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Abstract

Expressing natural language descriptions of
structured facts or relations — data-to-text gen-
eration (D2T) — increases the accessibility of
structured knowledge repositories. Previous
work (Nan et al., 2020) shows that pre-trained
language models (PLMs) perform remarkably
well on this task after fine-tuning on a signifi-
cant amount of task-specific training data. On
the other hand, while auto-regressive PLMs
can generalize from a few task examples, their
efficacy at D2T is largely unexplored. Further-
more, we have an incomplete understanding
of the limits of PLMs on D2T. In this work,
we conduct an empirical study of both fine-
tuned and auto-regressive PLMs on the DART
multi-domain D2T dataset. We consider their
performance as a function of the amount of
task-specific data and how the data is incor-
porated into the models: zero and few-shot
learning, and fine-tuning of model weights. In
addition, we probe the limits of PLMs by mea-
suring performance on subsets of the evaluation
data: novel predicates and abstractive test ex-
amples. To improve the performance on these
subsets, we investigate two techniques: pro-
viding predicate descriptions in the context and
re-ranking generated candidates by information
reflected in the source. Finally, we conduct a
human evaluation of model errors and show
that D2T generation tasks would benefit from
datasets with more careful manual curation.

1 Introduction

Structured data repositories, or knowledge bases,
contain a wealth of information organized to facil-
itate automated access and analysis. Automated
data-to-text (D2T) generation systems can trans-
form and organize this knowledge into natural lan-
guage text snippets that enable broader access (Gatt
and Krahmer, 2018). These systems take as input
a set of relations, where each relation is a (subject,
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predicate, object) triple. Applications of this tech-
nology include story or dialogue generation (Moon
et al., 2019), open-domain question-answering (Ma
et al., 2021; Fan et al., 2019), and text summariza-
tion (Wiseman et al., 2017). Domains span journal-
ism (Leppénen et al., 2017), weather (Ramos-Soto
et al., 2014; Mei et al., 2015), finance, sports (Pla-
chouras et al., 2016; Chen and Mooney, 2008;
van der Lee et al., 2017), and summarizing patient
medical histories (Portet et al., 2009).

Historically, D2T systems included pipeline
approaches with customized models (Gardent
et al., 2017), but have now shifted to pretrained
Transformer-based language models (PLMs) (De-
vlin et al., 2018; Liu et al., 2019; Radford et al.,
2019). Recent examples include Mager et al.
(2020) and Kale and Rastogi (2020), who use mod-
els like GPT-2 (Radford et al., 2019) and T5 (Raffel
et al., 2019) to generate natural language descrip-
tions for relations. To support these types of sys-
tems, Nan et al. (2020) introduced DART, a large
open-domain data-to-text generation corpus. Mod-
els trained on DART, both larger and more diverse
than previous corpora, improve the performance
of BART (Lewis et al., 2019) and TS5 on the stan-
dard WebNLG challenge (Gardent et al., 2017).
This approach requires a PLM to be fine-tuned on a
task-specific in-domain dataset (Howard and Ruder,
2018; See et al., 2019; Keskar et al., 2019). The
promising results achieved by fine-tuning on DART
belie the reality — in spite of DART’s aspirations,
most domains and relations that one could express
fail to appear in DART.

A variety of methods have emerged within PLM
research to address domain or task adaptation. For
example, auto-regressive models, like GPT, have
demonstrated improved performance on a wide
range of tasks via few-shot learning from a handful
of examples (Chen et al., 2019). Other strategies,
such as prompt tuning (Lester et al., 2021), can
adapt PLMs to specific down-stream tasks by up-
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dating only a small subset of model parameters.

While great progress has been made in utiliz-
ing PLMs for D2T generation, the path forward is
unclear, as we have an incomplete understanding
as to which examples they fall short on and the
quantity of training resources they need to achieve
acceptable performance. More specifically, it is
not clear which classes of D2T examples are chal-
lenging for these models. In addition, we do not
fully understand what classes of errors PLMs are
prone to and how the adaptation mechanism (e.g.,
k-shot learning, fine-tuning) affects the prevalence
of these errors.

