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Abstract

Languages around the world employ classifier
systems as a method of semantic organization
and categorization. These systems are rife with
variability, violability, and ambiguity, and are
prone to constant change over time. We explic-
itly model change in classifier systems as the
population-level outcome of child language ac-
quisition over time in order to shed light on the
factors that drive change to classifier systems.
Our research consists of two parts: a contrastive
corpus study of Cantonese and Mandarin child-
directed speech to determine the role that am-
biguity and homophony avoidance may play in
classifier learning and change followed by a se-
ries of population-level learning simulations of
an abstract classifier system. We find that acqui-
sition without reference to ambiguity avoidance
is sufficient to drive broad trends in classifier
change and suggest an additional role for adults
and discourse factors in classifier death.

1 Introduction

Classifier and measure word systems are common
across the world’s languages. While they are the
most common and most associated with Southeast
and East Asia, they are also present in some lan-
guages of South Asia, Australia, the Pacific, and the
Americas among others (Aikhenvald, 2000). Sys-
tems vary language-to-language, but share some
general properties. They divide up the space of
nouns along some semantic space, often encoding
lexical semantic information including animacy,
concreteness, and size and shape categories. For
example, Mandarin has classifiers for long objects
(e.g., tiáo 條), some animals (zhı̄ 隻), and vehi-
cles (liàng輛). On the other hand, some classifiers
like the Mandarin general classifier gè個 do not
seem to pick out anything in particular, or they in-
stead pick out extremely narrow, almost lexicalized
classes, such as zūn 尊, which as a classifier ap-
plies only to certain colossal metal objects such

Figure 1: The Z-model of change extended to a popula-
tion setting

as cannons and Buddhist statues (Gao and Malt,
2009).

Compared to most inflectional noun class sys-
tems, classifiers are more subject to variable dis-
course conditions. Several classifiers may be used
grammatically with a given noun as conditions al-
low. For example, ‘a goat’ may be expressed with
the animal classifier zhı̄ or general classifier gè,
but also tiáo or tóu頭 used for livestock (Erbaugh,
1986). The balance of semantic specificity, arbi-
trariness, and variability presents a challenge for
native learners. How do individuals acquire both
the semantic conditions and arbitrary lexical pat-
terns of classifier systems?

Parallel to this, classifier systems are subject to
constant change, both for language-internal reasons
(e.g., grammaticalization of new classifiers, word
death of old classifiers) and external ones, particu-
larly contact (Aikhenvald, 2000). Erbaugh (1986)
illustrates a few cases of changes in classifier usage
in Mandarin and its ancestors over the past 3500
years. Gè個, the overwhelming majority catch-all
classifier in the modern language only gained this
status during the Qing Dynasty (CE 1644-1912).
For the millennium prior since the Tang dynasty,
méi枚 had been the default, but it has since been
relegated to a niche classifier for small needle and
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badge-like objects. Both gè and méi began as niche
classifiers in their respective eras before gradually
generalizing. In a similar vein, Habibi et al. (2020)
explore how linguistic categories change through
chaining, via the usage of Mandarin Chinese classi-
fiers in the past half century. The latter two studies
discuss the development of Mandarin classifiers
over time. They are based on careful research, but
they are also limited to a single language. Erbaugh
(1986) in particular stops short of a quantitative
assessment.

We provide a computational analysis of di-
achronic trends in classifier systems which com-
plements prior developmental and historical re-
search. We approach the problem in two ways.
First, we present a quantitative analysis of clas-
sifiers in Cantonese and Mandarin child-directed
speech to investigate the possibility of a functional
role for classifiers as disambiguators which could
influence the direction of child-driven change. Sec-
ond, we model a simulated classifier system using
a population-level transmission model to determine
how language acquisition may drive trends in clas-
sifier patterns over time. We find support for input
sparsity and learning, without reference to specific
functional concerns, as a primary driver for gradual
classifier generalization over time.

