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Abstract

This paper describes the submissions of the
UPC Machine Translation group to the IWSLT
2022 Offline Speech Translation and Speech-
to-Speech Translation tracks. The offline task
involves translating English speech to German,
Japanese and Chinese text. Our Speech Trans-
lation systems are trained end-to-end and are
based on large pretrained speech and text mod-
els. We use an efficient fine-tuning technique
that trains only specific layers of our system,
and explore the use of adapter modules for
the non-trainable layers. We further inves-
tigate the suitability of different speech en-
coders (wav2vec 2.0, HuBERT) for our mod-
els and the impact of knowledge distillation
from the Machine Translation model that we
use for the decoder (mBART). For segment-
ing the IWSLT test sets we fine-tune a pre-
trained audio segmentation model and achieve
improvements of 5 BLEU compared to the
given segmentation. Our best single model uses
HuBERT and parallel adapters and achieves
29.42 BLEU at English-German MuST-C tst-
COMMON and 26.77 at IWSLT 2020 test. By
ensembling many models, we further increase
translation quality to 30.83 BLEU and 27.78
accordingly. Furthermore, our submission for
English-Japanese achieves 15.85 and English-
Chinese obtains 25.63 BLEU on the MuST-C
tst-COMMON sets. Finally, we extend our
system to perform English-German Speech-to-
Speech Translation with a pretrained Text-to-
Speech model.

1 Introduction

In the last few years, end-to-end (or direct) Speech
Translation (ST) models have gained popularity
in the research community. These systems differ
from the classical cascade ones in their architec-
ture, where instead of concatenating an Automatic
Speech Recognition (ASR) model and a Machine
Translation (MT) system, they directly translate
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speech into the target language without an inter-
mediate transcription. This approach solves some
limitations of cascade ST systems, like error propa-
gation and slow inference times. But on the other
hand, such approaches require more data to be com-
petitive, which are not as abundant as ASR and MT
data (Sperber and Paulik, 2020). However, the
performance gap between the two approaches has
become very small in the last years (Bentivogli
et al., 2021), with end-to-end approaches having
the best performances for the IWSLT 2020 test set
in the last two evaluation campaigns (Ansari et al.,
2020; Anastasopoulos et al., 2021).

Following this research trend, we participate in
the Offline Speech Translation task of IWSLT 2022
(Anastasopoulos et al., 2022) with end-to-end sys-
tems that are built on top of our last year’s sub-
mission (Gállego et al., 2021). The approach we
follow is to leverage large pretrained speech and
text models, in order to reduce the required amount
of data usually needed to train competitive end-to-
end ST systems (§2.1). As a speech encoder, we
consider wav2vec 2.0 (Baevski et al., 2020) and
HuBERT (Hsu et al., 2021), both already fine-tuned
on English ASR data. As a text decoder, we use an
mBART50 (Tang et al., 2020) fine-tuned on mul-
tilingual MT (one-to-many). These two modules
are coupled with a length adaptor block, that re-
duces the length discrepancy. Although powerful,
combining these modules results in a substantially
large system, that is hard to train on normal hard-
ware, given its computational and memory require-
ments. We thus follow a minimalistic fine-tuning
strategy Li et al. (2021), which trains only specific
modules in the network (§2.2). In addition, we ex-
tend this approach by adding parallel adapters (He
et al., 2022) to the frozen layers (§2.3). We also
explore the use of knowledge distillation (Hinton
et al., 2015) from MT (Liu et al., 2019; Gaido et al.,
2020) with mBART as the teacher (§2.4). Finally,
we use SHAS (Tsiamas et al., 2022) to approximate
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the optimal segmentation for the IWSLT test sets
(§5).

In summary, our contributions with this work are:
(1) We perform a comparison of wav2vec 2.0 and
HuBERT for building an ST model. (2) We extend
the fine-tuning strategy proposed by Li et al. (2021)
with parallel adapters. (3) We study the effect of
Knowledge Distillation for ST, in the context of
pre-trained models.

2 Methodology

In this section, we describe the main parts of
the proposed system 1, along with our approach
for knowledge distillation and the Text-to-Speech
model.