In this work, we conduct an evaluation of PLMs
for D2T generation, focusing on two classes of
challenging examples: examples with novel (un-
seen) relations (predicates) and examples where
the source and target sequences are lexically very
different (not amenable to purely extractive D2T
systems). We consider how GPT-2, adapted with
few-shot learning, prompt tuning, and the addi-
tion of predicate descriptions, performs on these
example classes as compared to a state-of-the-art
fine-tuned TS5. We show that while GPT-2 performs
poorly on DART in the 0-shot setting, its perfor-
mance can be drastically improved by employing
the above techniques. We make the following con-
tributions:

* We evaluate GPT2-XL and fine-tuned TS5 for
D2T generation. While the 0-shot GPT model
performs poorly, we evaluate several strate-
gies to improve performance, including few-
shot learning and prompt tuning. Both pro-
vide significant improvements on the DART
dataset.

* We compare model performance on two
classes of difficult examples: examples with
unseen predicates, and abstractive examples
(examples where source and target sequences
are lexically dissimilar). We investigate
whether including predicate descriptions in
the prompt can improve the ability of PLMs
on these classes.

* We conduct a human evaluation of PLMs to
quantify the prevalence of hallucination and
missing information in generations as a func-
tion of the model adaptation technique. We
find that a re-ranking strategy for few-shot
GPT2-XL, despite having little effect on au-
tomatic metrics like BLEU, reduces the inci-

dence of missing information, without requir-
ing additional training data.

Finally, we provide recommendations for future
model and dataset research in D2T generation.

2 Background and Related Work

In the task of data-to-text generation, we are pro-
vided a set of triples that include a predicate,
subject, and object. The system then produces
a text snippet expressing the predicate in natu-
ral language. Figure 2 shows examples of pred-
icates about sports. The system can be given a
set of triples with related predicates (e.g., CLUB,
LEAGUE, FORMER_TEAM) and must gener-
ate text that expresses the facts encoded by these
relations. The resulting text is typically evaluated
by comparison to a set of reference texts, which
represent various ways of expressing this triple set.

Variations in the formulation of this task depend
on the structure of the relations (e.g., tables, triples),
the domain of the task (single or open domain), and
the source of the data (manually created, automati-
cally derived).

Harkous et al. (2020) follow a generate-and-re-
rank paradigm to improve the semantic fidelity
of the generated text by fine-tuned GPT-2 model.
More recently, Ribeiro et al. (2020) propose a
new task-adaptive pretraining strategy to adapt
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2019) models for data-to-text generation. They
show that adding an intermediate task-adaptive pre-
training step between the task-independent pretrain-
ing and fine-tuning further improves the perfor-
mance of these models on data-to-text generation.

Despite the progress of these models, it is not
clear which types of D2T examples are most chal-
lenging for PLMs or what errors are prevalent in
generations. Futhermore, how does PLM adap-
tation (tuning/prompting) interact with the occur-
rence of these errors. On the other hand, D2T
datasets are not readily available in many domains.
Weakly supervised annotation methods (e.g., based
on identifying sentences in a corpus that are likely
to express a data record) require significant manual
effort and often result in annotations with low fi-
delity between data records and the corresponding
textual expression (Mintz et al., 2009). Training
NLG models on such data can result in generations
with missing information or hallucination (Dusek
etal., 2019; Dziri et al., 2022a,b). These issues ren-
der the path forward for D2T generation research
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Zero-shot Prompt
Translate Graph to English:

Graph: Alan Martin (footballer)
Hamilton Academical F.C.

English:

CLUB

Zero-shot Prompt + Relation Description
Translate Graph to English:
Definition: club is an organization of players and man-
agers associated with a particular football team.

Graph: Alan Martin (footballer)
Hamilton Academical F.C.

