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Abstract
In natural language processing, multi-dataset
benchmarks for common tasks (e.g., Su-
perGLUE for natural language inference and
MRQA for question answering) have risen in im-
portance. Invariably, tasks and individual exam-
ples vary in difficulty. Recent analysis methods
infer properties of examples such as difficulty.
In particular, Item Response Theory (IRT)
jointly infers example and model properties
from the output of benchmark tasks (i.e., scores
for each model-example pair). Therefore, it
seems sensible that methods like IRT should be
able to detect differences between datasets in a
task. This work shows that current IRT models
are not as good at identifying differences as we
would expect, explain why this is difficult, and
outline future directions that incorporate more
(textual) signal from examples.

1 Introduction

Understanding and describing the data in natu-
ral language processing (NLP) benchmarks is cru-
cial to ensuring their validity and reliability (Fer-
raro et al., 2015; Gebru et al., 2018; Bender and
Friedman, 2018). This is even more important
as multi-dataset task benchmarks have—for bet-
ter or worse—become the norm (Raji et al., 2021).
For example, SuperGLUE incorporates eight natu-
ral language inference (NLI) datasets (Wang et al.,
2019), and MRQA incorporates twelve question
answering (QA) datasets (Fisch et al., 2019). To
better understand benchmark data, there are meth-
ods for analyzing examples in isolation (Lalor
et al., 2018), characterizing a dataset’s data distri-
bution (Swayamdipta et al., 2020), using individual
models to glean insight about datasets and exam-
ples (Feng et al., 2018), and using many models to
do the same (Rodriguez et al., 2021; Vania et al.,
2021). This paper investigates how effectively one
method—Item Response Theory (IRT)—gives in-
sight into multi-dataset benchmarks.

Outside of NLP, IRT provides insight into educa-
tional test questions (Lord et al., 1968; Baker, 2001)
and political ideologies of legislators (Poole and
Rosenthal, 2017). In NLP, IRT is used to identify
helpful training examples (Lalor and Yu, 2020), de-
tect errors in evaluation examples (Rodriguez et al.,
2021), and estimate the future utility of examples
in benchmarks (Vania et al., 2021). The goal of
this paper is to identify the characteristics of multi-
dataset benchmarks that IRT methods focus on. Are
certain datasets easier than others? Can clustering
highlight dataset or example properties?

We hypothesize that examples from similar
datasets will cluster together as they should have
similar IRT characteristics (such as difficulty level)
compared to examples from other datasets. How-
ever, we do not see any distinct dataset-based clus-
ters in our results. Instead, we find that IRT char-
acteristics tend to group the examples of similar
labels in the same clusters, suggesting that some la-
bel types are more difficult or more discriminating
regardless of the datasets they belong to. In the rest
of this paper, we describe IRT methods for bench-
mark analysis (§2), our clustering methods (§3),
and our experimental results (§4).1

2 IRT for Benchmark Analysis

In this paper, we adapt IRT methods to explain
why benchmarks examples are difficult, rather than
solely assigning them difficulty values. This sec-
tion describes the IRT models in our experiments
and the test-bed we use in our experiments.

2.1 Item Response Theory Models

IRT is a probabilistic framework that models the
likelihood that subject j (e.g., a model) answers test
item i (e.g., a sentiment prediction) correctly.

1Code and data at www.pedro.ai/multidim-irt.
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Task N Datasets

Sentiment 24,620 Amazon reviews (Zhang et al., 2015), Yelp reviews,∗ SST-3 (Socher et al., 2013), and Dynasent
Rounds 1 & 2 (Potts et al., 2021)

NLI 63,018 ANLI rounds one through three (Nie et al., 2020), HANS (McCoy et al., 2019), MNLI matched
& MNLI mismatched (Williams et al., 2018), SNLI (Bowman et al., 2015), and Winogen-
der (Rudinger et al., 2018)

∗https://www.yelp.com/dataset

Table 1: Details of the datasets used in our experiments.