2.1 Pretrained modules

Our system is initialized with two pretrained mod-
els, an ASR encoder and an MT decoder. These
two components were originally trained with self-
supervised learning (SSL) strategies, and then fine-
tuned with supervised learning on the ASR and MT
tasks, respectively. Following, we describe these
models, and we give details on how we couple them
to build an ST system.

Speech Encoders We experiment with two dif-
ferent pretrained speech encoders: wav2vec 2.0
(Baevski et al., 2020) and HuBERT (Hsu et al.,
2021). Thanks to the SSL pretraining, these mod-
els can achieve very competitive results with only
a few labelled data points. Both speech encoders
are based on the same architecture. The first block
consists of a stack of seven 1D convolutional lay-
ers, which extract features from the raw waveform
input. Next, a Transformer encoder (Vaswani et al.,
2017) further processes these features, and extracts
contextualized representations. The main differ-
ence between these two speech encoders lies on
the pretraining strategy they follow. On the one
hand, wav2vec 2.0 is pretrained to identify the true
speech representation from a masked time step, by
solving a contrastive task on quantized represen-
tations. On the other hand, HuBERT predicts the
masked time steps by computing the loss against
pseudo-labels, which are obtained from an iterative
offline clustering.

Text Decoder We use the decoder of mBART
to initialize the decoder of our system (Liu et al.,
2020). Similarly to the speech encoders, mBART is
also pretrained with SSL and then fine-tuned for a

downstream task. It follows the same strategy used
to pretrain BART (Lewis et al., 2020), but in this
case, the model is trained with multilingual data.
Concretely, it is trained as a denoising autoencoder,
with the objective of reconstructing the original
text input, which has been intentionally corrupted.
After pre-training, mBART can be fine-tuned with
supervised data on the (multilingual) MT task.

Length Adaptor To build our system, we com-
bine two components that were designed for differ-
ent modalities. Hence, there is a length discrepancy
between the actual encoder representations and the
ones expected by the decoder. To reduce this gap,
we introduce a simple module to shorten the se-
quence length of the encoder outputs (Li et al.,
2021). The length adaptor is a stack of convolu-
tional layers that reduces the sequence length by 8,
thus achieving a better coupling of the two main
blocks.

2.2 LNA Fine-tuning

The LayerNorm and Attention (LNA) fine-tuning
strategy consists of just training some specific lay-
ers in an ST system initialized by pretrained speech
and text models. By avoiding a full fine-tuning, it
is feasible to train the combination of these mas-
sive pretrained components in a time and memory
efficient way. Specifically, we use the version of
this strategy that fine-tunes the layer normalization,
the encoder self-attention and the decoder cross-
attention layers. LNA fine-tuning approaches the
results of a full fine-tuning, while training just the
20% of the total parameters (Li et al., 2021).

2.3 Parallel Adapters

Although LNA fine-tuning has been shown to yield
very competitive results, it almost entirely neglects
the feed-forward blocks in the Transformer, where
lie most of the parameters of every layer. Re-
cent studies have unveiled the contribution of these
blocks in promoting concepts in the vocabulary
space (Geva et al., 2022). Hence, totally freezing
them could hinder the performance of the system
in a new domain. Instead of fine-tuning the pa-
rameters of a layer, another popular approach is to
use adapters (Houlsby et al., 2019; Le et al., 2021)
to approximate its output. An adapter module is
a feed-forward network with a bottleneck dimen-
sion and ReLU activation. In this research, we use
adapters to compliment the LNA fine-tuning tech-
nique (§2.2) by adding adapters to the (frozen) feed-

266



Figure 1: System overview. Fire indicates that a block is fine-tuned, and snowflake that it is frozen.

forward layers of the transformer layers. We also
add them to the (frozen) decoder self-attention lay-
ers, since the number of extra parameters are negli-
gible. Following He et al. (2022), we used adapters
with a scaled parallel insertion form, which was
found to provide higher performance gains than
with a sequential insertion.

