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Abstract

This paper presents our submissions to the
IWSLT 2022 Isometric Spoken Language
Translation task. We participate in all three lan-
guage pairs (English-German, English-French,
and English-Spanish) under the constrained set-
ting, and submit an English-German result un-
der the unconstrained setting. We use the stan-
dard Transformer model as the baseline and ob-
tain the best performance via one of its variants
that shares the decoder input and output em-
bedding. We perform detailed pre-processing
and filtering on the provided bilingual data.
Several strategies are used to train our models,
such as Multilingual Translation, Back Trans-
lation, Forward Translation, R-Drop, Average
Checkpoint, and Ensemble. We experiment on
three methods for biasing the output length:
i) conditioning the output to a given target-
source length-ratio class; ii) enriching the trans-
former positional embedding with length in-
formation and iii) length control decoding for
non-autoregressive translation etc. Our sub-
missions achieve 30.7, 41.6 and 36.7 BLEU
respectively on the tst-COMMON test sets
for English-German, English-French, English-
Spanish tasks and 100% comply with the length
requirements.

1 Introduction

This paper introduces our submissions to the
IWSLT 2022 Isometric Spoken Language Trans-
lation task. To train our models, we perform mul-
tiple data filtering strategies to enhance data qual-
ity. In addition, we leverage Multilingual model
(Johnson et al., 2017), Forward (Wu et al., 2019)
and Back Translation (Edunov et al., 2018), and
R-Drop (Wu et al., 2021) strategies to further en-
hance training effects. We also adopt Length Token
(Lakew et al., 2019), Length Encoding (Takase and
Okazaki, 2019) and Non-Autoregressive Transla-
tion (NAT) to further enhance system performances.
We compare and contrast different strategies in
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Figure 1: The training process for the IWSLT 2022
Isometric Spoken Language Translation.

light of our experiment results and conduct analy-
sis accordingly.

The overall training process is illustrated in Fig-
ure 1. Section 2 focuses on our training techniques,
including model architecture, data processing and
training strategies. Section 3 describes our ex-
periment settings and training process. Section
4 presents the experiment results while section 5
analyzes the effects of different model enhance-
ment and length control strategies on the quality
and length of translation outputs.

2 Method

2.1 Model Architecture
2.1.1 Autoregressive NMT Model

Transformer-based model with the self-attention
mechanism (Vaswani et al., 2017) has achieved the
state-of-the-art translation performance. The Trans-
former architecture is a standard encoder-decoder
model. The encoder can be viewed as a stack of
N layers, including a self-attention sub-layer and a
feed-forward (FFN) sub-layer. The decoder shares
a similar architecture as the encoder but integrates
an encoder-decoder attention sub-layer to capture
the mapping between two languages.

For autoregressive translation (AT) models we
trained in this shared task, Transformer-Base ar-
chitecture is used, which features 6-layer encoder,
6-layer decoder, 512 dimensions of word vec-
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tor, 2048-hidden-state, 8-head self-attention, post-
norm, share decoder input, and output embedding.

2.1.2 Non-autoregressive NMT Model

Non-autoregressive models generate all outputs in
parallel and break the dependency between output
tokens. For AT models, EOS (end of sentence)
token is used to indicate the end of a sentence and
thus determines the length of the sequence. On
the contrary, for NAT models, the output length
should be predicted in advance. We believe such
mechanism is more suitable for this task.

CMLM (Ghazvininejad et al., 2019) adopts a
masked language model to progressively gener-
ate the sequence from entirely masked inputs and
has achieved stunning performance among non-
autoregressive NMT models. HI-CMLM (Wang
et al., 2021a) extends CMLM using a novel heuris-
tic hybrid strategy, i.e. fence-mask, to improve
the translation quality of short texts and speed up
early-stage convergence. In the constrained task,
HI-CMLM is used, which features 6-layer encoder,
6-layer decoder, 512 dimensions of word vector,
1024-hidden-state, and 4-head self-attention.

AT and NAT models have distinctive superior-
ities and drawbacks in terms of performance and
latency. We try to combine the two strategies into
one model, hoping to leverage advantages of both.
Diformer (Wang et al., 2021b) (Directional Trans-
former), with a newly introduced direction variable,
is a unified framework that jointly models Autore-
gressive and Non-autoregressive settings into three
generation directions (left-to-right, right-to-left and
straight). It works by controlling the prediction of
each token to have specific dependencies under
that direction. In the unconstrained task, Diformer
is used, which features 6-layer encoder, 6-layer
decoder, 512 dimensions of word vector, 2048-
hidden-state, and 8-head self-attention.