1.1 Outline

The paper is organized as follows. Section 2 sur-
veys cross-linguistic patterns in classifier acquisi-
tion and summarizes work connecting language
acquisition to change. Section 3 is a comparative
study of adult classifier use in Cantonese and Man-
darin child-directed speech corpora. This motivates
our simulation. We show that the historical devel-
opment of classifiers is unlikely to be driven by
functional communicative concerns such as ambi-
guity avoidance on behalf of the learner. Section 4
describes our simulation, which falls under the um-
brella of neutral or drift-based models of change.
We find that classifiers tend to generalize, fail to
maintain distinct semantic features, and also can-
not go out of use randomly. Section 5 discusses
the implications of our simulation in reference to
Chinese in particular and provides suggestions for
future extensions to this line of work.

2 Classifier Learning and Change

Language acquisition has long been implicated as a
driver of language change (Paul, 1880; Halle, 1962;

Andersen, 1973; Baron, 1977; Lightfoot, 1979;
Niyogi and Berwick, 1997; Yang, 2002; Kroch,
2005; van Gelderen, 2011; Yang, 2016; Cournane,
2017; Kodner, 2020, i.a.), and this has particu-
larly been true for morphology, where child over-
productivity errors (Marcus et al., 1992; Mayol,
2007) quite often mirror the processes of analog-
ical change, which is itself closely connected to
productivity (Hock, 2003, p.446).

Classifier systems are not structurally morpho-
logical and do not trigger syntactic agreement like
inflectional noun class systems, but they share some
key properties in both their use and acquisition.
Both often encode lexical semantic information in-
cluding animacy, concreteness, and size and shape
categories. For example, the Bantu language Shona
has noun classes for mostly long-skinny things
(e.g., class 11 ru-), classes for animals (e.g., class 9
(i)-), and miscellaneous classes (e.g., class 7 chi-)
which correspond broadly to the Mandarin clas-
sifiers described in Section 1. Both noun classes
and classifiers may be semantically porous with
many lexical exceptions. And while classifiers are
generally more variable than inflectional classes,
the later may also show variability. In Shona again,
people usually take the class 1 mu- prefix (mu-nhu
’person’), but if a speaker wishes to highlight that
a person is particularly tall and thin, they may em-
ploy the long-skinny class 11 prefix (ru-nhu).

Learners of classifier languages exhibit gener-
ally competent classifier use by age 4 or 5, though
they show some command over their syntax much
earlier (Chien et al., 2003; Tse et al., 2007; Liu,
2008). Children are prone to overusing the gen-
eral or default classifier in Japanese (Uchida and
Imai, 1999), Mandarin (Liu, 2008), Cantonese (Tse
et al., 2007), and Vietnamese (Tran, 2011), similar
to the over-extension of default patterns in morphol-
ogy (Pinker and Prince, 1994). They take longer
to acquire rare classifiers and those with complex
semantic restrictions (Yamamoto and Keil, 2000).

A division of classifiers into semantically well-
defined and arbitrary features is well-motivated by
a series of experiments carried out by Gao and
Malt (2009) on Mandarin. This further clarifies
what the learning task entails. Children must work
out whether classifiers are lexically defined or ap-
ply generally to a given semantic class and is con-
sistent with observed developmental trajectories:
young learners pass through an early lexicalized
stage in which classifiers are defined narrowly by
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which lexical items they match with rather than
their general semantics. This is by a higher than
adult-rate use of generic classifiers, before they set-
tle on an adult-like distribution (Erbaugh, 1986).
This is parallel to the classic inflectional learning
trajectory, a pre-generalization period, followed by
over-generalization of defaults, followed by set-
tling on an adult-like distribution.

Erbaugh (1986) explicitly connects classifier ac-
quisition to change in Chinese and notes several
parallels between Chinese classifier acquisition and
change. Most relevant for the present study, classi-
fiers are narrowly, perhaps lexically, defined when
they enter the language and then trend towards gen-
erality. Furthermore, they apply to concrete objects
with real-world identifiable semantics before ab-
stract concepts, in line with children’s preference
for real world referents in their dialogues.

