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Abstract

This study compares token- and character-
level approaches to restoration of spaces, punc-
tuation, and capitalization to unformatted se-
quences of input characters, which is a vital
step in use cases such as formatting outputs
of automatic speech recognition systems for
automatic transcription, and formatting hash-
tags. We obtain an overall F-score of 0.95 for
our main English dataset with a hybrid pipeline
model composed of a Naive Bayes classifier
for space restoration and a BiLSTM classifier
with a pre-trained Transformer layer for restora-
tion of punctuation and capitalization. We also
propose a novel character-level end-to-end BiL-
STM model (overall F-score 0.90) which has
the advantages of being able to restore mid-
token capitalization and punctuation and of not
requiring space characters to be present in in-
put strings. We demonstrate that this model
is language agnostic through experiments on
Japanese, a scriptio continua language, and Gu-
jarati, a low-resource language. We also com-
pare our models with the only existing work
on this task of which we are aware by carrying
out experiments on the same dataset, and find
that all of our models outperform those in that
work.

1 Introduction

The accuracy of automatic speech recognition
(ASR) systems has improved dramatically in re-
cent years, with increasingly sophisticated deep
learning architectures bringing about year-on-year
improvements in word error rates (WERs) on es-
tablished benchmark datasets such as LibriSpeech
(Synnaeve, 2022). It has been claimed that ASR
systems have reached the level of human parity
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Repositories containing the code used for all of the exper-
iments in this paper, together with comprehensive documenta-
tion and links to interactive demo notebooks, are available on-
line at: https://ljdyer.github.io/Space-Punct-Cap-Restoration.

(Xiong et al., 2016) or even super-human perfor-
mance (Nguyen et al., 2020). The result has been
a resurgence of various speech technologies, not
least automatic transcription. Automatic transcrip-
tion is widely used in the medical field (Van der
Straten, 2017) and is now a hot topic in the general
business community after many businesses shifted
to fully remote or hybrid working following the
COVID-19 pandemic. Transcription services inte-
grated into online conferencing applications like
Microsoft Teams and Zoom are used on a daily ba-
sis by organizations around the world to facilitate
information sharing and record keeping.

However, most modern end-to-end ASR systems
output streams of lowercase words without punc-
tuation or capitalization (Guan, 2020), so these
features must be restored by dedicated models in
the post-processing stage. The presence or ab-
sence of certain punctuation marks can dramati-
cally alter the understood meaning of a sentence—
as anyone who has read the book Eats, Shoots &
Leaves (Truss, 2004) knows—and the same set of
letters can carry completely different meanings de-
pending on the capitalization ("The Who" vs. "the
WHO"). Capitalization and punctuation are also
known to improve the readability of transcriptions
(Jones et al., 2003). Moreover, absence of capi-
talization and punctuation negatively impacts the
performance of downstream natural language pro-
cessing (NLP) applications such as neural machine
translation (Peitz et al., 2011), named entity recog-
nition, and part-of-speech tagging (Mayhew et al.,
2019). Appropriate punctuation and capitalization
styles may vary depending on domain, so the abil-
ity to easily train models to restore these features
is likely to become increasingly important in the
future.

Most work on punctuation and capitalization
restoration to date has been targeted at the token
level, assuming that inputs are already correctly
segmented into words. However, there are some



drawbacks to this approach. Firstly, it necessar-
ily restricts the possible positions of each feature
within a single word, and therefore cannot learn
or restore mid-token punctuation or capitalization
such as that found in "iPhone" or "yahoo.com".
Secondly, it cannot be applied directly to scriptio
continua languages like Chinese, Japanese, and
Thai. Space restoration may also be required for
certain use cases in spaced languages, for example
when dealing with hashtags (Abd-hood and Omar,
2021).

For these reasons, in this study we assume raw
data that comprises streams of lowercase characters
and digits only, and examine a range of approaches
to restoring spaces, punctuation, and capitalization
to generate readable output texts. We compare
pipeline approaches that first restore spaces and
then tackle capitalization and punctuation at the to-
ken level with end-to-end approaches that perform
all tasks simultaneously at the character level. We
implement a combination of statistical and deep
learning models in order to ascertain whether using
neural network architectures leads to better perfor-
mance in each part of the task under consideration.