2.2 Data Processing and Augmentation

As for the constrained task, we use only the offi-
cially provided data, MuST-C v1.2. As for the un-
constrained task, we additionally apply WMT2014
data to the English-German task for NAT model
training.

2.2.1 Data Filtering

We perform the following steps to cleanse all data:

* Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

Language pair Raw data Data filtering

en-de 229.7K 211.1K
en-fr 275.1K 253.9K
en-es 265.6K 247.8K

Table 1: Data sizes before and after filtering.

Convert XML escape characters.

Normalize punctuations using Moses (Koehn
et al., 2007).

Delete HTML tags, non-UTF-8 characters,
unicode characters and invisible characters.

Filter out sentences with mismatched paren-
theses and quotation marks; sentences of
which punctuation exceeds 30%; sentences
with the character-to-word ratio greater than
12 or less than 1.5; sentences of which the
source-to-target token ratio higher than 3 or
lowers than 0.3; sentences with more than 120
tokens.

Apply langid (Joulin et al., 2016b,a) to filter
sentences in other languages.

Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment, and about
10% of the data is filtered out.

Data sizes before and after filtering are listed in
Table 1.

2.2.2 Data Diversification

Nguyen et al. (2020) introduce Data Diversification,
a simple but effective strategy to enhance neural
machine translation (NMT) performance. It diver-
sifies the training data by using the predictions of
multiple forward and backward models and then
merging the generated text with the original dataset
on which the final NMT model is trained.

In terms of back translation, we adopt top-k sam-
pling to translate data (BT sampling). With regard
to forward translation, we translate data using beam
search. Through sampling, we ensure that the sizes
of data generated by forward and back translation
are relatively equal. In this paper, we refer to the
combination of forward and backward translation
sampling as FBTS.

Inspired by Iterative Joint Training (Zhang et al.,
2018), we first adopt multiple copies of BT sam-
pling data for model training in this task. Then, we
further perform model augmentation training by
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merging multiple copies of FBTS data generated
by the optimized model with the authentic bilingual
data. Since model performance (Zhang et al., 2019)
will be affected due to length control, we generate
a great amount of synthetic parallel data to enrich
data diversity, in hope of minimizing the effect of
length control.

2.2.3 Data Distillation and Self-Distillation
Mixup Training

Knowledge distillation trains a student model to
perform better by learning from a stronger teacher
model. This method has been proved effective for
NAT models training by Zhou et al. (2019). In
this work, we use enhanced AT models as teacher
models to generate distilled data, and use self-
distillation mixup training (Guo et al., 2021) strat-
egy to train the NAT student models.

2.3 Model Augmentation
2.3.1 Multilingual Model

Johnson et al. (2017) proposes a simple solution
that uses a single neural machine translation model
to translate across multiple languages, without ar-
chitecture changes. The model introduces an arti-
ficial token at the beginning of the input sentence
to specify the required target language. All lan-
guages use a shared vocabulary. No additional
parameters are required. The experiments surpris-
ingly show that such model design can achieve
better translation qualities across languages. In the
task, we use only constrained data of the partic-
ular language pair for training. Taking en2de as
an example, we use only English-to-German and
German-to-English data.

2.3.2 R-Drop Training

R-Drop (Wu et al., 2021) uses a simple dropout
twice method to construct positive samples for com-
parative learning, significantly improving the ex-
perimental results in supervised tasks. We apply
R-Drop with a = 5 to regularize the model so as to
prevent over-fitting.

2.3.3 Ensemble

Model ensemble is a widely used technique in
previous WMT workshops (Garmash and Monz,
2016), which enhances the performance by com-
bining the predictions of several models at each
decoding step. We train multiple models (generally
four models) by shuffling training data and perform

ensemble decoding with the above models in the
inference phase.

2.4 Output Length Control

As described in the task, we define length compli-
ance (LC) as the percentage of translations in a
given test set falling in a predefined length thresh-
old of +£10% of the number of characters in the
source sentence.

2.4.1 Length Token

Lakew et al. (2019) classify bi-text into three
classes based on the target-to-source character
ratio (LR) of each sample (s; t) pair. The
labels are defined based on LR thresholds:
short < 0.9 < normal < 1.1 < long in
our experiment. We prepend the length token
ve{short; normal;long} at the beginning of the
source sentence during training. The desired v is
prepended on the input sentence during inference.