Taken together, classifier systems have enough
in common with inflectional class systems that their
acquisition and change can be modeled similarly.
Linguistic transmission, the passing of a language
from one generation to the next through native lan-
guage acquisition (Weinreich et al., 1968), provides
a fundamental role for acquisition in change. An-
dersen (1973) formalizes change as the long-term
consequence of abductive processes in language
acquisition through his Z-model: Speakers have
some internal grammar which generates a set of
linguistic examples which serve as the input to the
next generation. The next generation acquires a
grammar based on these finite inputs and produces
outputs for the next generation. This process pro-
ceeds indefinitely. Abduction is error-prone, and
differences between the grammars of the first and
second generation are tantamount to change.

But language change is fundamentally a
population-level process (Weinreich et al., 1968;
Labov, 2001), so the Z-model must be thought of
as countless parallel lines of transmission and not
a single Z-shape. Additionally, transmission does
not proceed through discrete generations, but rather
is continuous across age cohorts in the population,
so the Z-model should be staggered both across
the population and across time. This view, dia-
grammed in Figure 1, forms the conceptual basis
of our simulation.

A population-based transmission model in which
what is acquired is driven primarily by the input and
not additional functional factors may be described
as neutral. This is often assumed as the baseline

in biological evolution (Neutral Theory; Kimura,
1983), and may be relevant for language change as
well (Kauhanen, 2017). The following section tests
an alternative, that classifiers emerge to decrease
homophony, before adopting a neutral approach.

3 Classifiers and Homophony

This section quantifies classifier use in Mandarin
and Cantonese child-directed speech (CDS). Their
systems are quite similar, both having descended
from Middle Chinese. Since their divergence, the
languages have undergone substantial phonological
divergence resulting in much less syllable diversity
in Mandarin compared to Cantonese.1 For this
reason, Mandarin is expected to show more ho-
mophony than Cantonese, though this is offset by
an increase in polysyllabic words in Mandarin.

Disambiguation of homophones is one possible
function of classifiers and a potential functional
(i.e., non-neutral) driver of change. More elaborate
classifier systems may develop in response to more
rampant homophony. We compare Mandarin and
Cantonese CDS to determine whether homophony
avoidance is plausibly part of the child’s role in the
development of the Chinese classifier systems. If
true, we would expect Mandarin CDS to show more
noun form ambiguity than Cantonese and show
more classifier disambiguation of homophonous
word types. For comparison, we also investigated
the rate of polysyllabic noun forms in Mandarin
and Cantonese. The increase in polysyllabicity
in Chinese varieties is traditionally taken to be a
response to increased homophony due to phonemic
mergers (Karlgren, 1949).

All POS-tagged Mandarin and Cantonese cor-
pora were extracted from the R conversion
(Sanchez et al., 2019) of the CHILDES database of
child-directed speech corpora (MacWhinney, 2000)
except for Erbaugh, which could not be retrieved.
The first two data rows of Table 1 summarize the
corpora, and (1)-(2) provide example utterances
together with translations that we sourced from
speakers of those languages. We extracted classi-
fiers tagged cl from adult speech in the corpora
if they preceded a noun, or preceded an adjective
or adverb which preceded a noun, along with the
noun itself. Sometimes transcription lines did not
align with the characters, which we attempted to
resolve by tracking known classifier characters and

1E.g., Mandarin’s 4 (5) tones, and ∼34 syllable rimes
compared to Cantonese’s 9 and 60.
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Corpus #Types (%Poly) %Types HP %Disamb #Toks (%Poly) %Toks HP %Disamb #Cl
Cantonese 1182 (55.6) 4.653 20.000 19880 (21.4) 7.706 6.201 76
Mandarin 2151 (71.8) 7.345 22.785 30891 (41.8) 28.558 6.506 149
Mandarintype 1182.2 (63.0) 8.815 20.430 28066 (39.0) 28.264 6.776 140.0
Mandarintok 221.9 (43.0) 4.778 16.981 19880 (31.9) 23.431 3.078 98.5

Table 1: Adult Cantonese, Mandarin, avg. type freq-controlled Mandarintype, and avg. token freq-controlled
Mandarintok corpus size, %nouns polysyllabic, % nouns which are homophonous (HP), the % of homophonous
nouns which are disambiguated by their classifiers, and # classifiers.

examining the neighbourhood of the incongruency
in the sentence. A handful of cases could not be re-
solved, so they were omitted. We omitted classifier
pro-forms since no noun surfaces in the utterance.
We define homophones as two word forms with
different characters but the same transcription.