2 Related Work

2.1 Space Restoration/Word Segmentation

Space restoration for spaced languages is largely
equivalent to the problem of word segmentation
for scriptio continua languages such as Chinese,
for which a wealth of literature exists due to
its applications in higher-level NLP tasks includ-
ing part-of-speech tagging and machine transla-
tion. The problem can be tackled using dictionary-
based approaches and statistical machine learning
methods including Naive Bayes, support vector
machines (SVM), and conditional random fields
(CRF) (Haruechaiyasak et al., 2008). However,
most recent work in this area employs neural net-
works.

Shao et al. (2018) propose a bidirectional recur-
rent neural network (RNN) architecture with gated
recurrent units (GRU) that works at character level,
and demonstrate its effectiveness on over 75 lan-
guages from a diverse range of language families.
Sun (2010) compares word- and character-based
approaches to Chinese word segmentation and pro-
poses a classifier ensemble method after observ-
ing that each method leads to different types of
error. Zhang et al. (2018) and Liu et al. (2019a)
have proposed methods for incorporating informa-

tion from dictionaries to improve neural network
models. Higashiyama et al. (2019) integrate both
word character information and character attention
into a character-based neural network for Japanese
language word segmentation. Zheng and Zheng
(2022) improve on existing results for Vietnamese
word segmentation by using an improved LSTM
model with a convolutional neural network (CNN)
extraction portion.

2.2 Restoration of Capitalization and
Punctuation

CRF (Lui and Wang, 2013) and finite state au-
tomata (FSA) (Gravano et al., 2009) have been used
to restore capitalization and punctuation, but state-
of-the-art approaches use neural network models.
Che et al. (2016) demonstrate that both deep neu-
ral networks (DNNs) and CNNs can outperform
CRF-based approaches for restoration of commas,
periods, and question marks on a dataset of Ted
Talks.

Recent work has demonstrated the advantages
of using Transformer architectures for restora-
tion tasks. Nguyen et al. (2019) restore capi-
talization and punctuation in a single model us-
ing a Transformer-enriched sequence-to-sequence
LSTM model, while Wang et al. (2018) apply an
Encoder-Decoder Transformer architecture with
attention to restoration of punctuation only. Yi
et al. (2020) and Courtland et al. (2020) achieve
state-of-the-art results for punctuation restoration
using deep bidirectional Transformer architectures
with the pre-trained language models BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019b)
respectively. Guerreiro et al. (2021) improve on the
work of Yi et al. (2020) by training and evaluating
their models at chunk level rather than segment
level.

Guerreiro et al. (2021) also successfully train a
single model for punctuation restoration in multiple
languages using the multilingual language model
XLM-RoBERTa (Conneau et al., 2019). However,
they observe that better results for English are
obtained when using the monolingual RoBERTa.
Gupta et al. (2022) use IndicBERT (Kakwani et al.,
2020) to carry out punctuation restoration for 11
Indic languages, including Gujarati.

All of the studies cited above adopt purely lexi-
cal approaches, but others (Tilk and Alumäe, 2015;
Klejch et al., 2017; Yi and Tao, 2019) have incor-
porated audio features from original ASR inputs.



Guan (2020) proposes an end-to-end ASR system
with punctuation restoration included. Zhu et al.
(2022) train a BiLSTM model with a hybrid rep-
resentation to enable restoration of punctuation to
unpunctuated texts either with or without accompa-
nying audio.

Gale and Parthasarathy (2017) is a rare exam-
ple of a character-level approach to punctuation
restoration, in which results on-par with state-of-
the-art CRF-based models are obtained using vari-
ous architectures containing LSTM networks. The
models in that paper differ from our own in that
they restore punctuation only, and each output tag
contains only a single feature.

2.3 Restoration of Spaces, Capitalization and
Punctuation

The only study of which we are aware that deals
with restoration of spaces, punctuation, and capital-
ization as a single task is Sivakumar et al. (2021).
The authors use a single model type— bigram-level
GRU—but adopt a pipeline approach where one
feature is restored successively in each model com-
ponent. Interestingly, they find that the best results
are obtained by restoring spaces later in the restora-
tion process, after periods and commas but before
capitalization.