2.4 Knowledge Distillation

Apart from efficient fine-tuning methods, we ex-
perimented with using knowledge distillation (KD)
(Hinton et al., 2015), which has been successfully
applied for training an end-to-end ST model (stu-
dent) (Liu et al., 2019; Gaido et al., 2020), by trans-
ferring knowledge from a pretrained MT model
(teacher). The effectiveness of KD stems from the
fact that the MT task is less complex than the ST
task, and thus the student can benefit from learning
the teacher distribution. In this work, we are using
word-level KD, where the output probabilities of
the MT model act as soft labels for the ST model.
The loss is a weighted sum of the standard Cross
Entropy and the Kullback-Leibler (KL) divergence
between the student and teacher output distribu-
tions. The importance of each term in the loss is
controlled by a hyperparameter λ ∈ (0, 1). Since
we are initializing the decoder of our models with
the mBART decoder, we are also using it as the
teacher for KD. Following (Gaido et al., 2020), we
extract the top-k output probabilities with mBART

offline and thus there is no additional computa-
tional impact during training with KD, while it also
does not affect negatively the learning process (Tan
et al., 2019; Gaido et al., 2020) Due to extracting
only the top-k logits from the teacher, the teacher
distribution tends to be sharper than normal, and
thus we used a temperature T > 1, to soften it.

3 Data

3.1 Datasets

To train our models we used data from three
speech translation datasets, MuST-C v2 (Di Gangi
et al., 2019), Europarl-ST (Iranzo-Sánchez et al.,
2020) and CoVoST-2 (Wang et al., 2020). More
specifically, we used the English-German (en-de),
English-Japanese (en-ja) and English-Chinese (en-
zh) from MuST-C and CoVoST, and the en-de
from Europarl-ST. MuST-C is based on TED talks,
Europarl-ST on the European Parliament proceed-
ings, and CoVoST is derived from the Common
Voice (Ardila et al., 2020) corpus. Since only
MuST-C has in-domain data, we used the dev and
tst-COMMON splits for development and testing,
while from Europarl-ST and CoVoST, we used
their respective dev and test splits as additional
training data. Furthermore, the IWSLT test sets of
2019 and 2020 (Niehues et al., 2019; Ansari et al.,
2020), which do not have ground truth segmenta-
tions, serve as development data for en-de. Finally,
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we submit our predictions for the IWSLT test set
of 2021 (en-de) (Anastasopoulos et al., 2021) and
the test sets of 2022 (en-de, en-ja, en-zh) (Anasta-
sopoulos et al., 2022).

Dataset en-de en-ja en-zh

MuST-C v2 436 526 545
Europarl-ST † 83 - -
CoVoST 2 † 413 413 413

Total 942 939 958

Table 1: Training data measured in hours. †: train, dev
and test splits are considered.

3.2 Data Filtering
We removed examples with duration longer than
25 seconds to avoid memory issues. To ensure
that our training data are of high quality, we ap-
plied two stages of filtering by either modifying the
transcriptions and translations (text filtering) or to
completely removing an example (speech filtering).

Text filtering. We applied this filtering in both
the transcription and translation of each example,
and the process is different for each dataset. For
MuST-C we removed the speaker names, that are
in-audible and usually appear at the beginning of
the sentences when multiple speakers are active in
a talk. We also removed events like "Laughter" and
"Applause" that are not expected to be generated
by our ST systems during evaluation. For Europarl-
ST we converted the number format to match the
one in MuST-C, by using commas as the thousands-
separator in large numbers instead of spaces. No
specific text filtering is applied on the CoVoST
data. Finally, to minimize the differences between
the datasets, we applied punctuation and spacing
normalization with Sacremoses1.

Speech filtering. To identify and remove noisy
examples, that would potentially hurt the perfor-
mance of our models, we applied speech filtering
on all source audios in our training data. We per-
formed ASR inference with a pretrained wav2vec
2.02 using the Transformers library (Wolf et al.,
2020), and removed the examples that had a word
error rate (WER) higher than 0.75. WER was cal-
culated after removing punctuation and multiple

1https://github.com/alvations/
sacremoses

2https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

spaces, lower-casing the ground-truth transcrip-
tions and converting numbers from digits to their
spelled-out words format. The average WER per
dataset was 0.141 for MuST-C, 0.175 and 0.152 for
CoVoST, and the speech-filtering process resulted
in removing 1.5% of MuST-C, 1% of Europarl-ST
and 2% of CoVoST.