(1) Cantonese (HKU-70; Fletcher et al., 1996)
INV:你得一個啤啤 zaa4 .
%mor: pro|nei5=you stprt|dak1
num|jat1=one cl|go3=cl
n|bi4&DIM=baby sfp|zaa4 .

“You only have one baby?!”

(2) Mandarin (Zhou1; Zhou, 2001)
MOT:开这个盒子 .
%mor: v:resc|kai1=open
det|zhe4=this cl|ge4 n|he2zi=box .

“Open this box.”

Since corpus size could have a substantial ef-
fect on the ratios reported in the corpora, we opted
to downsample the Mandarin corpus to match the
size of Cantonese and compare both the downsam-
pled and raw Mandarin. We dropped out Mandarin
tokens selected uniformly at random until the cor-
pus matched the Cantonese corpus in type or to-
ken count. This was repeated for 100 trials and
the counts for each trial were averaged. The re-
sulting Mandarintype matched for type count and
Mandarintok matched for token count are the last
two rows in Table 1. When matched for types, the
Mandarin corpus has substantially more polysyl-
labic words than Cantonese, and when matched
for tokens, it has substantially more polysemous
tokens. It also has a wider range of classifiers and
measure words.

The table also shows the rates of homophonous
word types in the corpora as well as the proportion
of those which are disambiguated. We defined a
homophonous word type as disambiguated if every
homophone is attested with at least one classifier
not attested with any other homophone in a set, and
a disambiguated word token as any token which
belongs to a disambiguated word type. Despite the

increase in polysyllabicity, Mandarin is still much
more ambiguous than Cantonese. Nevertheless,
its homophones are not significantly more disam-
biguated.2

This analysis is consistent with (but does not
prove) the idea that polysyllabicity emerged in
Chinese in a response to ambiguity. In contrast,
it does not support a role for homophony avoid-
ance in adults as a motivation for the classifier
system. Even though the Mandarin acquisition
corpora attest more classifiers and measure words,
only about 1/5 of homophonous types and 1/18 of
homophonous tokens are disambiguated by classi-
fiers. The fact that tokens are much less likely than
types to be disambiguated, and that the type dis-
ambiguation rate declines as the number of types
fall in Table 1, also indicates the type disambigua-
tion rate is generous and inflated by low frequency
and edge cases. Additionally, Mandarin does not
exhibit more classifier disambiguation even though
it is more homophonous than Cantonese. Given
this, we can justify our major modeling assump-
tion, that changes to the classifier system need not
be primarily driven by communicative concerns.
We consider potential alternative sources of func-
tional pressure in Section 5.

4 A Classifier System in a Population

The empirical analysis in the previous section mo-
tivates a neutral model of change for the Chinese
classifier system. In this section, we introduce a
population-level model of linguistic transmission
to investigate the dynamics of classifier systems
over time. We describe the details of our simula-
tion, including the algorithm and parameters, their
relevance, and their specific empirical motivations.
We then discuss our findings across different pa-
rameter settings, and consider their implications

2One-sided Z-test on Cantonese vs. Mandarintype types
is insignificant: Z = 1.570 at α = 0.05, while test on
Cantonese vs. Mandarintype tokens shows that Cantonese
has significantly fewer disambiguated homophones Z =
−2886.511.
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in the study of classifiers, learning, and language
change.