3 Models

In this section we describe the models used in this
study, which encompass a range of both traditional
and neural machine learning techniques for restor-
ing spaces, punctuation, and capitalization, or a
subset of those features. The model names in bold
are unique names that we assigned to the models
for the purpose of this paper.

NB is a Naive Bayes-based model that uses
dynamic programming with memoization to recur-
sively assign probabilities to possible word seg-
mentations based on frequency lists of words learnt
during training. Our implementation closely fol-
lows the description of the bigram model in Norvig
(2009), but we treat the maximum possible word
length L and smoothing parameter λ, which are
assigned constant values in the original work, as
tunable hyperparameters.

Since NB assigns probabilities to word segmen-
tations recursively, inference can only be run on
string of up to around 100 characters in length
due to recursion limits, so longer inputs have to
be broken up into shorter chunks. We use the

method in Jenks (2018), where the last few words
of each chunk is appended to the beginning of the
following chunk to prevent words being incorrectly
segmented due to being cut off at the end of a
chunk. The same method is employed for BiL-
STMCharSpace and BiLSTMCharE2E to allow
for control of the model input length without the
need for padding tokens.

BiLSTMCharSpace and BiLSTMCharE2E
are character-level BiLSTM sequence-to-sequence
classification models. They were implemented
from scratch for this paper and are not based on ex-
isting literature. BiLSTMCharSpace is for restora-
tion of spaces only, a binary classification task,
so binary cross entropy is used for the loss func-
tion and sigmoid is used for the activation function.
BiLSTMCharE2E uses multi-class classification
to restore any possible combination of features fol-
lowing each character. The number of possible
classes when restoring n features is 2n, so for our
standard set of features for English a maximum of
16 classes are possible. Categorical cross entropy
is used for the loss function and softmax is used
for the activation function.

Training examples for BiLSTMCharSpace and
BiLSTMCharE2E were generated using a sliding
window over each document with a step size of
one word (or three characters in the case of the
OshieteQA dataset). This approach ensures that
less frequent words appear multiple times in the
training data. The sequence length was set to 200
characters so that at least two or three sentences
would be included in each training sample in order
to provide sufficient context for restoration of end
punctuation.

CRF uses CRF to restore punctuation and capi-
talization through multi-class token classification.
Our implementation is based on Lui and Wang
(2013), but where that study assigns only 4 classes
to capture presence or absence of any punctuation
and/or capitalization, we increase the number of
classes to capture presence or absence of a period
and/or comma directly after a token and whether
a token is lowercase, title cased, or fully capital-
ized. Also, the previous study uses named entity
recognition (NER) results on uncapitalized input
text as a model feature, but we skip this step as
we found in initial experiments that the low accu-
racy of NER without capitalization meant that the
impact on model performance was minimal.

BERTBiLSTM is a token-level model which



uses a pre-trained Transformer layer, BERT (De-
vlin et al., 2018), with the final hidden layer
attached to a BiLSTM with sigmoid activation.
Classes capture combinations of features, for exam-
ple a period following a token and capitalization of
the first letter of the token. Unlike CRF, this model
does not have a class for full capitalization of a
token. It has a maximum sequence length of 256,
with a padding token used to fill any remaining
slots in each sequence. Padding tokens are masked
to avoid the attention layer deriving importance
from them. The model is based on the punctua-
tion restoration model in Alam et al. (2020), but
expands on that work by restoring capitalization in
the same model.

Models for space restoration and models for
restoring other features were combined to form
pipeline models for restoration of all features. For
example, NB + BERTBiLSTM refers to the result
of inputting the outputs of NB into BERTBiLSTM.
BiLSTMCharE2E is the only model that can re-
store all features in a single inference step.

4 Experiments

4.1 Languages

The languages studied in this paper are English,
Japanese, and Gujarati. These languages were se-
lected in order to ascertain the suitability and per-
formance of the novel character-level model BiL-
STMCharE2E on a diverse range of language
types.