3.3 Data Augmentation

To enrich and diversify our data, we perform audio
augmentation. This process is done on-the-fly dur-
ing training using WavAugment (Kharitonov et al.,
2021). Each training example has a probability of
0.8 to be augmented, in which case the tempo and
echo effects are applied. Modifying the tempo of
an audio allows our ST models to adapt to speeches
of different speeds, while the echo effect simulates
the echoing that is present in large rooms, where
usually TED talks take place. The tempo augmen-
tation parameter is sampled uniformly in the range
of (0.85, 1.3), while the echo-delay and echo-decay
parameters, which control the echo augmentation,
are sampled from the ranges of (20, 200) and (0.05,
0.2) respectively.

4 Experiments

Here we describe the experiments we carried out
in this work with their implementation details.

4.1 Experimental Setup

LNA-wav2vec. We build on top of our submis-
sion to IWSLT 2021 (Gállego et al., 2021), where
we combined a wav2vec 2.0 encoder, with an
mBART decoder, and the whole system is trained
with the LNA technique. This year, we reproduce
this experiment, with two main differences. First,
we perform a hyperparameter tuning for the learn-
ing rate and use the entire CoVoST dataset (out-of-
domain) instead of sub-sampling it.

LNA-HuBERT. In the next experiment, we ex-
plore the effect that different speech encoders bring
in our system. Thus, we initialize the speech en-
coder of our ST model, with HuBERT.

LNA-Adapters. Last year, we found it to be ben-
eficial, to use an adapter, at the output of the speech
encoder. We expand this idea, and perform an ex-
periment where we instead of using a single adapter,
we use scaled parallel adapters in all frozen sub-
layers of our system. These are the feed-forward
layers of both the encoder and decoder, as well as

268

https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self


the self-attention layers in the decoder, that are not
part of the LNA fine-tuning.

KD. For the next experiment, we use knowledge
distillation from mBART, where the loss of the
ST model during training is a weighted sum of
the standard cross entropy and the KL divergence
between the MT and ST output distributions. We
also explored the trade-off between the two loss
functions, by tuning the λ parameter that controls
it.

Apart from the aforementioned experiments, we
apply checkpoint averaging, where we average
around the best checkpoint of an experiment (ckpt
AVG). Furthermore, we continue fine-tuning for
few more epochs on only the in-domain data of
MuST-C, while also using smaller data augmen-
tation probability (in-domain FT). Finally, since
the aforementioned experiments have core differ-
ences, we hypothesize that they are diverse enough
to benefit from ensembling. We experiment with
ensemble decoding from various combinations of
our best models (Ensemble).

4.2 Implementation Details

All our models use the same architectures for the
encoder and the decoder. The encoder is either
initialized with wav2vec 2.03 or HuBERT4 and
are composed of a 7-layer convolutional feature
extractor and 24-layer Transformer encoder. Both
were pretrained with 60k hours of untranscribed
speech from Libri-Light (Kahn et al., 2020), and
fine-tuned for ASR with 960 hours of labeled data
from Librispeech (Panayotov et al., 2015). The
wav2vec 2.0 version we use was also fine-tuned
with pseudo-labels (Xu et al., 2020). The decoder is
initialized from mBART5 that has been fine-tuned
for multilingual MT, including English to German,
Japanese and Chinese. Its decoder is a 12-layer
Transformer. The feature extractor of the encoder
has 512 channels, kernel sizes of (10, 3, 3, 3, 3,
2, 2) and strides of (5, 2, 2, 2, 2, 2, 2). Each
layer in the Transformer encoder and decoder has
a dimensionality of 1024, feed-forward dimension
of 4096, 16 heads, ReLU activations, and use pre-

3https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec2_vox_960h_new.pt

4https://dl.fbaipublicfiles.com/
hubert/hubert_large_ll60k_finetune_ls960.
pt

5https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz

layer normalization. The length adaptor between
the encoder and decoder is a 3-layer convolutional
network with 1024 channels, stride of 2 and uses
GLU activations. The embedding layer and the
linear projection weights of the decoder are shared,
and has a size of 250,000. For the experiment with
adapters, we are using scaled parallel adapters with
a dimensionality of 512 and a scaling factor of 4
(He et al., 2022).