English:

CLUB

Few-shot Prompt

Translate Graph to English:

Graph: Paulo Sousa CLUB ACF
Fiorentina

English: Paulo Sousa plays for ACF Fiorentina.

Graph: Dave Challinor CLUB Col-
wyn Bay E.C.

English: Dave Challinor plays for Colwyn Bay F.C.
Graph: Alan Martin (footballer) CLUB

Hamilton Academical F.C.
English:

Figure 1: A customized 0-shot prompt for GPT

unclear.

3 Model Adaptation

As a supervised task, D2T generation systems rely
on previously observed examples to learn the cor-
rect generation or level of required "re-writing"
for a predicate. On the other hand, large auto-
regressive PLMs (such as GPT2-XL) are able to
perform D2T generation without any explicit fine-
tuning at all. However, their efficacy on D2T
and potential shortcomings are largely unexplored.
How well do PLMs perform on relations with a
novel predicate? Do PLMs overly rely on copy-
ing verbatim from the input or are they capable
of abstraction when required? What classes of er-
rors are prevalent in the generations and how do
they interact with the choice of adaptation mech-
anism? Our focus is on the analysis of PLMs for
D2T generation.

We study this problem using two types of PLMs:

auto-regressive models like GPT-2 and “supervised”

models like T5 (Raffel et al., 2019). While prior
work has demonstrated that TS achieves state-of-
the-art results on D2T, these “supervised” models'
expect task-specific training data, whereas gener-
ative PLMs excel at adapting to new tasks. Since
auto-regressive models have not been fully bench-
marked for D2T, we will evaluate them in multiple
settings and compare to TS. For both, we will ex-
plore the effect of varying training size and their
pathological behaviors.

"We note that new findings (Sanh et al., 2021) has demon-
strated TS5 can handle O-shot task adaptation with the right
prompts; this is an evolving research area.

Figure 2: A customized 3-shot prompt for GPT

While PLMs can be fine-tuned, their increasing
size and training requirements disfavors this ap-
proach. Instead, current work assumes a single
PLM capable of performing multiple downstream
tasks (Lester et al., 2021). We adopt GPT2-XL, a
decoder-only Transformer (Vaswani et al., 2017)
with 1.5B parameters pre-trained for language mod-
eling (Radford et al., 2019).> We utilize GPT2-
XL as a D2T generation model by varying the
amount of supervised information available. In-
stead of fine-tuning GPT2-XL, we investigate both
few-shot learning (Radford et al., 2019), which is
better suited to settings where little training data is
available, and prompt tuning, which enables us to
tractably update a subset of model weights in spite
of GPT2-XL’s large parameter count.

3.1 0-shot Setting

We start by evaluating GPT2-XL in the 0-shot set-
ting, an especially challenging setting due to a lack
of coverage in the training data of pairings between
structured records and unstructured text (Gong
et al., 2020). Ribeiro et al. (2020) handled this
by including an additional pretraining step. Our
focus is on an off-the-shelf GPT2-XL model. We
format the input data using the D2T generation in-
fix and prefix formatting of Ribeiro et al. (2020)
(example in Figure 1). We provide no additional
context or task-specific training.

*WebText (the training dataset) includes the content of
more than 8 million documents with outbound links from
Reddit, a social media platform. Wikipedia (the main data
source for DART) is excluded.
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3.2 Few-shot Setting

We next consider a few-shot setting by augment-
ing the format of the 0-shot input with reference
generations from the training corpus. We evaluate
GPT2-XL under the 3-shot learning setting (ex-
ample in Figure 2). For predicates “seen” in the
training set, we select three shots with the same
predicate uniformly at random from the training
set. For “unseen” predicates — predicates not cov-
ered in the training set — we randomly select any
three examples. Previous work has found that care-
ful shot selection based on input text similarity can
be beneficial (Liu et al., 2021a). However, it’s less
clear how this would apply to unseen predicates.
We leave this for future work.