Likelihood of correct answer
for subject j on item i.⏟ ⏞⏞ ⏟

p(yij = 1| γi , βi , λi , θj ) =

λi

1 + e
− γi ( θj − βi )

(1)

Discriminability of item i

Ability of subject j
Difficulty of item i

The likelihood of a correct response (Equation 1)
is modeled as a relationship between the difficulty
(βi) of an item, its discriminability (γi), its feasibil-
ity (λi), and the subject’s ability (θj). Typically, θj
and βi are unconstrained, λi is between zero and
one, and γi is non-negative.

This model is a four parameter (4PL) IRT

model (Equation 1) and while complex, easily sim-
plifies to simpler models.2 For example, when
λi = 1 and γi = 1 this is a 1PL model. In this
case, the difference between subject ability and
item difficulty (θj − βi) determines the likelihood
of a correct answer: as subject ability increases, the
likelihood of a correct response increases. When
only λi = 1, this is a 2PL model as in topic model-
ing experiments (§4.2). IRT parameters can also be
multidimensional. In two experimental setups (§4.1
and §A), we use a 2PL model (λi = 1) where γi,
βi, and θj are multidimensional. We fit all models
with py-irt (Lalor and Rodriguez, 2022).

2.2 Benchmark Data
Ideally, IRT methods should generalize across mul-
tiple datasets, tasks, and models. To accomplish
this while minimizing engineering overhead, we
use data from dynabench.org (Kiela et al.,
2021)—a dynamic benchmark of multiple tasks,
datasets, and model submissions (Table 1).3 For

24PL models usually include a guessing parameter that
indicates the likelihood of answering the item correctly by
random guess. The guessing parameter is set to zero in our
experiments.

3To avoid test set leakage, we use development set data.

each task, there are seven models: a majority base-
line (always positive), ALBERT (Lan et al., 2020),
BERT (Devlin et al., 2019), DeBERTa (He et al.,
2020), FastText (Bojanowski et al., 2017; Joulin
et al., 2017), RoBERTa (Liu et al., 2019), and
T5 (Raffel et al., 2020). In experiments, IRT in-
fers parameters from the subject-item (i.e., model-
example) matrix where entries are one if the subject
answered the item correctly and zero otherwise.

IRT analysis offers a way to assign properties
like difficulty and discriminability to examples, but
does little to explain why a particular example may
be hard or easy. Next, we identify interpretable
features that might explain IRT parameter values
(e.g., label, topics, and embeddings).

3 Interpreting IRT Parameters

This section explains the methods that our experi-
ments (§4) use to interpret IRT parameters. These
methods fall into two categories: (1) methods that
correlate examples’ IRT parameters with dataset
or label features and (2) methods that correlate de-
rived textual information with IRT parameters (e.g.,
topic models or embeddings).

3.1 Multidimensional IRT Clustering

Intuitively, test instances—be they NLI examples
or SAT questions—can be difficult along more than
one dimension. An example might focus on testing
commonsense reasoning instead of testing back-
ground knowledge. Therefore, it is sensible for IRT

models to learn multidimensional parameters, but
do different difficulty dimensions align with our
intuitions on what might make examples easier or
harder? To interpret evaluation data with multi-
dimensional IRT, we: (1) train multidimensional
IRT models,4 (2) use t-SNE for dimensionality re-
duction (Poličar et al., 2019), (3) plot the resulting
points in 2D space, and (4) color the points by

4We set the dimension of the IRT model to the number
of datasets per task (5 for sentiment and 8 for NLI), and the
number of labels in each task (3 for both sentiment and NLI).
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characteristics of each example such as the classifi-
cation label or source dataset (§4.1).

3.2 Topic Models

Our next method is based on the intuition
that textual information—in particular topical
associations—affects example difficulty. If true,
topical associations should correlate with IRT pa-
rameters. To test this, we fit a topic model to the
five datasets in the Dynabench sentiment task (Ta-
ble 1). To avoid having too many topics to interpret,
we fit the model with five topics using the mallet
software package (McCallum, 2002).5 We obtain
IRT parameters from a one dimensional, 2PL IRT

model (Equation 1). As with multidimensional IRT,
we jointly visualize an interpretable feature (topic
assignment) and IRT parameter values (§4.2).