The inputs to the model are waveforms of 16kHz
sampling rate, which are normalized to zero mean
and unit variance. During training, each source
audio is augmented (before normalization) with a
probability of 0.8. We train bilingual models on
all data of Table 1, with maximum source length
of 400,000 and target length of 1024 tokens. We
use gradient accumulation and data parallelism to
achieve a batch size of approximately 32 million
tokens. We use Adam (Kingma and Ba, 2014)
with β1 = 0.99, β2 = 0.98 and base learning
rate of 2.5 · 10−4, which we found in preliminary
experiments to be better, compared to the learning
rate of 10−4 that we used last year (Gállego et al.,
2021). The learning rate is controlled by a tri-stage
scheduler with phases of 0.15, 0.15 and 0.7 for
warm-up, hold and decay accordingly, while the
initial and final learning rate has a scale of 0.01
compared to base. Sentence averaging and gradient
clipping of 20 are used. We applied dropout of
0.1 before every non-frozen layer, and use time
masking for spans of length 10 with probability of
0.2 and channel masking for spans of length 20
with probability of 0.1 in the output of the encoder
feature extractor.

The loss is the cross-entropy with label smooth-
ing of 0.2. For the experiments that additionally
use KD, the loss is a weighted sum of the stan-
dard cross-entropy (no label smoothing) and the
KL divergence between the teacher and student dis-
tributions, controlled by a hyperparameter λ, which
we tune in (0, 1). The teacher distribution for each
step is extracted offline with mBART6 using the
Transformers library. We keep the top-8 indices,
and both the teacher and student distributions are
additionally modified with temperature T = 1.3
(Gaido et al., 2020).

For in-domain fine-tuning, we train only on data
from MuST-C, and lower the probability of aug-
mentation to 0.2. We train for an additional 4

6https://huggingface.co/facebook/
mbart-large-50-one-to-many-mmt
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Figure 2: BLEU(↑) and TER(↓) in IWSLT test 2019
for different parameters of max-segment-length for the
English and multilingual SHAS methods. With dashed
lines are the results for the given segmentation.

epochs with a learning rate of 10−5. The learn-
ing rate is increased from 5 · 10−7 for the first 15%
of the training and then decays for the rest of the
training.

After training, we pick the best checkpoint ac-
cording to the BLEU (Papineni et al., 2002) on
the development set of MuST-C and average 5
checkpoints around it. For generation, we use a
beam search of 5. We used one of our base experi-
ments (LNA-HuBERT) with learning rate of 10−4),
to fine-tune SHAS on the 2019 IWLST test set
(Niehues et al., 2019) and then use the best config-
uration to segment the test sets of 2020, 2021 and
2022 (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022). We choose our best model based on
the BLEU of the 2019 test set and report results
on MuST-C tst-COMMON and the IWSLT test set
of 2020. For choosing the best segmentation (§5),
apart from BLEU, we additionally evaluate with
TER (Snover et al., 2006). Our models are imple-
mented in fairseq (Ott et al., 2019) and are trained
using NVIDIA apex7 and 16 floating point preci-
sion. The code for our experiments is available in
a public repository8.

5 Audio Segmentation

Although our training data contain ground truth
segmentations derived from strong punctuation of
the transcriptions, the IWSLT test sets, are unseg-
mented and thus require an intermediate step of au-

7https://github.com/NVIDIA/apex
8https://github.com/mt-upc/iwslt-2022

dio segmentation, before applying our ST models.
Past evaluation campaigns of IWSLT have shown
light to the importance of accurate audio segmenta-
tion for end-to-end ST, where top-performing par-
ticipants used their own segmentation algorithms to
get large improvements in translation quality. For
our submission, we are using SHAS, a segmenta-
tion method that can effectively learn the manual
segmentation from a labelled speech corpus (Tsia-
mas et al., 2022). It relies on a segmentation frame
classifier and a probabilistic Divide-and-Conquer
(pDAC) algorithm to obtain the segmentation for a
given audio. The frame classifier is a Transformer
encoder with a binary classification layer, that pre-
dicts the splitting frames in the audio using as in-
puts contextual representations extracted with a
frozen XLS-R (Babu et al., 2021). The pDAC
segmentation algorithm is based on the method
of (Potapczyk and Przybysz, 2020) and progres-
sively splits on the frames of the lowest probability,
until all resulting segments are shorter than a pre-
specified max-segment-length parameter. Segmen-
tations created with SHAS approach the translation
quality of the manual segmentation on the en-de
tst-COMMON set of MuST-C v2.0, retaining 95%
of the manual BLEU.