3.3 Prompt Tuning

The expected task for a PLM is indicated by the
choice of prompt; ours (Figure 1) follows prior
work (Ribeiro et al., 2020; Nan et al., 2020). The
prompt includes a prefix (“Graph”) and an infix
token (“English™) that indicate the start of the in-
put and the start of the expected output. Auto-
regressive language models are sensitive to the
choice of prompt, and significant effort is needed
to craft effective prompts (Liu et al., 2021b).

Lester et al. (2021) proposed an alternate
method: prompt tuning. Instead of using discrete
prompt tokens, they use “soft-prompts” which are
pseudo-token embeddings that are learned during
fine-tuning, with all other model parameters held
fixed. We follow previous work (Lester et al.,
2021; Chowdhury et al., 2022) and use a generic se-
quence of tokens to denote the prompt prefix p;.; =
(p1,p2; ----ps) and infix q1.¢ = (q1, G2, ----q¢). The
PLM is provided the input sequence p;.; <H> x1
<R> x9 <T> x3 q1.¢, where x1, x2 and x3 are head,
predicate (relation), and tail strings from the exam-
ple.

The objective during prompt tuning is to maxi-
mize the probability of output sequence ¥;.,, given
input data record, prefix pi.s, and infix ¢1.;. Dur-
ing training, however, only the embedding of the
prompt tokens can be updated. Unlike fine-tuning
which updates all model parameters on the target
task, prompt tuning tunes a small number of pa-
rameters (less than 0.01% of all parameters) while
keeping most of the language model fixed. While
this requires the use of the full training set, as op-
posed to few-shot learning, it illuminates the abili-
ties of GPT2-XL given access to such data.

3.4 Domain Knowledge

We explore another way of improving model per-
formance for novel predicates and for examples
where significant re-writing is needed: providing
definitions for predicates. In many domains, we
may find a knowledge base containing many pred-
icates, and definitions for those relations, but no
examples of sentences expressing those relations.
In these cases, we want to enhance the context of
the PLM with predicate definitions. For example,
for the tuple <H> Genuine Parts <R> DISTRIBU-
TOR <T> automotive and industrial replacement
parts we may know that DISTRIBUTOR means
"someone who markets merchandise". This def-
inition can be helpful to a model that was never
exposed to this predicate at training time.

We source predicate definitions for our data from
WordNet, a lexical database in English (Miller,
1995), and WikiData.> We use WikiData since
Wikipedia was the source of many relations in the
DART data.* An example of the input prompt
enhanced with the predicate definition appears in
Figure 1. We also consider using predicate descrip-
tions in combination with prompt tuning.

3.5 Fine-tuned PLM

Our second model type is TSjuee (Raffel et al.,
2019), a Transformer encoder-decoder architecture
with 770M parameters for text generation. The
model is pretrained with a denoising objective on
a variety of NLP tasks and web-extracted C4 cor-
pus. Unlike GPT2-XL, the denoising objective
means an off-the-shelf model performs poorly on
unseen tasks, such as D2T generation (Raffel et al.,
2019; Lester et al., 2021). We follow Nan et al.
(2020) and fine-tune TS5y on the DART train-
ing set. While this model requires a large amount
of supervised examples, it attains state of the art
performance on this task.

4 Dataset

For our experiments we use DART (Nan et al.,
2020), the largest publicly available open-domain
data-to-text generation corpus. DART relies on
data from Wikipedia as well as two other com-
monly used data sets for this task: WebNLG (Gar-

*wikidata.org

‘DART includes predicates such as
MARGIN_OF_VICTORY and INTERMEDI-
ATE_(SOUTH)_WINNERS. Since descriptions for such
relations cannot be found verbatim in WordNet or WikiData,
no description is added to those cases.
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Train Dev Test

