence Intervals

We compute confidence intervals for our synthetic
data tasks to represent seed variance around some
mean seed performance. We represent seed vari-
ance in figures rather than sample variance because
the sample variance is fairly low with 50,000 test
points and could be driven arbitrarily low with

more generated test points. For instance, the 95%
confidence interval for a model accuracy of 90%
would be +0.26. To calculate seed variance, we
run 10 random seeds for our baseline condition
(no-retrieval) with the default synthetic task setup.

D Synthetic Task Generative Process

The required parameters to the data generation in-
clude: (1) a training sample size sample-size and (2)
num-tasks, the number of unique integer pairs to be
counted, or, equivalently, the number of points per
index, nyg. In all experiments, we use a maximum
integer value of 100 to appear in the sequences,
and a maximum index value of 10,000. We give
the general generative process below. Note that
the dev and test sets are constructed with the extra
constraint that sequences must not appear in the
training data. Further note that this is the generic
version of generative process, and in some experi-
ments the process is altered. For example, in RQ3,
indicator is always 1 and the construction of the
map from index values to (m,n) tuples occurs in a
special way described in the experimental design
for RQ3.

1. Sample {index;}™" " from the uniform dis-
tribution over integers {1,...,10000} without re-
placement.

2. Sample {(m,n,r,d);}"“7tsks from the uni-
form distribution over integers, uni f([1, 100]4),
without replacement and requiring that m #

n#£r#d.

3. Define the set {(index, m,n,r, d)igex)} for in-
dex and (m, n,r, d) drawn from their respective
sets, without replacement, in an arbitrary order.

4. Compute the number of points per index,
Nask = sample-size |/ num-tasks.

5. For each index € {index; }" " 1sks.

(a) Sample a vector of length n,, balanced
between 1s and 2s, that gives the values of
{indicator, }5:1 for the P points with that
index.

Sample a vector of length n,, balanced
between Os and 1s, representing whether
the features 1[#m>#n| and 1[#r>#d]
should correlate (1 implies they are equal,
and 0 unequal). This balance changes when
the strong-weak correlation is intended to
change.

(b)

39

(c) Sample a vector of length n,, balanced
between Os and 1s, representing whether
(m,n) or (r,d) should be the more numer-
ous integers in the sequence (so that there
is no bias, even randomly, between features
by size).

(d) Forz e 1 : ngyu:

i. Place the index in the first element of
an empty array, and the indicator in the
second.

ii. Based on the i*" elements of the three
vectors described above, allocate sam-
ples of the integers in (m, n, 7, d)ingex
into the remaining 18 slots.

iii. If there are any remaining slots af-
ter these integers are randomly allo-
cated, fill them with i.i.d. samples from
unif(1,100).

