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Abstract

Interpreting NLP models is fundamental for
their development as it can shed light on
hidden properties and unexpected behaviors.
However, while transformer architectures ex-
ploit contextual information to enhance their
predictive capabilities, most of the available
methods to explain such predictions only pro-
vide importance scores at the word level. This
work addresses the lack of feature attribution
approaches that also take into account the sen-
tence structure. We extend the SHAP frame-
work by proposing GrammarSHAP—a model-
agnostic explainer leveraging the sentence’s
constituency parsing to generate hierarchical
importance scores.

1 Introduction

Deep learning models have raised the bar in terms
of performance in a variety of Natural Language
Processing (NLP) tasks (Vaswani et al., 2017; De-
vlin et al., 2019). However, also model complexity
has been steadily increasing, which in turn hin-
ders the interpretability of their predictions. This
is particularly true for transformer architectures,
currently established as the state of the art in var-
ious applications but at the same time containing
billions of parameters (Brown et al., 2020).

Local explanations have become a popular tool
to understand and interpret models’ decisions
(Madsen et al., 2021; Arrieta et al., 2020). These—
besides increasing the public’s trust in machine
learning systems—can uncover unwanted behav-
iors such as unintended bias (Madsen et al., 2021;
Dixon et al., 2018).

Feature attribution explanations are the most
commonly used and can highlight parts of the in-
put text that are relevant for the obtained outcome
(Lundberg and Lee, 2017; Ribeiro et al., 2016).
Almost all available methods, however, can only
attribute a relevance score to single words. This
is highly unintuitive as natural language in human
communication can be very articulated and context-
dependent. Indeed, a word’s neighborhood can
drastically alter its intended message and senti-
ment.

Our work focuses on generating explanations
that account for the language structure. More
specifically, we build hierarchical explanations that
attribute relevance scores to sentence constituents
at multiple levels. In contrast to previous work ad-
dressing the same issue (Chen et al., 2020; Chen
and Jordan, 2020), we build our approach as an
extension of SHAP (Lundberg and Lee, 2017)—a
local explainability framework renowned for its
solid theoretical background. Our contribution can
be summarized as follows:

(1) We design GrammarSHAP, a model-agnostic
approach for generating multi-level explanations
that consider the text’s structure and its constituents.
More specifically, a constituency parsing layer for
multi-word tokens selection is added before an
adapted KernelSHAP explainer.

(2) We propose to drop the SHAP standard back-
ground dataset and use masking tokens instead.
This reduces unwanted artifacts in the generated ex-
planations and speeds up the approach’s run time.
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(3) We qualitatively compare our method to ex-
isting ones in terms of explanation quality and nec-
essary computational effort.

2 Related Work

Several local explainability techniques exist to in-
terpret predictions produced by NLP models (Arri-
eta et al., 2020). Among them, features attribution
(or feature relevance) approaches quantify each
input component’s contribution to the model’s out-
put, i.e. how each feature affects the observed
prediction. Methods in this category are avail-
able in a large variety: gradient-based (Simonyan
et al., 2014; Sundararajan et al., 2017), neural-
network specific e.g. LRP (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017), and model-
agnostic e.g. LIME (Ribeiro et al., 2016). SHAP
(Lundberg and Lee, 2017)—particularly relevant
for our methodology—is by many considered to be
a gold standard thanks to its solid theoretical back-
ground and broad applicability. This framework
builds a unified view of methods like LIME, LRP,
and DeepLIFT and the game-theoretic concept of
Shapley values (Shapley, 1953).

More recent works address the limitations of
word-level relevance scores by focusing on phrase-
level and hierarchical explanations. The proposed
approaches analyze and quantify words’ interac-
tions through exhaustive search (Tsang et al., 2018),
combining their contextual decomposition scores
(Singh et al., 2018), or via measuring SHAP in-
teraction values along a predefined tree structure
(Lundberg et al., 2018). Chen and Jordan (2020)
combines a linguistic parse tree with Banzhaf val-
ues (Banzhaf III, 1964) to capture meaningful inter-
actions in text inputs. (Chen et al., 2020), instead,
propose to detect directly feature interaction with-
out resorting to external structures. They propose
a hierarchical explainability method that, in a top-
down fashion, breaks down text components in
shorter phrases and words based on the weakest
detected interactions.

3 Methodology

We extend the SHAP framework (Lundberg and
Lee, 2017) by proposing a model-agnostic ex-
plainer that considers the text’s structural depen-
dencies to generate importance scores at multiple
levels. In particular, we couple a constituency
parsing layer to hierarchically select multi-word
tokens with a custom version of KernelSHAP

Input: e.g. review on IMDB 
This movie was ok. The storytelling was

amazing and the plot was really intense...