4.1 Methodology

At a high level, our simulation consists of a popu-
lation of entities sorted by age into “children” who
are still acquiring a classifier system and “adults”
with productive representations of classifiers. At
the start of each iteration, the oldest adult “dies,”
a new child is “born,” and every entity’s age is
incremented, with the eldest child maturing into
an adult, as we describe later. During the itera-
tion, adults interact with a subset of children, and
children learn from these interactions. Crucially,
transmission flows from the pool of adults as a
whole. Ages are continuous, and children can learn
from the youngest adults as well as the oldest. This
admits the diffusion of innovations, thus actuat-
ing the change (Labov et al., 1972) and potentially
yields significant variable input for the learners.
Algorithm 1 formalizes the population model.3

Algorithm 1 Simulation iteration algorithm
1: CH ← List of children of size K
2: AD ← List of adults of size N −K
3: for s := 1...S do
4: Delete AD[−1] as oldest adult "dies"
5: Move CH[−1] to AD[0] as oldest child "matures"

using productivity method PROD
6: A new child is "born" at CH[0]
7: for all adult ∈ AD do
8: mutate_classifier_set(adult, A,D)
9: for i := 1...I do

10: child← random child ∈ CH
11: nouns← J random lexical items
12: interact(adult, child, nouns)
13: end for
14: end for
15: end for

Classifiers in the simulation are represented as
abstract binary semantic features (abstract, but con-
ceptually equivalent to ±ANIMATE, ±FLAT, etc.).
These are encoded as binary vectors of size F . Lex-
ical items are organized along a Zipfian distribu-
tion, since it is observed to fit token frequencies
well across languages (Zipf, 1949; Baayen, 2001;
Yang, 2013). At initialization, each adult has the
same set of C classifiers. This set includes at least
one “most general” classifier, while other classifiers
are initialized randomly. Children are initialized so
that at the first iteration it is as if the eldest child has
gone through K iterations (and therefore rounds of
interactions) already.

3Parameterized according to Table 2 in the Appendix.

Nearly all simulations run using a feature hier-
archy: features are organized hierarchically with
one most generic parent feature and up to B sub-
features such that there are F total features. The
presence of a sub-feature implies the presence of
its parent features. Depending on the simulation,
up to H features are assigned in this manner. A flat
representation would make for ambiguous results
in this already abstract simulation, since it would
be unclear whether more features correspond to a
more general or more specific classifier.

Children learn as follows: in each iteration, chil-
dren observe many classifier-noun pairs. They add
the features on the noun to a running tally of ob-
served features for the classifier, but crucially, they
do not yet know which features actually select the
classifier, since nouns may contain properties that
are just incidental and unrelated to the particular
choice of classifier. After some K iterations, a
child matures. The child evaluates whether a classi-
fier productively expresses a feature by comparing
its observations against a threshold for productiv-
ity provided by the Tolerance Principle (TP; Yang,
2016), a quantitative model of productivity learning
which has been successful in accounting for devel-
opmental patterns in morphology and elsewhere.

For a given feature f observed with a noun
paired with the classifier c, if the number of at-
tested paired noun types that do not express that
feature (the exceptions, ecf ) is less that the tolerance
threshold θcf for that classifier, then that feature
will be productive on the classifier. The tolerance
threshold is calculated as in Eqn. 1. N c is the total
number of noun types attested with the classifier.4

ecf < θcf , where

θcf =
N c

lnN c

(1)

We provide a role for adults as drivers of change
by introducing two additional parameters. An adult
may drop a classifier with probability D by setting
it to be non-productive on all features, and provided
there is an opening (i.e., some classifier is non-
productive on all features) add a new classifier with
probability A. This is taken to represent choices
available to adults in response to discourse and
sociolinguistic factors. We believe that such factors
affecting adults may be responsible for the death of

4See (Yang, 2018) for a summary of the TP’s psychological
motivation and mathematical derivation.
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high frequency general classifiers, since no child
in a neutral model of change would fail to learn
something so well and so diversely attested.