Size 30,526 2,768 5,097
#Unique relation types 4,221 419 494
#Ref per example min/avg/max ~ 1/2.0/48 1/2.5/33  1/2.4/35
#Triples per record min/avg/max 1/3.3/10  1/3.7/8  1/3.6/7

Table 1: Descriptive statistics of the DART version 1.1.1

dent et al., 2017) and E2E (Novikova et al., 2017).
Each instance includes a triple set (a set of one
or more predicates and their labels) and a natural
language reference that expresses the facts in the
triple set. We choose DART due to its size and
wide coverage of predicate types. Relevant DART
statistics appear in Table 1. We use the original
train, development, and test splits.> ©

Data Splits The DART test set includes 5,097
examples, of which 4,826 (94.4%) include at least
one relation type that appears in the training set.
We refer to this subset as the SEEN partition. The
remaining 271 instances (5.3%) are considered UN-
SEEN.” To support additional system analysis, we
create another partition of the test data: EASY and
HARD. HARD examples are identified by similarity
of the input triple to the reference text. In many
cases, the reference has high lexical overlap with
and similar meaning to the input, while in other
cases the generation is non-trivial (see Appendix A
for examples). To create the EASY and HARD par-
titions, we use BERTScore (Zhang et al., 2019) to
compute similarity of the input triple with respect
to the reference. Examples are ranked based on
BERTScore (F1) and the top 10% (510 examples)
comprise the EASY partition, while the bottom 10%
comprise the HARD partition. By using BertScore
to separate EASY and HARD examples, we are not
relying purely on lexical overlap to score the diffi-
culty of an example.

5 Experimental Setup

Model Training We use the pretrained mod-
els GPT2-XL and T35y released by Hugging

>Nan et al. (2020) use version v1.0.0 of DART, whereas
we use the publicly available version, v1.1.1.

®In the DART dataset, some data records are paired with
more than 30 references. Nan et al. (2020) do not report the
number of references used for their experiments. However in
their adaptation of Ribeiro et al. (2020)’s fine-tuning script
they only use three references. We follow their methodology
and only use up to three references per example.

"Note that Nan et al. (2020) report performance on the
“unseen” portion of WebNLG. “Unseen”, in this case, means
that the relations do not appear in the WebNLG training data;
there is no guarantee that they do not appear in the DART
training data. Our splits ensure that the UNSEEN partition only
contains predicates not seen during DART training.

Face (Wolf et al., 2019), along with their respective
tokenizers, for all experiments.

We use beam search with beam size of three
for decoding in all models, lightly post-processing
the generated text by truncating generations at the
newline character. We set maximum generated
tokens to 100 and repetition penalty to 1.01 for all
experiments.

We used a single V100 GPU with 32GB of mem-
ory for all prompt tuning experiments, tuning for a
single epoch on the DART train set with prefix and
infix length both set to 8 tokens. We use the Adam
optimizer (Kingma and Ba, 2014) with a maximum
learning rate of 0.1 and 100 warm-up steps for the
linear learning rate schedule. The training batch
size was fixed to 2, with 32 gradient accumulation
steps (effective batch size of 64 examples).

We use the scripts from Ribeiro et al. (2020) to
fine-tune TS on DART, using identical hyperparam-
eter settings.® We use the Adam optimizer with
an initial learning rate of 3e-5 and a linearly de-
creasing learning rate schedule. We fine-tune the
model on four GPUs for a maximum of 100 epochs
and stop training early if the performance does not
improve on the dev set for 15 epochs. Each train-
ing epoch takes approximately two hours for each
model.

Finally, we include a baseline system to bench-
mark the performance of our machine learning
models. In a “copy baseline” we simply copy
the input text and remove the prefix tokens (<H>,
<R>, <T>) as well as special characters (e.g., under-
scores) common in DART predicates. This baseline
performs well for examples with high lexical over-
lap between input triple set and reference.