We used the public implementation of SHAS9

and tested two available pretrained models for the
frame classifiers, one trained on English source
audio from MuST-C v2 and a multilingual which
is additionally trained on Spanish, French, Por-
tuguese, and Italian data from mTEDx (Salesky
et al., 2021). We obtain the frame probabilities for
the audios of the 2019 IWSLT test set (Niehues
et al., 2019) with the English and multilingual clas-
sifiers, and then used the pDAC algorithm with a
varying max-segment-length to segment them. To
find the best parameters, we maximize the transla-
tion quality of the segmentation by the following
process: (1) Translate the resulting segments with
our ST model, (2) align the translations with the
references using the mwerSegmenter tool (Matusov
et al., 2005) and (3) compute the BLEU and TER
scores.

In figure 2 we observe that values of max-
segment-length in the range of 14 and 20 seconds
for pDAC, result in the best segmentation, with
BLEU scores of 22.5 and TER scores of 61.5. Ad-
ditionally, in that range, SHAS with a multilin-
gual classifier performs better than the English

9https://github.com/mt-upc/SHAS
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one, with small improvements of approximately
0.2 BLEU. The highest BLEU score overall is ob-
tained with the multilingual classifier and at max-
segment-length of 20 seconds, but given that there
is an increase in the TER score, we decided to
continue with max-segment-length of 16 seconds,
which seems to have more consistent results. Thus,
for our final results (§6) for the test sets of 2019
and 2020, as well as for our submissions for 2021
and 2022, we used SHAS with the multilingual
classifier and a max-segment-length of 16 seconds
(SHAS-mult-16). Due to the absence of available
test sets to fine-tune SHAS for the Japanese and
Chinese, we also use SHAS-mult-16 to segment
the en-ja and en-zh IWSLT 2022 test sets.

6 Results

In this section, we analyze the results of our exper-
iments. We base our experimentation on the en-de
language pair, to compare the results with our last
year’s submission (Gállego et al., 2021; Anasta-
sopoulos et al., 2021). Hence, first we analyze the
results for this language pair (Table 2) and then
present the results for en-ja and en-zh (Table 3).

6.1 English-German

In our main results for en-de (Table 2), we also
include our last year’s submission (row 0). In
(1), we repeat the same experiment, with the main
differences being an increase of the learning rate
to 2.5 · 10−4, no sub-sampling of the CoVoST
data, and using SHAS for the segmentation of the
IWLST data at inference. These changes are al-
ready providing us an increase of 2.3 BLEU in
MuST-C and 3 BLEU at IWSLT tst2019. In (2),
we substitute the wav2vec 2.0 encoder for a Hu-
BERT encoder, which brings further improvements
of 0.6 to 0.8 BLEU in all test sets. With the addi-
tion of adapters (3a), we observe improvements in
the IWSLT test sets but a drop in MuST-C. We hy-
pothesize that complimenting LNA with adapters
(§2.3) results in overfitting in MuST-C, but at the
same time, the additional parameters provide an
extra flexibility to the model regarding data from
different segmentation (IWSLT test sets). With
checkpoint averaging (3b), we get improvements
in all test sets, providing the overall best results
from a single model. Next, we apply knowledge
distillation (4a), which initially results in a slight
drop for the IWSLT test sets and in an increase
in MuST-C (as compared to 3a). We believe that,

since knowledge distillation from MT (§2.4) uses
manually segmented data (MuST-C), those are the
data that could benefit from it (§6.3). With in-
domain fine-tuning and checkpoint averaging (4b,
4c), we get small improvements of 0.2 BLEU in
all test sets. By ensembling our two best models
(5a), we get improvements in all test sets. Finally,
since our models are diverse enough (speech en-
coder, adapters, knowledge distillation), we ensem-
ble all four of them (5c) and obtain our best results,
with 30.83 BLEU on MuST-C tst-COMMON, and
25.39, 27.78 on the 2019 and 2020 test IWSLT
test sets. The segmentation algorithm also plays
a key role in the performance of our models, with
improvements of 4 to 5.5 BLEU in all experiments,
as compared to the given one.