There is always a worry that a highly parame-
terized simulation will do something akin to over-
fitting to the pattern that the researcher is trying
to recreate. To guard against this, we test a wide
range of parameter settings to confirm that the sys-
tem’s dynamics are inherent to the model and not
driven by a convenient parameterization. To the
extent possible, default parameters were motivated
empirically (e.g., Zipfian token frequency distri-
bution) or according to practical concerns (e.g., if
the number of classifiers far exceeds the number of
semantic features C ≫ F , most classifiers will be
synonymous and redundant). A full list of parame-
ters available to the model are presented in Table 2
in the Appendix.

We ran five sets of simulations testing distinct
hypotheses. The first set included 58 simulations,
and did a broad sweep of the parameter space,
testing parameter values on either side of their de-
faults as well as different non-numeric parameters.
The second set included 37 simulations, and varied
the probability that adults add or drop classifiers,
since these values are internal to the simulation.
The third set included 20 simulations, running 4
parameter settings in repetition 5 times to weed
out uniquely random outcomes. The fourth set in-
cluded 15 simulations, varying a few parameters
but running and repeating settings for 5,000 iter-
ations to observe what happens in the very long
term. Finally, the fifth set included 20 simulations
ran on default parameters, which we took the aver-
age of to affirm general trends. In total, we ran and
examined 150 simulations.5

4.2 Results
We found that many parameterizations admitted
complex dynamics, and successive runs with the
same settings sometimes yielded different out-
comes. All the same, there were particular trends
which emerged. We observe three findings repeated
across a range of settings which we believe char-
acterize neutral transmission of classifiers more
broadly. Figure 2 is an average of 20 simulations
ran on default parameters. We chose these settings
as the simplest ones that still admit interesting dy-
namics into the system. Figures 3-9 are select but

5All code, including the specifications of our sets of sim-
ulations, is publicly available at https://github.com/
an-k45/classifier-change
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Figure 2: Average of 20 simulations run on default
parameters
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Figure 3: Typical outcome for a simulation run on
default parameters

representative simulations which demonstrate par-
ticular trends.6 They show how the maximum, min-
imum, and average number of features, as well as
the 25th and 75th percentiles, averaged over the 10
youngest adults, change over time.

Figure 3 shows the behaviour of a typical run
with default parameters. The average number of
features per classifier trends downwards after a pe-
riod of instability but does not do so monotonically.
In contrast, Figure 4 shows a less common case
where the mean number of features trending back
up again. While this happens in the occasional sim-
ulation, it is an outlier. Figure 2 shows the average
across 20 simulations ran on default parameters,
and affirms both non-monotonicity and the general
downward trend. We also introduce a further ele-

6Parameterizations for each given simulation are specified
in Table 4 in the Appendix.
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Figure 4: Atypical outcome on default parameters:
mean no. features trends up
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Figure 5: A simulation with variable branching in the
feature hierarchy showing typical behaviour

ment of randomness in Figure 5 by allowing the
branching factor of the feature hierarchy to vary,
but to the same effect. This outcome is consis-
tent with the diachronic trend observed by Erbaugh
(1986) in which general classifiers emerge from
more specific classifiers over time.

Our simulations often settle on a steady state
after many iterations (Fig. 6). This could indicate
insufficient churn in the set of available classifiers.
To test this, we increased the rate of adults adding
classifiers by a factor of 10, as a proxy for increased
adult innovation in the classifier system. This did
not have a significant effect on the average number
of features over time (Fig. 7), and failed to con-
sistently stave off the slow gradual generalization
seen in earlier simulations. Robustness to this pa-
rameter choice further confirms that it is learning,
and not adult innovation, to combat ambiguity, for
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Figure 6: Simulation run for 5,000 iterations, default
parameters.
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Figure 7: Simulation with variable feature initialization
and 10x new classifier adding

example, that is driving the trends we observe here.
Finally, if new classifiers were initialized with a

random, potentially large, number of features (Fig.
8), or if adults drop random classifiers instead of the
most general ones (Fig. 9), the system rapidly and
consistently devolves into one with a few more gen-
eral classifiers. This outcome is inconsistent with
what should happen in a classifier system, either in
ordinary simulations or the diachronic data. How-
ever, it follows from the particular parameterization.
A new classifier that is very semantically restricted
is unlikely to be sufficiently attested for children
to learn all of its features. Similarly, if classifiers
are dropped randomly, highly specific classifiers
will be dropped with some probability. Children
will have less evidence to learn them, and they will
not be acquired in their full specificity, indicating
a maximum viable level of semantic specificity in
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Figure 8: A simulation with multiple feature initializa-
tion showing rapid contraction
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Figure 9: A simulation with random classifier dropping
showing rapid contraction

classifiers over time.