English is a spaced language with rich use of
capitalization and punctuation. It is also the most
widely studied language in the field and its inclu-
sion was essential for comparison with existing
work. Japanese is a scriptio continua language in
which spaces are not inserted between word tokens,
and is also in high demand for NLP applications.
Gujarati is a low-resource language belonging to
the group of Indic languages with special typo-
graphical and orthographic characteristics that need
to be taken into account when developing character-
based models (W3C Group, 2022).

Further, the authoring team contained at least
one member who is either native or proficient in
each of the languages under study, which made
direct qualitative evaluation and analysis of model
outputs possible.

4.2 Datasets

In this section we describe the datasets used in this
study. The dataset names in bold are unique names
that we assigned to the datasets for the purpose of
this paper.

Our main dataset for English was a corpus of
transcripts of TED Talks collected in June 2020
(Gupta, 2020) (hereafter referred to as TedTalks).
This dataset was chosen because it consists of high-
quality professional transcriptions of spoken En-
glish, and so closely reflects the intended use case
and desired outputs of our models. Ted Talk tran-
scripts have also been used in many prior studies
on punctuation and capitalization restoration in-
cluding Che et al. (2016), Wang et al. (2018), and
Courtland et al. (2020). Our aim when preparing
this dataset was to establish the feasibility of each
of the models under investigation. We therefore
carried out thorough data cleaning with the aim
of restricting the input vocabulary while retaining
as much of the context of the original as possi-
ble. For example, we replaced question marks and
exclamation marks with periods, “$” signs with
the acronym “USD”, and “%” signs with the word
“percent”. We also removed speaker indicators (e.g.
“Narrator:”) and descriptions of audience activity
(e.g. “(Applause)”), which appear frequently in the
original corpus. The cleaned dataset consisted of
only upper- and lower-case alphabetic characters,
digits, spaces, commas, and periods.

The second dataset for English was the Brown
corpus, which was used for comparison with
Sivakumar et al., 2021. Data cleaning was carried
out following the procedure described in Section
A.2 of that paper in order to mirror their experi-
ments as closely as possible.

The Japanese and Gujarati datasets were used to
ascertain the feasibility of BiLSTMCharE2E on
languages with larger character vocabularies. Only
minimal data cleaning was carried out for these
datasets.

For Japanese, we collected our own corpus,
JapaneseQA, of questions and answers written
in 2021 from the popular Q&A site Oshiete!
goo (2022) ("教えて！goo"/”Tell me! goo”).
The dataset contains questions and answers from
a wide range of categories (16 in total), with
the most common being “life advice”, “educa-
tion/science/learning” and “health/beauty/fashion”.
Both full-width and half-width spaces (which do
not generally belong in Japanese text) were re-



Dataset Language Num. docs Num. words Num. chars Num. unique chars
TedTalks English 3,997 7,149,001 39,490,824 65
Brown English 500 1,023,563 5,921,920 65
JapaneseQA Japanese 42,940 N/A 25,634,557 5,489
GujaratiNews Gujarati 3,498 906,498 3,814,697 1,470

Table 1: Datasets used in the experiments

moved, as were line breaks after appending a period
(“。”) to lines without end punctuation. Exclama-
tion marks (”！”) were replaced with periods. The
texts in this dataset are not transcribed from spo-
ken Japanese, but are written in a conversational
style that is similar to polite spoken Japanese, and
were chosen for this reason. Since they are written
by individual site users as opposed to professional
writers or transcribers, the punctuation usage is less
consistent than for our other datasets.

For Gujarati, we collected our own corpus, Gu-
jaratiNews, of news articles written in 2021 and
2022 from the news website Gujarat Samachar
(2022). We used written data due to the difficulty
of obtaining large collections of transcriptions of
spoken Gujarati. We collected article headlines and
body text from six of the site’s category pages. A
period and space were appended to lines without
end punctuation before removing line breaks.

The numbers in Table 1 describe the size of each
dataset before splitting into train and test sets. A
randomly selected 20% of the documents in each
dataset were saved for testing, with the remaining
80% used for training and validation.

4.3 Evaluation Metrics

A combination of character- and word-level met-
rics was used to evaluate the results of our experi-
ments. All metrics were calculated by comparing
reference documents in the test sets with document-
level model outputs (after combining chunks, etc.).