2.4.2 Length Encoding

Takase and Okazaki (2019) propose a simple but
effective extension of sinusoidal positional encod-
ing to constrain the length of outputs generated
by a neural encoder-decoder model. We adopt the
length-ratio positional encoding (LRPE) method
mentioned in the paper. LRPE is expected to gen-
erate sentences of any length even if sentences of
exact lengths are not included in the training data.

2.4.3 Length-control decoding for NAT

Traditional NAT models predict the output token
numbers first and then generate all output tokens
in parallel. Some prior work (Wang et al., 2021c)
has analyzed how length prediction influences the
performance of NAT. To further improve the length
compliance, we propose length-control decoding
(LCD), which sets the length of the target tokens
as that of the source tokens. We assume that if the
source and target sentences have the same number
of tokens, their sentence lengths are also approxi-
mately the same.

2.4.4 Length-aware beam

In order to get better translation results, we gener-
ate n-best hypotheses with a multi-model ensemble.
In this task, beam-size is set to 12, so that 12 candi-
date outputs are generated for one source sentence,
among which we select the one that comply with
the +-10% length requirements. The candidate out-
put with the least loss value is selected when all
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the 12 outputs fail to meet the length requirement.
This method is called length-aware beam (LAB).

2.4.5 Rerank

We try various strategies in our experiments. With
LAB strategy, each model has its own trade off on
quality and length control. We ensemble several
models of which BLEU is better on tst-COMMON
test sets to score all the candidate outputs. Based
on the scores, we rerank the candidates to select
the best one.

3 Settings

3.1 Experiment Settings

We use the open-source fairseq (Ott et al., 2019)
for training. BERTScore is used to measure sys-
tem performances and the script officially provided
is used to calculate the output lengths in the task.
Each model is trained using 8 GPUs. The size of
each batch is set to 2048, parameter update fre-
quency to 2, and learning rate to 5Se-4. The number
of warmup steps is 4000, and the dropout is 0.3. We
share vocabulary for source and target languages,
and sizes of the vocabularies for English-German,
English-French and English-Spanish are 30k, 27k,
and 30k respectively. We use early stopping when
validation loss stops improving and apply check-
point averaging on last 5 checkpoints. In the in-
ference phase, the beam-size is 12 and the length
penalty is set to 0.6.

3.2 System Process

Our overall training strategy is to train a base-
line model, conduct enhanced training with tech-
niques such as multilingual translation, R-Drop,
and data augmentation. After obtaining the opti-
mized model, we add length token to the training
data, adopt length encoding to the model, and use
non-autoregressive decoding to control the output
length. In addition, we ensemble multiple mod-
els to achieve the submitted results. Our training
process is as follows:

1) We preprocess the training data using methods
mentioned in section 2.2.1 and train four mod-
els using Multilingual Translation and R-Drop
strategies with shuffled training data.

2) We perform data augmentation as described
in section 2.2.2. We train four models with
bilingual data and BT sampling data gener-
ated by the models mentioned in step 1. Then,

we perform FBTS data augmentation on the
basis of the enhanced models and train four
more models. For the constrained setting, we
use both source and target sides of the bilin-
gual data to generate four copies of forward
and backward translated pseudo bi-texts (one
model generates one copy), respectively.

3) We add length token to authentic and synthetic
parallel data as described in section 2.4.1, and
train four models to ensemble. We also train
a model using length encoding, as mentioned
in section 2.4.2.

4) We train the NAT models using the method
described in section 2.4.3 with authentic bilin-
gual data and synthetic parallel data generated
in step 2).

5) We average the last five checkpoints and per-
form separate inference on each model, and
then ensemble the models. We change length
token (long,normal, short) for models us-
ing Length Token strategy to generate multi-
ple results.

6) We use the method described in section 2.4.4
and 2.4.5 rerank hypotheses generated from
models trained by different strategies to get
the final results.