Preprocessing

Black Box Model: 
e.g. DistilBERT

....

....

....

....

....

....

....

....

Prediction: e.g.
"Negative Sentiment"

Constituency
Parsing 

This movie was ok. The storytelling was amazing...

Multi-level Explanation

This movie was ok. The storytelling was amazing...

This movie was ok. The storytelling was amazing...

Figure 1: Overview of the proposed methodology.

adapted for improved efficiency and run-time. Fig-
ure 1 presents an overview of the methodological
pipeline proposed in this work.

3.1 Token Selection via Constituency Parsing

To hierarchically construct multi-word tokens in a
way that reflects the sentence structure, we leverage
constituency parsing to group together tokens based
on their grammatical interactions. To this end, we
choose a state-of-the-art constituency parser: the
Berkeley Neural Parser (Kitaev and Klein, 2018).

We iterate over parsed sentences from the single-
word level (depth = 0) until the complete sen-
tences are grouped up as a single token (depth =
N ). Additionally, we provide a library to re-
trieve groups of words at any depth, constituents,
and combinations thereof. Our implementation
also handles inconsistencies between the word-
tokenization of the constituency parser and BERT.
This is necessary as BERT’s tokenizer uses sub-
word tokens to represent OOV words and the
Berkley Neural Parser1 only allows full words as
input.

3.2 Efficient Multi-Token Explainer

Our GrammarSHAP explainer directly extends
the KernelSHAP method from Lundberg and Lee
(2017). As parsed sentences already provide a
hierarchical structure of grammatically coherent
tokens, our extension is not required to compute
tokens interaction to construct importance scores
for multi-word tokens.

1spacy.io/universe/project/self-attentive-parser
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Figure 2: Example of sentence parsed with the Berke-
ley Neural Parser (Kitaev and Klein, 2018). Tokens
are hierarchically grouped from single words (bottom
level) to the whole sentence (top level)

KernelSHAP takes an input sample x, a predict-
ing model f , and a background set of samples to
be used when replacing tokens to compute feature
importance. Tokens belonging to the background
dataset are fed to the explainer during initializa-
tion. At explanation time, a linear system of all
perturbed sentences and their corresponding model
predictions is solved to determine the effect of each
single feature.

The extension to multi-word tokens consists in
feeding the explainer—i.e. KernelSHAP—with the
indices corresponding to the features to be grouped.
In the case of constituency parsed sentences, in-
dices representing multi-token groups are always
adjacent in the input sentence. However, this is
not a strict requirement for the following steps of
our extension. To obtain group-level feature im-
portance, we constrain the extended explainer to
always replace a complete group of words with
elements of the background dataset. Analogous to
KernelSHAP, the expected effect of each feature
group—i.e. its (multi-token) SHAP value—is cal-
culated by solving the linear system of all perturbed
sentences with their corresponding outcomes. In
summary, our extension behaves like KernelSHAP
but treats groups of tokens as single features.

While the calculation of SHAP values on multi-
words tokens is a straightforward extension, it leads
to several issues:

• Computationally Expensive: Computing
importance scores for multiple levels fur-
ther slows down the already inefficient Ker-

nelSHAP.

• Unidirectional: The explainer only high-
lights groups with the same sentiment as the
overall sentence.

• High Attribution for [SEP]: The separation
token changes the sentence length when used
as replacement from the background data.
This causes it to have high relevance for the
classifier.

We address these limitation by replacing the
background data with [MASK] tokens. This leads
to a 60-folds speed up of the explainer that is not
required to iterate over the background data. More-
over, [SEP] does causes explanation artifacts as it
is excluded from the background data.

4 Empirical Findings

4.1 Data and Model to be Explained
To test and compare our method in practice, we
pick a DistilBERT model (Sanh et al., 2019). Our
choice is motivated by transformer architectures
being established as the current state of the art in a
variety of NLP applications.

Concerning the data, we pick the IMDb movie
reviews (Maas et al., 2011) and the SST-2 datasets
(Socher et al., 2013). For both, the Hugging
Face2 library provides a version of DistilBERT
pre-trained on the task of binary sentiment anal-
ysis. The accuracy achieved is 93.7% and 91.3%
respectively.

4.2 Existing SHAP Baselines
We compare explanations generated with Grammar-
SHAP with two existing baselines from the SHAP
framework (Lundberg and Lee, 2017):

(1) PartitionSHAP, i.e. the library’s current rec-
ommended method for sentiment analisys on text
data. Similarly to our method, it also utilizes
[MASK] tokens for efficient word removal. How-
ever, features are only grouped via a binary tree
and thus only token pairs are considered at a given
hierarchical level.