6.2 English-Japanese & English-Chinese
From the results of en-ja and en-zh (Table 3), we
observe that similarly to en-de, the addition of
adapters brings a slight drop in performance for
MuST-C. Still, we hypothesize that this would turn
into an increase for the unsegmented IWSLT test
sets, although we cannot confirm it since there are
no data available from previous editions. More-
over, we noticed that MT with mBART performed
worse than our ST model (11.63 BLEU for en-ja
and 19.51 BLEU for en-zh on dev), meaning that
knowledge distillation would most likely cause a
drop in performance. Therefore, we do not per-
form KD for those languages. Finally, we ensemble
the two models (after checkpoint averaging), with
which we obtain on tst-COMMON 15.85 BLEU
for en-ja and 25.63 BLEU for en-zh.

6.3 Analysis on Knowledge Distillation
We carry out an analysis on knowledge distillation,
to better understand its impact to our system (Table
2, row 4). Specifically, we analyze the trade-off
between the standard cross entropy and the teacher-
student KL divergence, by varying the lambda in
[0.25, 0.5, 0.75, 1]. In figure 3 we provide the
BLEU scores for the dev and tst-COMMON sets
of MuST-C and the IWSLT test sets of 2019 and
2020, which are segmented with SHAS-mult-16.
We also provide the results for an experiment that
does not use KD, but instead of the standard cross
entropy, it was trained with the label-smoothed one.
We also provide the performance of the MT teacher
(dashed line) on the dev set of MuST-C, which can
be seen as an upper bound for the student. Firstly,
we observe that relying completely on the teacher
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Dataset MuST-C IWSLT
split dev tst-COMMON tst2019 tst2020
segmentation given SHAS given SHAS

0 LNA-wav2vec (Gállego et al., 2021) 26.76 26.23 17.25 20.06 - -

1 LNA-wav2vec 29.08 28.50 18.37 23.03 19.61 25.33

2 LNA-HuBERT 28.97 29.27 19.02 23.72 20.09 25.61

3 a LNA-Adapters-HuBERT 28.92 28.53 19.51 24.07 20.66 26.35
b ↪→ ckpt AVG 29.41 29.42 20.48 24.88 21.19 26.77

4 a LNA-Adapters-HuBERT-KD 29.44 28.79 19.37 23.74 20.25 26.10
b ↪→ in-domain FT 29.43 28.97 19.52 23.87 20.67 26.17
c ↪→ ckpt AVG 29.42 28.87 19.71 23.92 20.93 26.32

5 a Ensemble (3b, 4c) 30.07 30.33 20.51 24.98 21.85 27.38
b Ensemble (3b, 4c, 2) 30.33 30.44 20.69 25.34 22.30 27.61
c Ensemble (3b, 4c, 2, 1) 30.53 30.83 20.65 25.39 22.40 27.78

Table 2: BLEU scores for en-de MuST-C and IWSLT sets. In bold are the best scores by single models, and in
underlined bold are the best scores overall. LNA-wav2vec (Gállego et al., 2021) uses a different segmentation
algorithm and results are not available for tst2020.

Language Pair en-ja en-zh
split dev test dev test

LNA-HuBERT 12.45 15.20 22.55 24.84
↪→ ckpt AVG (a) 12.32 15.36 22.28 24.95

LNA-Adapters-HuBERT 12.26 14.89 22.29 24.48
↪→ ckpt AVG (b) 12.07 15.46 22.07 24.85

Ensemble (a, b) 12.45 15.85 22.98 25.63

Table 3: BLEU scores on dev and test (tst-COMMON)
sets of MuST-C v2 for en-ja and en-zh. In bold are the
best scores by single models, and in underlined bold are
the best scores overall.

degrades the translation quality in all sets. This is
contrary to previous research suggesting that λ = 1
is optimal (Liu et al., 2019). This conflicting results
likely stems from the small differences between our
ST and MT models, which in dev set of MuST-C
is approximately 1.5 BLEU, while in (Liu et al.,
2019) the gap is more than 10 BLEU. Secondly,
we observe that there is an increase in BLEU when
the ST model is trained with a mixture of the two
losses for MuST-C (λ = 0.5), but there is a drop
for the IWSLT test sets. We believe that these dif-
ferences are a consequence of the training-testing
segmentation mismatch, where the MuST-C sets
have the same segmentation as the training data,
while for IWSLT sets, this segmentation is only ap-
proximated with SHAS. This difference is expected
to make it harder for the ST model to utilize the MT
knowledge from the ground truth segmentations.