4 Experiment Result

Table 2 lists the results of our submissions on
the tst-COMMON test sets. The baseline models,
trained on transformer-base architecture, achieve
the poorest performances on BLEU and rather poor
performance on LC. Our enhanced models (En-
hanced), trained with data and model augmentation
strategies, achieve the highest BLEU scores (33.3,
45.9, 37.1) but the lowest LC scores (36.9, 36.6,
57.9) on the three language pairs. Len-tok mod-
els are trained with Length Token strategy and the
length token is set to normal, and an improvement
on LC has been witnessed. Len-control decoding
for nat models uses NAT Decoding. Length-aware
beam strategy is demonstrated useful for all of the
three types of models as we witness significant
improvements on LC for those models by using
the strategy. Rerank1 reranks hypotheses from the
enhanced and Len-tok models; Rerank?2 reranks hy-
potheses from the enhanced and len-control decod-
ing for nat models; and Rerank3 reranks hypothe-
ses from all of the three types of models. Accord-

364



Pairs English-German English-French English-Spanish
System |BLEU FI LR LC |BLEU F1I LR LC |BLEU F1 LR LC
Baseline | 289 0.828 1.12 41.0| 35.6 0.812 1.22 33.1 | 30.5 0.809 1.11 44.0
Enhanced | 33.3 0.842 1.14 369| 459 0.872 1.14 36.6 | 37.1 0.850 1.04 579
+LAB 33.0 0.838 1.10 68.6| 454 0.869 1.13 50.5 | 369 0.848 1.03 72.1
Len-tok 32.1 0.835 1.06 54.7| 44.1 0.866 1.09 49.1 | 36.8 0.848 1.02 66.8
+LAB 312 0.830 1.04 80.8| 429 0.859 1.07 73.s1| 37.1 0.845 1.01 84.2
NAT 304 0.829 1.04 83.5| 423 0.848 1.05 823 | 36.1 0.830 1.01 89.9
+LAB 29.8 0.826 1.05 89.0| 416 0.848 1.05 873 | 359 0.833 1.01 93.7
Rerank1 30.7 0.830 1.03 99.8| 41.5 0.851 1.03 98.7 | 36.8 0.845 1.01 98.9
Rerank2 | 299 0.829 1.02 100 | 409 0.849 1.02 100 | 36.0 0.844 1.01 100
Rerank3 30.7 0.830 1.04 100 | 41.6 0.851 1.02 100 | 36.7 0.845 1.01 100
Table 2: Experimental results of our submitted system. (F1 is short for BERTScore F1.)
Pairs English-German English-French English-Spanish
System BLEU F1 LR LC |BLEU FI LR LC |BLEU Fl1 LR LC
Enhanced | 33.0 0.838 1.10 68.6| 454 0.869 1.13 50.5| 36.9 0.848 1.03 72.1
LT-normal | 31.2 0.830 1.04 80.8| 429 0.859 1.07 73.1| 37.1 0.845 1.01 84.2
LT-short 272 0.818 094 82.0| 38.0 0.845 098 853 | 363 0.841 095 83.3
LT-long 326 0.839 1.15 454| 449 0.864 1.17 42.8| 350 0.844 1.07 66.1
LRPC 28.0 0.822 1.06 79.3| 40.6 0.843 1.04 78.7| 34.8 0.842 1.00 90.5
Table 3: The experimental results of length token and encoding method.
ing to our experiment results, Rerank3 achieves Strategy En2de En2fr En2es
the best BLEU and BERTScore scores and 100% Baseline 28.9 35,6 305
comply with the length requirement. For details +Tied-embed 29.5 - -
about the blind-test results submitted, see appendix +Multilingual ~ 29.9 - -
A. +R-Drop 30,6  43.0 343
+BT sampling 32.0  45.1 36.9
5 Analysis +FBTS 331 459 370
+Ensemble 333 459 371

5.1 Data Augmentation and Model
Augmentation to Enhance Model
Performance

Our experiment results demonstrate that model
augmentation has positive effects on model per-
formances. Table 4 lists the BLEU scores on
the tst-COMMON test sets. Compared with the
baseline models, other models obtain much higher
BLEU on English-German, English-French and
English-Spanish tasks. Our experiment on English-
German task shows that strategies such as multilin-
gual translation, decoder input and output embed-
ding (Tied-embed) sharing, R-Drop, BT sampling,
and FBTS, have significant impact on translation
quality. Meanwhile, ensemble strategy can only
result in little improvement due to the limited size
of the training data. The final BLEU scores of
en2de, en2fr, and en2es are 33.3, 45.9, and 37.1
respectively.

Table 4: The experimental results of Model Augmenta-
tion.