5 Discussion and Conclusion

In this paper, we advocate for a view of language
change as a natural outcome of language acqui-
sition over time and across a population. This
acquisition-driven view of change provides insight
into the long-term dynamics of classifier systems
through a cross-linguistic corpus study of modern
Chinese child-directed speech and a population-
level simulation of classifier change.

The cross-linguistic study (Section 3) contrasts
Mandarin and Cantonese, two closely related but
not mutually intelligible languages with a recent
common ancestor, to test the hypothesis that clas-
sifier use is driven by homophony avoidance. We
found that though Mandarin child-directed speech
has substantially more homophonous types than

Cantonese, its classifiers actually disambiguate ho-
mophones significantly less often. This is con-
trasted with polysyllabicity in Mandarin, which
does show a trend consistent with homophony
avoidance.

This result motivates a neutral model of classi-
fier change driven by matters of learning and input
sparsity not primarily concerned with functional
pressures. We apply the Tolerance Principle (TP),
a model of productivity learning, to our population-
level simulation and observe general trends. The
TP was chosen because it successfully models U-
shaped learning trajectories in morphology where
learners develop through memorization to over-
generalizing phases. This is similar to the develop-
mental pattern observed in classifier learning. Chil-
dren begin by memorizing classifiers and the nouns
they apply to, then move to over-use of general
classifiers. A similar trend towards generalization
is observed empirically in the history of Chinese
classifiers. New classifiers are specific when they
are introduced and tend towards generality over
time. This is not a lockstep relationship along the
lines of “ontogeny recapitulates phylogeny,” but
two parallel trends which emerge independently
from the same learning process. Our population-
level simulation of TP learners (Section 4) achieves
this pattern under a wide range of parameter set-
tings, providing support for the role of learning and
neutral processes in this change.

5.1 Future Work

This paper opens up several avenues for future in-
quiry. One question that deserves more attention is
the role that ambiguity and homophony avoidance
play in shaping the classifier system. We show
that adults (particularly in CDS) do not seem to
employ classifiers as disambiguators to a greater
degree in Mandarin than in Cantonese despite Man-
darin showing a higher rate of ambiguity. The same
question could be asked for children. Do young
Mandarin-learning children use classifiers to dis-
ambiguate their speech more often than Cantonese
learners? Unfortunately there is not enough child-
produced speech in the Cantonese corpus to carry
out a reasonable comparison.

Another question that has yet to be resolved is
what could have caused the replacement of the
Tang-Qing general classifier méi with the Qing-
modern gè. We believe that the solution likely lies
in discourse factors. Adults may choose more spe-
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cific classifiers over the most general one in order
to emphasize qualities of the noun being modified.
This would explain why méi was not completely
replaced when it lost its generic status and was in-
stead reduced to a narrow semantic scope. Change
here may be modeled as a sociolinguistic variable
(Labov, 1994). However, such socially conditioned
change is lead by young adults rather than young
learners. A fully developed mechanism for changes
in the classifier system would require modeling
both acquisition-driven and sociolinguistic change
simultaneously.

As an initial test of this hypothesis, we compared
simulations in which adults drop the most generic
classifier with some low probability (representing a
sociolinguistic choice to prefer an innovative classi-
fier) against simulations in which adults drop clas-
sifiers at random. We find that the former allows
for the expected slow generalization of classifiers
while the latter causes the system to rapidly col-
lapse (Fig. 9). We interpret this as supportive of the
discourse driven account, but sophisticated exten-
sions would be needed to demonstrate it. Similarly,
the population model could be extended to better
capture sociolinguistic network topology (Milroy
and Milroy, 1985; Kodner and Cerezo Falco, 2018).