We used character-level metrics—precision, re-
call, and F-score for each restored feature—as our
primary metrics in order to ensure comparability
across all experiments. These scores were cal-
culated based on the features possessed by cor-
responding non-feature characters in the reference
and hypothesis outputs. Since our models were not
designed to restore multiple instances of the same
feature character after a single input character (e.g.
...), only presence or absence of each feature for
each non-feature character was considered. The
character-level metrics were highly informative for

understanding the performance of models on each
restored feature and identifying future areas for
improvement. We do not report character-level ac-
curacy because it takes into account true negatives
and therefore can be misleadingly high for features
that do not occur frequently.

We also provide word error rate (WER) for all
experiments in which spaces were among the fea-
tures restored. Apart from being a standard met-
ric for ASR tasks, this metric has the advantage
of summarizing the overall performance in each
experiment in a single percentage, and we (like
Sivakumar et al., 2021) found that it closely cor-
related with our subjective evaluation of model
outputs based on observation. Reference and hy-
pothesis texts were split at space characters and the
Levenshtein distance between them–—the sum of
substitutions (S), deletions (D), and insertions (I)
required to get from the hypothesis to the reference–
—obtained. Any number of false positives or neg-
atives across the possible features for a single
word prompted a single edit (because, for example,
However, is not the same as either however,
or However.,). WER is calculated as follows:

WER (%) =
(S +D + I)

lenref
× 100 (1)

where lenref is the number of words in the reference
text.

Lower WERs indicate better model performance,
with 0% indicating a perfect match between refer-
ence and hypothesis outputs. WER is affected by
the relative frequency of restored features in each
dataset, so should not be used to compare the re-
sults of experiments on different datasets or when
restoring different features.

In addition to quantitative metrics, we also found
qualitative observation of reconstructed texts to be
highly informative, so we include selected extracts
from the model outputs to illustrate some of our ob-
servations. In all of the sample outputs presented, a
dark gray highlight indicates a false positive, while
a light gray highlight indicates a false negative. Fea-



Model Dataset Units Batch size Dropout Recurrent dropout
BiLSTMCharSpace TedTalks {128,256} {2048, 4096, 8192} {0, 0.1, 0.2} {0,0.1, 0.2}
BiLSTMCharSpace Brown {128,256} {2048,4096, 8192} {0, 0.1,0.2} {0, 0.1, 0.2}
BiLSTMCharE2E TedTalks {128,256} {2048, 4096, 8192} {0, 0.1, 0.2} {0, 0.1, 0.2}
BiLSTMCharE2E Brown {128, 256} {2048, 4096, 8192} {0, 0.1,0.2} {0,0.1, 0.2}
BiLSTMCharE2E OshieteQA {32, 64,128} {128, 256} {0, 0.1, 0.2} {0, 0.1,0.2}
BiLSTMCharE2E GujaratiNews {64, 128,256} {512, 1024, 2048} {0, 0.1, 0.2} {0,0.1, 0.2}

Table 2: Hyperparameters used for BiLSTMCharSpace and BiLSTMCharE2E

tures without any highlight are true positives—i.e.
correctly restored features.

4.4 Hyperparameter Tuning

Tunable hyperparameters for NB are L, the maxi-
mum possible word length, and λ, the smoothing
parameter. Hyperparameters are applied at infer-
ence time, so grid search was carried out by running
inference on 5% of the test data with each candidate
hyperparameter combination and selecting the one
with the highest space F-score for the final model.
Combinations with L ∈ {14, 16, 18, 20, 22} and
λ ∈ {6.0, 8.0, 10.0, 12.0, 14.0} were tested. The
hyperparameters selected for use in the final mod-
els were L = 16, λ = 12.0 for TedTalks and
L = 14, λ = 14.0 for Brown.