Figure 3: BLEU scores for knowledge distillation with
varying lambda for en-de. IWSLT test sets are seg-
mented with SHAS-mult-16.

6.4 Submission Results

In Table 4 we present our results on the official test
sets of IWSLT 2022 (Anastasopoulos et al., 2022).
All test sets were segmented with SHAS (§5), and
the models used are the best ensembles for each lan-
guage (Tables 2, 3). For the en-de test set of 2021
(Anastasopoulos et al., 2021), we obtain a BLEU of
24.5 (ref-1)10. This result, compared to the ones of
IWSLT 2021 (Anastasopoulos et al., 2021), stands
2.7 BLEU above our submission (Gállego et al.,
2021), 1.9 BLEU above the best end-to-end sub-
mission (Bahar et al., 2021) and only 0.1 BLEU

10IWSLT systems were ranked with this reference in 2021.
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IWSLT test set BLEU
ref-1 ref-2 both

en-de 2021 24.5 20.9 34.8
en-de 2022 23.0 20.8 32.3
en-ja 2022 15.1 15.6 24.7
en-zh 2022 29.2 29.9 36.4

Table 4: Official submission results for en-de (2021,
2022) and en-ja, en-zh (2022). BLEU is measured for
two different references and for both together. Different
models are used for each language. For en-de we used
Ensemble of Table 2 - row 5c and for en-ja and en-zh
the Ensembles of Table 3.

below the best overall11. For the test sets of 2022
we obtain 23 BLEU for en-de, 15.1 BLEU for en-ja
and 29.2 BLEU for en-zh. The reader can refer to
Anastasopoulos et al. (2022) for a comparison with
the other submitted systems.

7 Speech-to-Speech

We have also submitted our system to the Speech-
to-Speech (S2S) translation task12, by building a
cascade system. This is composed of the main end-
to-end Speech-to-Text translation model and a Text-
to-Speech (TTS) system. We used a pretrained13

VITS model (Kim et al., 2021) for synthesizing
the German speech. It is based on normalizing
flows (Rezende and Mohamed, 2015), adversarial
training and a stochastic duration predictor. It is
capable of generating speech in different pitches
and rhythms, resulting in more natural sounding
audio utterances.

8 Conclusions

We described the submission of the UPC Machine
Translation group for the IWSLT 2022 Offline ST
and Speech-to-Speech tasks. Our system is end-to-
end and leverages ASR and MT pretrained models
to initialize the encoder and decoder. Due to the
large size of the system, we employed efficient
fine-tuning methods that train only specific layers
and provide evidence that the addition of parallel
adapters to the non-trainable layers can bring fur-
ther improvements. We showed that a HuBERT
encoder is more suitable than wav2vec 2.0 for our
system and brings improvements in all test sets.

11Cascade system by HW-TSC, no paper available
12Results not available at time of submission, the reader

can refer to Anastasopoulos et al. (2022)
13https://github.com/jmp84/vits

We also explored the use of knowledge distilla-
tion, which provided only minor improvements to
the test sets with ground-truth segmentations, most
likely because the MT model was borderline better
than our ST model. Additionally, we show that the
SHAS method provides high-quality segmentations
of the IWSLT test sets, bringing improvements up
to 5 BLEU compared to the given segmentation.
Our best single model, uses a HuBERT encoder and
LNA with parallel adapters, and achieved 29.42
BLEU on MuST-C tst-COMMON set, and 24.88
and 26.77 BLEU on IWSLT 2019 and IWSLT 2020
test sets. We ensembled 4 different systems for
our final submission, which further increased the
BLEU in the aforementioned sets by 1 to 1.5 points.
We also described our submissions for the English-
Japanese and English-Chinese pairs that scored
15.85 and 25.63 MuST-C tst-COMMON. Finally,
we also submitted a Speech-to-Speech system, by
using a pretrained German TTS model to the gen-
erated translations.

For future work, we are planning to explore more
pretrained speech encoders and text decoders, and
dive deeper into the ways that we can optimally
combine them and efficiently fine-tune for end-to-
end ST. We will also investigate how to gain the
most from an MT teacher, in such scenarios where
there is a small gap between the MT and the ST
models.
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