Evaluation Metrics Following previous work,
we use automated metrics such as BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), translation edit rate (TER) (Snover et al.,
2006), and chrF++ (Popovié, 2015) for evaluating
our generation results. In addition, we also report
BERTScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020). These metrics go beyond surface
form similarities and use contextual embeddings to
measure semantic similarity between the generated
and reference text.’

$https://github.com/UKPLab/
plms—graph2text (Apache 2.0 license)

®We use the evaluation scripts provided in the official
WebNLG challenge: https://github.com/WebNLG/
GenerationEval (MIT license)
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ID Model BLEU 1 METEOR 1 TER |
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL
1 copy baseline 4.48 507 450 | 0.28 031 028 | 092 0.86 0.92
2 GPT2-XL (0-shot) 13.13 13.88 13.26 | 0.23 027 023 | 0.69 0.78 0.70
3 GPT2-XL(3-shot) 26.74 23.72 26.65 | 0.29 028 029 | 0.85 0.78 0.84
4  GPT2-XL-PT 33.55 29.86 3341 | 024 028 0.24 | 0.65 0.61 0.65
5  GPT2-XL-PT + Reranking | 31.03 31.67 31.09 | 0.28 0.30 0.28 | 0.63 0.58 0.63
6 TSiarge 48.41 4348 48.25 | 0.39 040 039 | 046 0.44 0.46
+Descriptions
7  GPT2-XL(0-shot) 11.45 805 114 | 0.20 0.19 020 | 0.70 1.00 0.72
8  GPT2-XL(3-shot) 26.32 21.30 26.14 | 0.28 027 028 | 0.83 0.89 0.83
9  GPT2-XL-PT 33.96 31.37 33.85| 024 028 0.24 | 0.66 0.59 0.66
10 T5jarge 48.56 43.82 484 | 0.39 039 039 | 046 045 0.46
Table 2: Model results on test set of the DART dataset. 1: Higher is better. |: Lower is better.
D Model BLEU 1 METEOR 1 chrF++ 1 TER | BERTScore(F1)T  BLEURT 1
EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD
11 copy baseline 1800 201 041 023 045 032] 079 099] 0.88 080 ] 012 -1.00
12 GPT2-XL (0-shot) 2220 692| 034 018 | 047 031| 083 064 | 090 0.88 | -0.09 -0.54
13 GPT2-XL (3-shot) 3497 188 | 034  006| 054 007| 08  038| 092 093 | -0.09 -0.11
14 GPT2-XL-PT 4281 3178 | 035  023| 057 039| 048 069 | 094 092 | 031 -017
15 GPT2-XL-PT + Reranking | 4335 2579 | 037 029 | 060 048 | 047 066 | 094 093 | 034 -0.04
16 TSiuge 7054 3834 | 051  035| 080 057 | 023 059 | 097 094 | 070 020
+Descriptions
17 GPT2-XL (0-shot) 1900 643 | 030 017] 042  031] 093  065]| 0.89 0.88 | -020 -0.54
18  GPT2-XL (3-shot) 3419 2054 | 038  026| 061 044 | 092 081 | 093 091 | 007 -026
19  GPT2-XL-PT 4252 331 034  023] 056 039 05 069 | 093 091 | 028 -021
20 TSjage 70.06 3849 | 051 034 | 080 057| 023 060 | 097 0.94 | 069 020

Table 3: Model results on EASY and HARD partitions of the DART test set. T: Higher is better. |: Lower is better.

6 Experiments

We evaluate PLMs with various input types and
training regimes to answer the following empirical
questions:

* How do the adaptation mechanism and level
of supervision at train time affect PLM perfor-
mance on the D2T task?

* What classes of D2T examples are particu-
larly challenging for each PLM? How well do
PLMs perform on out-of-sample predicates
and examples that are more abstractive (dis-
similar source and target sequences)?

* Can we improve performance on examples
with unseen predicates by including predicate
descriptions in the prompt, as mentioned in
§3.47

* Qualitatively, what kinds of errors do PLMs
make on the D2T task? Are some adaptation
techniques more susceptible to classes of er-
rors than others?