Parallel to this, a complete account would incor-
porate more concrete semantic representations and
algorithms to represent word coining into our simu-
lations (Habibi et al., 2020; Xu and Xu, 2021). Our
simulation does not meaningfully account for the
creation of new classifiers, which tend to emerge
through grammaticalization of nouns (Aikhenvald,
2000), nor does it provide a structured means for
representing classifier semantics beyond the ab-
stract hierarchies which we employed. Semantic
chaining (Ramiro et al., 2018; Xu and Xu, 2021) is
a promising candidate approach. Our population-
level acquisition-driven approach provides a base
upon which to develop fully featured diachronic
models of classifier systems.

5.2 Conclusion

Erbaugh (2006) remarked that within noun catego-
rization broadly, classifier systems exist somewhere
in-between unmarked common nouns and gram-
matical systems like gender. They therefore bal-
ance semantic specificity with variance that tends
toward arbitrary. We believe, and have sought to
show in this paper, this follows from a view of lan-
guage change that is primarily driven by children

acquiring their native languages with additional
changes led by adults. This dual perspective pro-
vides a place for both grammar learning and so-
ciolinguistic discourse factors as mechanisms for
change. Classifier systems are a natural juncture
for these two types of change since they are both
deeply embedded in the grammar and show heavy
optionality, variability, and discourse sensitivity.
Existing “somewhere in-between” then plausibly
stems from the diffusion of innovation in learning
and discourse, clarifying that child-driven change
to classifier systems is neutral with respect to func-
tion.
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Parameter Value Explanation
S 1000 No. simulation iterations
N 200 No. total individuals
K 40 No. children
V 1000 No. nouns in lexicon
C 25 No. classifiers in lexicon
F 50 No. features
G 4 Max no. noun features
H 3 Max no. classifier features at initialization
B 3 Max branching factor within a feature hierarchy
I 5 No. interactions by adults toward children
J 5 No. lexical items drawn per interaction
A 0.01 Prob. add classifier per iteration
D 0.01 Prob. drop classifier per iteration
PROD TP Method for productivity in acquisition
LEX_TYPE Zipf Distribution type of nouns in the lexicon
CLASS_INIT hierarchy, single Method for classifier initialization, including feature hierarchy
FEAT_INIT fixed Method for initializing a feature hierarchy, dependent on B
CLASS_DROP general Target for dropping classifiers

Table 2: A list of simulation parameters, their default values, and what they do. Non-numeric parameters are further
described in Table 3.

Parameter Value Explanation
PROD TP Tolerance Principle (Yang, 2016)

majority Simple majority
LEX_TYPE Zipf Lexical items follow a Zipfian distribution (Zipf, 1949; Lignos and Yang, 2018)

uniform Lexical items follow a uniform distribution
CLASS_INIT identity Classifiers are initialized through an identity matrix

random Classifiers are initialized randomly with H features
hierarchy, single Classifiers are initialized with 1 feature using a feature hierarchy
hierarchy, multiple Classifiers are initialized with 1 to H features using a feature hierarchy

FEAT_INIT fixed Each feature in the hierarchy has B children
variable Each feature in the hierarchy has 1 to B children

CLASS_DROP general The classifier with the least number of features is dropped
random A random classifier is dropped

Table 3: A list of possible arguments for each of the non-numeric parameters in our simulation. Explanations for
each of parameter’s purpose are found in Table 2 and in Section 4.1.

Figure no. Parameters
2 (used default)
3 (used default)
4 (used default)
5 FEAT_INIT = variable
6 S = 5000
7 A = 0.1, FEAT_INIT = variable
8 CLASS_INIT = hierarchy, multiple
9 CLASS_DROP = random

Table 4: The parameters that the simulation presented in each figure ran on, where they differ from the default
arguments listed in Table 2.
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