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Abstract

This paper proposes a method for multilin-
gual phoneme recognition in unseen, low re-
source languages. We propose a novel hier-
archical multi-task classifier built on a hybrid
convolution-transformer acoustic architecture
where articulatory attribute and phoneme clas-
sifiers are optimized jointly.

The model was evaluated on a subset of 24
languages from the Mozilla Common Voice
corpus. We found that when using regular
multi-task learning, negative transfer effects
occurred between attribute and phoneme classi-
fiers. They were reduced by the hierarchical ar-
chitecture. When evaluating zero-shot crosslin-
gual transfer on a data set with 95 languages,
our hierarchical multi-task classifier achieves
an absolute PER improvement of 2.78% com-
pared to a phoneme-only baseline.

1 Introduction

While many highly effective architectures for
speech recognition have been introduced in recent
years, most require large amounts of language-
specific training data. However, for a substantial
portion of the worlds languages, only few or no
annotated speech recordings are available for train-
ing or fine-tuning. To leverage the accuracy of
end-to-end architectures, systems intended for low-
resource ASR are often (pre-)trained on large mul-
tilingual corpora from mostly high-resource lan-
guages such as in Xu et al. (2021), who fine-tune
a multilingually pretrained wav2vec 2.0 model for
the crosslingual transfer task. They are either fine-
tuned on low resource languages as evaluated by,
e.g., Siminyu et al. (2021) or directly applied zero-
shot, as outlined by Li et al. (2021a).

Several systems have been introduced that use ar-
ticulatory attribute systems developed by linguists
to improve phoneme recognition performance. In
such systems, attributes are primarily used as an
input in the form of trainable embeddings for each

attribute individually as proposed by, e.g., Li et al.
(2021a) or for feature vectors as in, e.g., Zhu et al.
(2021), or using signature matrices as described by,
e.g, Li et al. (2020). In contrast, Lee et al. (2019)
applied multi-task learning to train separate articu-
latory feature classifiers and triphone states using
shared layers for Mandarin at the same time with a
TDNN architecture on forced alignments.

In this work, a multilingual phoneme recog-
nition architecture is introduced. It is derived
from a similar architecture applied to computer as-
sisted pronunciation training in Mandarin (Glocker,
2021). Hierarchical multi-task learning is used to
learn jointly to classify articulatory attributes and
phonemes with an additional direct connection be-
tween the attribute and the phoneme classifier.

The proposed acoustic model for phoneme recog-
nition is introduced in Section 2. The system is
then evaluated in Section 3 in the high resource and
zero-shot crosslingual settings. Afterwards, results
are discussed and the paper concluded in Section 4.

2 Crosslingual Phoneme Recognition

Section 2.1 describes the hybrid transformer-
acoustic model for encoding frame sequence. The
hierarchical multi-task classifier for articulatory at-
tributes and phonemes is introduced in Section 2.2.

2.1 Transformer Acoustic Model

A hybrid convolution and transformer encoder
model is used for acoustic sequence modeling as
shown in Figure 1. The architecture and hyperpa-
rameter choices are derived from the transformer
model introduced by Synnaeve et al. (2019). First,
the audio is resampled to 16kHz. 40 dimensional
MFCC features using 25ms frames with a stride of
10ms are extracted. The features are then passed
into two GLU-activated convolution layers to en-
code local context, with a kernel size of three and
512 and 400 channels respectively. Each convolu-
tion layer is preceded by layer normalization and
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Figure 1: Illustration of the hybrid convolutional trans-
former phoneme recognition model with the hierarchical
connections between attribute and phoneme classifiers

followed by a dropout layer for regularization. A
stride of 2 is used in the second GLU layer, increas-
ing the receptive field of the model to 5 frames
while keeping the output lengths shorter than the
length of phoneme sequences for CTC.

Sinusoidal positional encodings as proposed by
Vaswani et al. (2017) are added to the output repre-
sentations of the convolution layers. The sequence
is passed through a shallow 2-layer transformer.
In the transformer, Pre-LN transformer blocks are
used without warmup as proposed by Xiong et al.
(2020). Feedforward layers with a hidden size of
2048 and 4 attention heads are used motivated by
Vaswani et al. (2017). The dropout rate is 0.2.

2.2 Hierarchical Multi-Task Classifiers
In contrast to previous work (Lee et al., 2019), clas-
sifiers are not trained completely independently
but are connected in a hierarchical structure. Cas-
cading information between tasks has also previ-
ously been successfully applied to jointly optimiz-
ing NLP tasks at different “levels” such as POS and
dependency parsing (Crawshaw, 2020).