5.2 Length Token and Length Encoding to
Control Output Length

Our experiment demonstrates that the length to-
ken method is useful to control the output length.
In order to enrich the diversity of results, we de-
code models using token {short; normal;long}
and LAB strategy, which correspond to LT-short,
LT-normal and LT-long respectively. Table 3 shows
that LT-normal model has the best overall quality.
LT-short model leads to significantly shortened out-
puts and poor performance. LT-long model gener-
ates long outputs with relatively good performance.
The above results further illustrate the shortening
the length of outputs is the root cause of translation
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Table 6: The experimental result of LAB and Rerank
Method.

quality degradation. Although the LRPC method
can dynamically adjust the length of the output, it
negatively affects the translation quality, so we do
not use the LRPC method in our submissions.

5.3 NAT to Control Output Length

Our experiments show that the model trained with
NAT strategy can predict the output length based
on the source length, so it outperforms the model
trained with AT strategy on LC measurement, but
underperforms the AT model on BLEU measure-
ment. Table 5 illustrates that LCD strategy pro-
duces significantly improved LC scores but de-
creased BLEU scores. The LAB strategy leads to
further improved LC scores but slightly decreased
BLEU scores.

The unconstrained NAT model is trained along
with the WMT14 English-German training data and
fine-tuned with MuST-C. We witness significant
improvements on LR and LC after increasing the
data size. We believe data diversity is the reason
for such improvement.

5.4 Effect of Length-aware beam and Rerank
on Result

Table 2 shows that all systems achieve much higher
LC scores when they are trained using LAB strat-
egy. However, table 6 presents systems trained with

Pairs English-German English-French English-Spanish
System BLEU F1 LR LC |BLEU F1 LR LC |BLEU FlI LR LC
Enhanced 333 0.842 1.14 369| 459 0.872 1.14 36.6| 37.1 0.850 1.04 57.9
NAT 31.6 0.835 1.06 62.5| 43.1 0.860 1.08 60.6| 36.6 0.837 1.01 68.0
+LCD 304 0.829 1.04 83.5| 423 0.848 1.05 82.3| 36.1 0.830 1.01 89.9
+LAB 29.8 0.826 1.05 89.0| 41.6 0.848 1.05 87.3| 359 0.833 1.01 93.7
Unconstrained NAT | 28.8 0.825 1.02 96.3 - - - - - - - -
Table 5: The experimental result of Length-control decoding for NAT.
Pairs English-German various output length controlling methods without
System Strategy [BLEU F1 LR LC | the rerank. Models without reranking can only
Enhanced LAB 33.0 0.838 1.10 68.6| achieve 89% LC at most. 100% LC can only be
LT-normal LAB 31.2 0.830 1.04 80.8| achieved by reranking all the above systems to min-
LT-short LAB 27.2 0.818 0.94 82.0| imize the deterioration of translation quality.
LT-long LAB 32.6 0.839 1.15 454
NAT LCD+LAB| 29.8 0.826 1.05 89.0| 6 Conclusion
ﬁ:gﬁg : gg; 82;8 }8431 91%(? This paper presents HW-TSC’s submission to

IWSLT 2022 Isometric Spoken Language Transla-
tion Task. In general, we explore data and model
augmentation methods, and achieve huge increases
in BLEU scores when comparing with baseline
models. In terms of length compliance, we use
strategies such as Length Token, Length Encoding,
NAT, Length-Aware Beam and Rerank. Our sys-
tems obtain 30.7, 41.6 and 36.7 BLEU respectively
on the tst-:COMMON test sets for English-German,
English-French, English-Spanish tasks and 100%
comply with the length requirements.
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A Blind-test result

Table 7 presents the blind-test results for our sub-
missions. isometric-slt-01, 02, 03, and 04 indicates
Rerankl, Rerank2, Rerank3, and unconstrained
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Pairs

English-German

English-French

English-Spanish

System

BLEU F1 LR LC

BLEU F1

LR LC

BLEU F1 LR LC

isometric-slt-01
isometric-slt-02
isometric-slt-03

18.0 0.744 1.25 99.5
17.8 0.753 1.18 100
179 0.740 1.28 99.5

30.8
27.8

0.768 1.18 99.5
0.763 1.17 100
31,5 0.765 1.19 98.0

304  0.784 1.15 995
28.7 0.788 1.15 100
29.9 0.784 1.18 96.5

isometric-slt-04

20.2  0.759 1.03 96.0

Table 7: The experimental result of blind-test.

NAT results in our experiments. isometric-slt-03
post-processes punctuation over-translated, and as
a result, it cannot 100% meets the length require-

ments.
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