Tunable hyperparameters for BiLSTM-
CharSpace and BiLSTMCharE2E are the
number of BiLSTM units, batch size, dropout rate,
and recurrent dropout rate. Grid search was carried
out for each model/dataset pair by training on 10%
of the training data for one epoch with each candi-
date hyperparameter combination and selecting the
one with the highest validation accuracy for use in
the final model. Some candidate hyperparameter
combinations overloaded GPU memory, which
suggests that GPU resources were optimized for
successful combinations. Candidate units and/or
batch sizes had to be reduced for the Gujarati and
Japanese datasets to generate a sufficient number
of viable hyperparameter combinations; this is
thought to be due to the larger input vocabularies
for these models. Candidate hyperparameters for
all model/dataset pairs are presented in Table 2,
with the hyperparameters used in the final models
displayed in bold.

CRF has three tunable hyperparameters: C1, C2,
and the possible_transitions parameter, which
specifies whether to generates transitions between
feature pairs that were not present in the training
set. We used the values C1 = 1.0, C2 = 1e−3,
and possible_transitions = True, following the
example notebook by Korobov (2016).

BERTBiLSTM also has three tunable hyperpa-
rameters: learning rate, decay and gradient clip.
These were set to 5e− 6, 0, and 1 respectively, the
same values as used in Alam et al. (2020).

5 Results

All five of our pipeline and end-to-end models were
applied to restoration of capitalization, spaces, pe-
riods, and commas for the two English-language
datasets. The results for TedTalks are presented in
Table 3. The metrics for pipelines containing BiL-
STMCharSpace were almost identical to those
containing NB, with precision, recall, and F-score
differing by no more than 0.01 for each feature and
WER differing by no more than 0.28%. The results
of pipelines containing BiLSTMCharSpace are
therefore omitted for brevity. The results for the
most performant pipeline model and for the end-to-
end model for Brown are presented in Table 4.

5.1 Space Restoration (English)

Both NB and BiLSTMCharSpace have F-scores
of 0.99 for the space restoration task on the
TedTalks dataset. The numbers of space restora-
tion errors in the results for each model are very
close, but the errors occur in different places. Of
the 22 errors in the results for BiLSTMCharSpace
on the first document in the test set, only 7 were in
words where NB also made an error. This is con-
sistent with the observation made in Sun (2010),
and suggests it may be possible to obtain higher
performance by combining the outputs of the two
models in some way.

NB assigns probabilities based on whole tokens
learnt during training, so errors occur for unlearnt
words that can be formed by concatenating two or
more learnt words, such as in un filled ("un-
filled" was not in the training data). BiLSTM-
CharSpace learns at the character level and ap-
pears to have implicitly learnt some of the common
morphemes in the English language, as it was able
to output the correct word in this and similar exam-
ples.



NB + CRF
WER: 19.85%

Precision Recall F-score
Spaces (’ ’) 0.99 0.99 0.99
CAPS 0.74 0.37 0.49
Periods (’.’) 0.59 0.34 0.43
Commas (’,’) 0.46 0.22 0.30
All 0.95 0.86 0.90

NB + BERTBiLSTM
WER: 8.49%

Precision Recall F-score
Spaces (’ ’) 0.99 0.99 0.99
CAPS 0.88 0.81 0.84
Periods (’.’) 0.82 0.82 0.82
Commas (’,’) 0.77 0.67 0.72
All 0.96 0.95 0.95

BiLSTMCharE2E
WER: 20.48%

Precision Recall F-score
Spaces (’ ’) 0.98 0.98 0.98
CAPS 0.69 0.62 0.65
Periods (’.’) 0.58 0.53 0.56
Commas (’,’) 0.50 0.38 0.43
All 0.92 0.89 0.90

Table 3: Results from a selection of models on the
TedTalks dataset.

BiLSTMCharSpace + BERTBiLSTM
WER: 17.27%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
CAPS 0.77 0.73 0.75
Periods (’.’) 0.69 0.70 0.69
Commas (’,’) 0.60 0.40 0.48
All 0.93 0.91 0.92

BiLSTMCharE2E
WER: 24.46%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
CAPS 0.74 0.42 0.54
Periods (’.’) 0.55 0.38 0.45
Commas (’,’) 0.51 0.11 0.17
All 0.94 0.84 0.89

Table 4: Results from the best pipeline model and the
end-to-end model on the Brown dataset.