In the hierarchy, both the attribute and phoneme
classifiers take the normalized output of the trans-
former acoustic model as an input. In addition to
the acoustic representation, the phoneme classifier
receives a concatenation of the probability distri-
butions from each articulatory attribute classifier.
More specifically, for each time step t given a set

of attribute classifier logits At, the transformer hid-
den vector ht, and the weights and biases of the
phoneme projection layer W and b, the phoneme
logits pt are computed as follows:

vt =
(⊕

a∈At
softmax(a)

)
⊕ ht (1)

pt = W T vt + b (2)

Each classification layer is then independently
but simultaneously optimized using connectionist
temporal classification (CTC; Graves et al. (2006)).
For consistency, articulatory attribute vectors are
directly mapped to each phoneme without merging
repetitions. As a result, there is always a 1:1 cor-
respondence between attribute and feature labels
at training time. While the attribute and phoneme
classifiers form a flat hierarchy in this work, the
hierarchical structure generalizes to any directed
acyclic graph representing phonetic feature struc-
tures.

3 Evaluation

We evaluated the proposed hierarchical multi-task
transformer with two experiments.

(1) In the “Multi-Task” variant, regular multi-
task learning is used where attribute probabilities
are not used as inputs to the phoneme classifier.

(2) In the “Phonemes Only” model, only the
phoneme classifier is used and attribute information
is only applied to phoneme mapping at test time.

Batch sizes are set dynamically for efficiency
until the product of the batch and frame sequence
dimensions reaches 320,000. The Adam optimizer
(Kingma and Ba, 2015) was used for training with
β1 = 0.9 and β2 = 0.98 as in Vaswani et al. (2017).
A learning rate of 0.001 is used. The training was
stopped once the average validation set losses did
not decrease for more than 3 epochs.

The transformer acoustic model was imple-
mented in the PyTorch framework (Paszke et al.,
2019), using Torchaudio (Yang et al., 2021) for
Audio processing and feature extraction.

The data sets for training and evaluation are de-
scribed in Section 3.1. Section 3.2 presents and
analyses the results for phoneme and attribute clas-
sification for high and low resource languages.

3.1 Datasets
For training and evaluation in the high resource
setting, version 10.0 of the Mozilla Common Voice
corpus was used, which contains crowdsourced
recordings of sentences. Each sentence is tokenized



using Stanza (Qi et al., 2020), after which punctua-
tion is removed and each token is transcribed into
phonemes using Epitran (Mortensen et al., 2018).
Finally, the transcriptions are segmented accord-
ing to the IPA segments available in the Panphon
database (Mortensen et al., 2016) for the phoneme
inventory extracted from the training data for each
language. The 24 articulatory attributes from Pan-
phon are used for creating and supervising the at-
tribute classifiers. The multilingual training set was
constructed from at most 15,000 sentences from the
training sets of 24 languages from Common Voice,
for which both a tokenization and a grapheme-to-
phoneme model is available. The original develop-
ment and test sets were used unchanged.

The first release1 of the multilingual corpus pub-
lished by Li et al. (2021b) is used for evaluat-
ing zero-shot transfer in this work as in Li et al.
(2021a). It provides 5,509 validated utterances with
phoneme transcriptions for 95 low-resources lan-
guages from five continents. Since recordings for
Czech, Dutch, Maltese, Hindi and Hungarian are
also included in the training data, they are removed
from the test data before computing the averages.

To handle different inventories and OOV
phonemes in the test languages, phonemes pre-
dicted by the model are mapped to each target
inventory using the hamming distance between at-
tribute vectors. This corresponds to the “tr2tgt”
approach introduced by Xu et al. (2021). For the
UCLA Phonetic Corpus, the included inventory
files are used for this mapping even if they include
a phoneme that doesn’t appear in a transcription.

3.2 Experiments

The overall performance on phoneme and articu-
latory attribute detection on Common Voice can
be seen in Table 1. In addition to the phoneme
error rate (PER), the attribute error rate (AER) is
computed for each attribute individually and then
averaged over all attributes. The hierarchical multi-
task model reaches lower PER and average AER
than regular multi-task learning in both the high
and low resource setting. The regular multi-task
model also performs worse than the phoneme only
baseline. This shows, that negative transfer effects
are stronger without the hierarchical connection.