3.3 Using BERT to Predict IRT Parameters

If textual information is correlated item difficulty,
then transformer models like BERT should also be
able to predict IRT parameters given the item text.
We test this idea by fine-tuning a BERT model (De-
vlin et al., 2019) with regression heads to predict
the difficulty and discriminability parameters of a
4PL IRT model (Equation 1). As with the multi-
dimensional clustering method, we also visualize
embeddings from BERT-base (§4.3). The goal of
our visualizations is to test: (1) how BERT embed-
dings change with IRT fine-tuning and (2) whether
clusters correspond to interpretable instance fea-
tures (e.g., label or source dataset).

4 Experiments

Next, we discuss what each interpretation
method (§3) tells us about IRT parameter values.

4.1 Multidimensional IRT Clustering

Using the subject-item response matrix from Dyn-
abench, we fit a multidimensional 2PL model, clus-
ter with t-SNE, and color the datapoints by either
dataset name or the example label.

When we run t-SNE on the difficulty parame-
ters of a 5-dimensional 2PL model for sentiment
datasets and color-code by dataset, we do not ob-
serve any distinct dataset-based clusters (Figure 1a).
However, when we color-code by label, we observe
more well-defined clusters, especially for the pos-
itive and negative labels (Figure 1b). This result

5For model training, we use an optimization interval of 10
with 3,000 iterations.

suggests that some label types are more difficult
for models to learn or more discriminating among
the models regardless of which dataset they belong
to. While the lack of dataset-based clustering is
a negative result, label-based trends indicate con-
sistency among items with the same label in terms
of learned IRT parameters. However, the lack of
breadth within a label suggests that each label can
only accurately estimate a narrow range of ability
levels in models.6

4.2 How Do Topics Relate to Item Difficulty?
We first validate that the topics inferred by the topic
model (Table 2) are reasonable through manual in-
spection. The topic model successfully identifies
at least five distinct review themes: media (e.g.,
movies, music), hotels, books, products, and food.
Having verified that the topic model is at least rea-
sonable, we next inspect the relationship between
the highest scoring topic per example and its dif-
ficulty (Figure 3). We see that certain topics are
more prevalent at different levels of difficulty; how-
ever, there is no clear delineation between topics
and difficulties. This suggests that at least this topic
model alone does not fully explain difficulty.7

4.3 How Does IRT Difficulty Influence BERT?
Figure 2 compares t-SNE visualizations of embed-
dings from a normal BERT model as opposed to a
BERT model that is fine-tuned to predict 4PL dif-
ficulty and discriminability parameters from the
sentiment task. When points are color coded by
label, the embeddings of the IRT fine-tuned BERT

model clearly form label-based clusters. In contrast,
we do not observe clear patterns or clusters for the
embeddings of the vanilla BERT model. This indi-
cates separation of labels by IRT parameters.8 This
suggests that IRT parameters are correlated with
dataset labels, and the BERT embeddings learned
on IRT parameters encode label properties.

4.4 Discussion
It is generally agreed that some datasets are more
challenging than others. Therefore, items in the

6We performed additional clustering analyses on the sen-
timent and NLI datasets, varying the IRT models learned and
the IRT parameters used for clustering (Appendix A). In all
cases we observed more well-defined label-based clusters than
dataset-based clusters.

7We also replicate the plot with discriminability, but do
not observe any visually discernible patterns.

8IRT-based distributions of examples (Figure 8 in the ap-
pendices) show that there are clearer patterns with respect to
IRT when we group the examples by their dataset labels.
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Figure 1: t-SNE visualization of sentiment datasets on the 5-dimensional 2PL IRT difficulty parameter, colored
by dataset (a) and by label (b). Coloring by dataset does not result in easily discernable clusters; coloring by
label produces well separated clusters for positive and neutral labels. The negation cluster is distinct but has more
intruders than other labels. This suggests example label is more correlated with difficulty than source dataset.