(2) KernelSHAP, i.e. the library’s standard for
model-agnostic explanations. KernelSHAP only
produces word-level explanations by default. But
thanks to the additive nature of Shapley values,

2https://huggingface.co/textattack/distilbert-base-
uncased-imdb
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these can be added together according to the con-
stituency parsing tree. We will refer to this custom
hierarchical version of KernelSHAP as Additive
KernelSHAP.

4.3 Comparison

The three methods substantially differ both in terms
of generation times and explanation quality. Table
1 reports the average running time to produce an ex-
planation. Figures 3 and 4 show—starting from the
same input text—the explanations generated with
each method. The text sample is particularly in-
structive as it contains both positive- and negative-
sentiment sentences.

Method Running Time
PartitionSHAP 2

Add. KernelSHAP 3554 (∼1h)
GrammarSHAP 183 (∼3min)

Table 1: Average running time (in seconds) for Gram-
marSHAP compared to the existing SHAP baselines.
The running time has been measured on 20 randomly
selected samples (10 from IMDb and 10 from SST-2).
Results were measured on a laptop machine: AMD
Ryzen 5 CPU, Nvidia GPU GeForce GTX 1650, 16
GB DDR4 RAM.

PartitionSHAP is very efficient and the fastest
method among the compared ones. However, it
is quite coarse in grouping together tokens and
fails to identify fine-grained contributions at the
sub-sentence level. Additive KernelSHAP has an
extremely long execution time and is the slowest of
the three approaches. Moreover, it does not iden-
tify contributions opposite to the sample’s over-
all sentiment. In contrast, GrammarSHAP is able
to identify both negative and positive sentiments
at different (hierarchical) levels of granularity. In
terms of efficiency, GrammarSHAP does not match
the performance of PartitionSHAP. However, its
running time is still reasonable and does not raise
issues for most applications.

More examples of hierarchical GrammarSHAP
explanation on (long) texts are provided in the ap-
pendix (see A). There, we also focus on presenting
the explanations at different levels of granularity.

5 Limitations and Future Work

GrammarSHAP meaningfully extends the SHAP
framework by providing efficient hierarchical ex-
planations that reflect the sentence structure. How-
ever, limitations of our methodology and experi-

Figure 3: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 79.5%
confidence.

Figure 4: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 81.8%
confidence.

mentation need to be acknowledged and motivate
our future work.

Regarding the explanation quality, our evalua-
tion process is based on the introduced methodolog-
ical improvements and on a qualitative analysis
of the produced explanations. Although evalua-
tion metrics for explanations are complex to define
and have not been standardized yet, our compari-
son would considerably benefit from the usage of
quantitative diagnostic properties (Atanasova et al.,
2020) and word-level level metrics (Nguyen, 2018;
Samek et al., 2016).

In terms of execution time, our method is still
reasonable considering the granularity of contri-
butions that it can detect. However, the necessity
for further improvements in terms of efficiency
becomes apparent when producing real-time expla-
nations on the large scale.

6 Conclusion

In this work we proposed GrammarSHAP: a model-
agnostic explainer for text data that accounts for the
sentence structure and the existing grammatical re-
lationships between the text tokens. Our approach
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leverages constituency parsing to extend the SHAP
framework by providing hierarchical explanations
that go beyond word-level attribution scores.

Our qualitative analysis of the produced expla-
nation yields promising results as GrammarSHAP
appears to identify more fine-grained contribution
in structured text than its existing SHAP counter-
parts. At the same time, the usage of masking to-
kens instead of a background dataset considerably
speeds up its execution in comparison with Kernal-
SHAP. These properties make GrammarSHAP also
suitable for long texts, especially if they contain
sentences carrying different types of sentiment. As
a first priority for our future work, we will focus
on the quantitative evaluation the produced expla-
nation.
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A Explanations Examples

Figure 5 shows an example of hierarchical Gram-
marSHAP explanation on a long text while 6 rather
focuses on a shorter text. More examples can be
found in the code repository attached to our sub-
mission. These are in the Graphics Interchange

Format (GIF) format to visualize the transforma-
tion of the relevance scores through the various
hierarchical levels.
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Figure 5: Explanation generated with GrammarSHAP on a long IMDB review with negative-sentiment prediction
of 91.7%. From top to bottom, relevance scores at the 1st, 5th and 8th hierarchical level.

Figure 6: Explanation generated with GrammarSHAP on a short SST-2 review with negative-sentiment prediction
of 91.6%. From top to bottom, relevance scores at the 2nd, 4th and 8th hierarchical level.
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