Compared to the “Phonemes Only” model, the
hierarchical model performs almost identically in

1https://github.com/xinjli/
ucla-phonetic-corpus/releases/tag/v1.0

Architecture %PER %AER

Phonemes Only 48.96 –
Multi-Task 52.19 19.43
Hierarchical Multi-Task 49.11 17.99

Table 1: Average phoneme and attribute error rates
for the Common Voice subset representing the high
resource setting

Architecture %PER %AER

Phonemes Only 74.77 –
Multi-Task 75.28 34.14
Hierarchical Multi-Task 71.99 30.25

Table 2: Average phoneme and attribute error rates for
the UCLA Phonetic Corpus representing the low re-
source setting

the high-resource setting. However, as shown in
Table 2, there is an improvement to the unseen
low-resource languages from the UCLA Phonetic
Corpus. In contrast, the regular multi-task model
also yields higher PERs in this setting.

Figure 2 shows the phoneme and average at-
tribute error rates for the Common Voice test sets
of the languages used for training. The variance
of PERs between languages is high (σ2 = 135.03).
On the attribute level, the variance of the AER be-
tween languages is much less pronounced (σ2 =
15.61) and lower AER doesn’t correlate with higher
PER (r2 = 0.016). For instance, the PER is high-
est for Arabic and Vietnamese even though their
AER are among the lowest in the test set.

Since the AER was improved most consistently
across languages through the hierarchical architec-
ture, research into better modeling the connection
between articulatory attributes and phonemes could
lead to larger PER improvements in future work.

For Arabic and Urdu, a contributing factor might
be Epitran not transcribing short vowels since they
are not present in their orthography (Mortensen
et al., 2018). For Vietnamese, the higher PER is
likely due to it being the second-lowest resource
language in the training data with only 2259 val-
idated utterances and one of only two tonal lan-
guages alongside Thai.

In contrast, phoneme recognition is the most
accurate for the five romance languages including
Spanish, Italian and Catalan. They likely benefit
the most from the multilingual settings since they

https://github.com/xinjli/ucla-phonetic-corpus/releases/tag/v1.0
https://github.com/xinjli/ucla-phonetic-corpus/releases/tag/v1.0
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Figure 2: Phoneme Error Rates (PER) and the averages over all Attribute Error Rates (AER) on the test sets from
Common Voice for the languages used for training
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Figure 3: Phoneme Error Rates (PER) for the languages
in the UCLA Phonetic Corpus grouped into macrore-
gions accordig to Glottolog (Hammarström et al., 2022)

are closely related.
A possible explanation for the low correlation

between AER and PER is, that the frame level
probabilities tend to form single frame spikes when
trained with CTC (Graves et al., 2006). Since CTC
loss is computed for every classifier independently,
spikes for attributes of the same phoneme some-
times occur on different frames. As a result, the
phoneme classifier is likely to receive high blank
probabilities from multiple attribute classifiers.

The crosslingual transfer results are further di-
vided into macroregions in Figure 3 based on Glot-
tolog (Hammarström et al., 2022). The model
transfers best to the set of 10 languages from the
“Papunesia” region, despite there being no lan-

guages from this region in the training set. In
contrast, the model generalizes poorly to the four
American languages. Some outliers with partic-
ularly high PER might also be caused by the
noisy conditions under which some utterances were
recorded (Li et al., 2021b).

4 Conclusion

A novel hierarchical multi-task architecture is
presented and evaluated together with a hy-
brid convolution-transformer acoustic model for
phoneme classification. In contrast to regular multi-
task learning, the phoneme classifier receives at-
tribute probabilities as additional inputs.

It tackles the crosslingual transfer task for
phoneme recognition in low resource languages.
For zero-shot classification in such languages, only
their phoneme inventory is required.

Negative transfer effects observed in regular
multi-task learning were reduced. When evalu-
ated on the UCLA Phonetic Corpus, the proposed
system yielded an absolute phoneme error rate re-
duction of 2.78% across 95 unseen languages com-
pared to a phoneme-only baseline.

Future work may investigate the low correlation
between AER and PER, and further analyse the
cause of the high variance of PER between lan-
guages. In particular, we plan to investigate and im-
prove the mapping between the shared phoneme in-
ventory and language specific inventories to tackle
these challenges. Furthermore, tones could be
moved to their own layer in the hierarchy to better
reflect their suprasegmental nature.
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