Topic ID Topic Words in Dynabench Sentiment Datasets

0 movie num good album music great film songs love time
1 num place time room back service people hotel didn good
2 book read story good books num reading great time characters
3 num product great good bought work time buy back price
4 num food good place great service ordered back time restaurant

Table 2: We train a five-topic, topic model on the Dynabench sentiment data (Table 1). Topics correspond to five
review themes: media, hotel, book, product, and food. Topic IDs and colors correspond to Figure 3.

same dataset should have similar IRT characteris-
tics. However, our results indicate that benchmark
datasets display more depth than breadth in terms
of example IRT parameters. For a multi-dataset
task such as NLI, examples clustered by IRT param-
eters group according to shared labels, not shared
datasets. While learned latent topics show some
variation across IRT difficulty, it is not clearly evi-
dent that certain topics are more difficult than oth-
ers. While we cannot conclude that certain topics
or datasets are more difficult than others, our results
suggest that certain labels are.

5 Conclusion and Future Work

In this work, our expectation was that datasets
would be separable by IRT-learned parameters.
However, we found that clustering was more in-
terpretable at the label level than the dataset level.

Future work in IRT should better jointly model
the characteristics of NLP data as opposed to our

methods that train these components in isolation.
For example, it may be that the signal provided
by dataset properties is second order to labels and
our methods may not effectively model this (po-
tential) multi-level relationship. Multidimensional
IRT models that encode relationships between diffi-
culty dimensions ought to better fit the data (e.g.,
predicting sentiment of restaurant reviews should
overlap with hotel reviews, as they both involve
service). If these models succeed, they should aid
the interpretation of benchmarks. Lastly, as mod-
els provide more information through initiatives
like Model Cards (Mitchell et al., 2019), IRT could
jointly model these properties with latent ability
parameters to glean insights into which differences
in models yield empirical impacts.
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Figure 2: Clustering results for the Dynasent datasets using a BERT embeddings from a BERT model used to predict
IRT parameters. 2a: Cluster by labels using untrained BERT. 2b: Cluster by labels using trained BERT. Without
fine-tuning, there are no clear patterns between BERT embeddings and label. However, fine-tuning to predict IRT
parameters shows clear clustering patterns between embeddings and labels. This suggests that embeddings learned
to predict IRT parameters can encode the properties of dataset labels.
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Figure 3: To observe the relationship between topics
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A Additional Visualizations

A.1 Dataset Based Clustering
In Figure 4a, we run t-SNE on the discriminability
parameters of a 5-dimensional 2PL model learned
for the Dynasent datasets and color-code by data
set. We do not observe any distinct dataset-based
clusters. We repeat the same visualizations us-
ing difficulty and discriminability parameters of
a 3-dimensional 2PL model learned on Dynasent
datasest (Figure 5a and 5c), a 3-dimensional 2PL
model learned on NLI datasets (Figure 7a and 7c),
and an 8-dimensional 2PL model learned on NLI
datasets (Figure 6a and 6c). In all these experi-
ments, we do not observe any distinct dataset-based
cluster.

A.2 Label Based Clustering
In Figure 4b, we run t-SNE on the discriminability
parameters of a 5-dimensional 2PL model learned
for the Dynasent datasets and color-code by dataset
labels. We repeat the same visualizations us-
ing difficulty and discriminability parameters of
a 3-dimensional 2PL model learned on Dynasent
datasest (Figure 5b and 5d), a 3-dimensional 2PL
model learned on NLI datasets (Figure 7b and 7d),
and an 8-dimensional 2PL model learned on NLI
datasets (Figure 6b and 6d). In all these exper-
iments, we observe clearer clusters compared to
Section A.1.
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Figure 4: T-SNE visualisation of the Dynasent datasets on the discriminability parameter of a 5-dimensional 2PL
model: (a) marked by dataset, (b) marked by label.
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Figure 5: T-SNE visualisation of the Dynasent datasets on the parameters of a 3-dimensional 2PL model: (a) Diffi-
culty marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 6: T-SNE visualisation of the NLI datasets on the parameters of a 8-dimensional 2PL model: (a) Difficulty
marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 7: T-SNE visualisation of the NLI datasets on the parameters of a 3-dimensional 2PL model: (a) Difficulty
marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 8: Distributions of examples for the sentiment datasets (3PL model): (a) Diff by dataset, (b) Disc by dataset,
(c) Diff by label, (b) Disc by label.
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