Both models tend to commit errors in cases
where part of an input string can be segmented
into more than one pair of learnt words, such as
the input sequence chargeshe. NB sometimes
chooses the wrong segmentation for the context
(in this case charge she), whereas BiLSTM-
CharSpace sometimes inserts a space in both posi-
tions (charge s he). The output of BiLSTM-
CharSpace may be easier to post-edit in such cases,
as errors would be picked up by a spellchecker.

BiLSTMCharE2E performs slightly worse than
NB and BiLSTMCharSpace in the space restora-
tion task for TedTalks, which suggests that a larger
number of possible output classes reduces perfor-
mance on each individual feature. However, the
F-score is still very high, at 0.98, which shows that
BiLSTMCharE2E is able to accurately restore
spaces at the same time as other features.

The results of each model for the space restora-
tion task were also very similar for the Brown
dataset, with pipelines containing NB and BiL-
STMCharSpace both having F-scores of 0.97 for
space restoration. However, for the Brown dataset,
a pipeline containing BiLSTMCharSpace had
the highest overall F-score, which suggests that
BiLSTMCharSpace may perform better than NB
when less training data is available.

5.2 Capitalization and Punctuation
Restoration (English)

Pipeline models containing BERTBiLSTM outper-
formed those containing CRF on all features. This
is thought to be because BERTBiLSTM can take
into account more contextual information and also
benefits from the pre-trained word Transformer
layer. The outputs of NB + BERTBiLSTM for the
TedTalks dataset are generally very readable and
closely match the punctuation style of the training
data. Figure 1 shows a typical extract. The one
divergence from the reference document is also a
valid punctuation. The outputs of the other mod-
els contain more severe errors that result in less
readable text.

BiLSTMCharE2E outperformed pipelines con-
taining CRF at capitalization and punctuation
restoration (likely owing to its ability to take into
account a greater amount of contextual informa-
tion), with a lower overall F-score due solely to
poorer performance at space restoration. Combined
with its simplicity due to being able to restore all
features in a single model, this makes BiLSTM-



Imagine a brilliant neuroscientist named Mary. Mary lives in a black
and white room., She only reads black and white books, and her scre
ens only display black and white. But even though she has never seen

Figure 1: Output of NB + BERTBiLSTM for an extract from the test set for TedTalks

WER: N/A

Precision Recall F-score
Periods (’。’) 0.54 0.53 0.54
Commas (’、’) 0.31 0.31 0.31
Q. marks (’？’) 0.56 0.48 0.52
All 0.43 0.43 0.43

Table 5:
Results from BiLSTMCharE2E on JapaneseQA

CharE2E a very viable model for the task under
consideration. Further, observation of output texts
confirms that BiLSTMCharE2E is able to cor-
rectly restore mid-token punctuation and capitaliza-
tion. It was the only model able to correctly restore
the middle periods in B.C. and D.C., and the
final-letter capital in PhD, to cite a few examples
observed in the first 100 test documents.

The gap in performance between the best-
performing pipeline model and BiLSTMCharE2E
was smaller for Brown than for TedTalks, which
suggests that the negative impact on performance
from reducing the volume of training data is lower
for BiLSTMCharE2E.

Based on reading of the paper and consultation
with the authors, we believe the "Distance" metric
in Sivakumar et al. (2021) to be equivalent to the
metric referred to in this paper as WER. Since the
lowest Distance reported in that paper at the testing
stage is 29.7, we conclude that all of our models
(WER 17.27-24.46%) outperform those in that pa-
per. Inspection of the sample outputs presented in
that paper compared with those from our models
supports this claim.

5.3 Other Languages

Results for BiLSTMCharE2E on Japanese and
Gujarati datasets demonstrate that this model can
handle large input vocabularies, does not depend on
extensive data cleaning, and is readily applicable
to scriptio continua languages.

Results for the OshieteQA dataset are presented
in Table 5. F-scores for punctuation marks are
comparable to those for the same model on the
TedTalks dataset, and scores of more than 0.5 for
both periods and question marks indicate that the

model is able to differentiate to a large extent be-
tween sentences and questions based on context.
The overall F-score is lower because spaces were
not among the features considered for Japanese.

Since JapaneseQA consists of texts written by
non-professional writers, there is a lot of irregular
punctuation in the dataset. Inspection of deviations
from the reference examples in the model results
reveals that in some cases the model actually ren-
ders better punctuations than the "gold standard".
A similar normalizing effect is noted in Tilk and
Alumäe, 2015. In the example in Figure 2, the
author has overused commas, and the model left
out some of the unnecessary ones. In order to have
this verified by expert and impartial judges, 5 na-
tive Japanese speakers were given the characters
stripped of punctuation and asked to insert commas
and periods as they deemed appropriate. The first
comma omitted by the model was included by only
3 out of the 5 participants, and the second was not
included by any of them. The irregularity of the
dataset may have led to the quantitative metrics
underestimating the model’s performance.

Initial results for Gujarati revealed a flaw in the
implementation of BiLSTMCharE2E. Our orig-
inal implementation split input strings at the byte
level for training and inference, but Gujarati dif-
fers from English and Japanese in that graphemes
are not equivalent to bytes because combinations
of vowel and consonant characters can form a sin-
gle grapheme. While the model was able to learn
to some extent from byte-level information, space
restoration performance was surprisingly low (F-
score 0.69), and incorrectly restored spaces some-
times caused characters intended to be displayed to-
gether with another character as a single grapheme
to be displayed separately, leading to ugly and un-
readable outputs. This issue was resolved by split-
ting strings into grapheme clusters rather than bytes.
Grapheme clusters are equivalent to bytes for most
languages, so the improved model implementation
still works as intended for those languages.

Results for GujaratiNews when BiLSTM-
CharE2E is trained on grapheme clusters are pre-
sented in Table 6. The F-score for spaces is close
to those for the English datasets, and F-scores for



ＢＤについては、3リージョンAで、3北米も同じだから、2再生も可ってことになる。
ＤＶＤビデオの場合だと、5プレイヤーによっては、0リージョンフリーのものもある。

For BD it’s region A, the same as North America, so playback is possible.
In the case of DVD video, some players are region-free.

Figure 2: An extract from the results of BiLSTMCharE2E for the first document in the test set for JapaneseQA.
The numbers in superscript indicate how many out of a sample of 5 native Japanese speakers included each comma.

WER: 13.85%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
Periods (’.’) 0.86 0.81 0.83
Commas (’,’) 0.57 0.45 0.50
All 0.96 0.94 0.95

Table 6:
Results from BiLSTMCharE2E on GujaratiNews

periods and commas are the highest of all of the
datasets. This may be due partly to greater regular-
ity of the punctuation usage in the dataset due to its
genre, and regularity in the characters used to end
clauses and sentences in Gujarati. The scores are
nonetheless impressive given the relatively small
size of the dataset.

6 Conclusion and Future Work

We assessed a variety of pipeline and end-to-end
models for restoration of spaces, punctuation and
capitalization on unformatted English, Japanese,
and Gujarati texts. Of all of the models considered
in this study, the pipeline model NB + BERTBiL-
STM outperforms the others for restoration of all
features under consideration. Both components of
this pipeline model take into account token-level in-
formation, which suggests that there are advantages
to using this information over purely character-
based approaches. In particular, a neural network
model with a pre-trained Transformer layer was
highly performant in restoration of capitalization
and punctuation, allowing the pipeline model to
render readable outputs that could be used in the
real world with very minimal post-editing. BERT-
BiLSTM could be improved further by including
a class to restore full capitalization to a token to
improve scores for capitalization restoration.

The end-to-end character-based model BiLSTM-
CharE2E outperformed pipeline models contain-
ing a CRF-based component for punctuation and
capitalization restoration, and only slightly under-
performed those models for space restoration. Fur-

thermore, BiLSTMCharE2E was shown to be eas-
ily applicable to different languages and sets of
features, and to be able to restore features to indi-
vidual characters inside tokens.

Due to the observed advantages of using pre-
trained word embeddings for token-level models,
we are very interested in investigating the effect of
using pre-trained byte level language models such
as ByT5 (Xue et al., 2021) on both character- and
token-level models. This is left for future work.
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