* Can we mitigate some of these errors by re-
ranking the decoding results?

6.1 Results

Table 2 presents model performance on the entire
DART dataset (ALL), as well as the SEEN and
UNSEEN partitions. See Appendix B for chrF++,
BERTScore, and BLEURT results. Table 3 shows
model performance on the EASY and HARD parti-
tions.

Level of Supervision We first turn to GPT2-XL,
which is evaluated on this task without any train-
ing data. Following previous work we find that
GPT2-XL makes an effective 0-shot model, out-
performing the copy baseline according to BLEU
and METEOR (row 2). Examining the output more
closely, we find that GPT2-XL mostly copies the
input; while it outperforms the copy baseline, its
strategy is largely the same. We include example
generations in Appendix C. 3-shot GPT2-XL (row
3) does much better than the 0-shot case. Note that
in this setting, no model parameters are updated. In
addition, the amount of annotated data used for cre-
ating 3-shot prompts is much less than what is used
for prompt tuning and fine-tuning. While few-shot
prompting leads to a boost in BLEU and METEOR,
TER increases by 0.14 point. We conjecture that
this is due to an increase in hallucinated content in
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this setting. We take a closer look at these patho-
logical behaviors in our human evaluation.

Both GPT2-XL models prompt tuned on the
entire DART dataset (rows 4 and 5) outperform
the 3-shot model by a wide margin. As reported
previously (Nan et al., 2020), we also notice that
fine-tuned TS5 (row 6) performs well on this task
surpassing either prompt-tuned GPT2-XL model.

Consistent with previous findings, we also no-
tice that the more training data that is used to adapt
the model (either by few-shot learning or training
model weights), the better PLMs perform. How-
ever, in a resource-constrained setting, few-shot
GPT2-XL achieves reasonable performance. Few-
shot adaptation might be a good choice for D2T
when the number of unique predicates in the test set
is small, and only very few examples can be man-
ually annotated. On the other hand, if more data
is available, fine-tuning TS5 leads to better results
for D2T. In fact, our experiments show that T5 can
surpass the 3-shot GPT2-XL after fine-tuning on
only 200 examples. See Appendix B for details.

Predicate Novelty As expected, the copy base-
line (row 1) performs poorly across all conditions,
but consistent for both the SEEN and UNSEEN par-
titions. 0-shot GPT2-XL also performs similarly
on both partitions, since it was not trained on any
task data. GPT2-XL with a 3-shot prompt (row 3)
outperforms 0-shot on both partitions, despite the
unseen prompts including unrelated predicates; the
model still benefits from multiple shots even if they
do not contain the same predicates (+9.84 BLEU
points).

Prompt tuning and re-ranking generated sam-
ples by overlap with the triple set entities both
improve the performance of GPT2-XL on novel
predicates. Overall, GPT2-XL performs consis-
tently across SEEN and UNSEEN partitions, while
TS5 performance is more sensitive to whether the
predicate was observed during training (e.g., differ-
ence of 4.93 points BLEU in row 6).

We next turn to evaluating the impact of aug-
menting prompts with predicate descriptions for
unseen predicates. This process is described in
§3.4. We evaluate this augmentation in the 0-shot
(row 7), 3-shot (row 8) and prompt tuning (row 9)
settings, as well as in TS fine-tuning (row 10). We
observe very small improvements on the UNSEEN
partition and only in cases where model parameters
are updated (rows 9 and 10). We suspect that as
descriptions are sourced from WordNet and Wiki-

Data, either many predicates could not be resolved
to a description in these tables, or the predicates
that could be resolved were largely self-explanatory.
We conjecture that in the O-shot setting, condition-
ing the generation on descriptions might distract the
model from the head and tail entity. On the other
hand, many of the unseen predicates in DART are
not words that can be easily resolved. However,
we suspect that if they were to be reliably resolved,
specialized domains such as finance or medicine
would benefit from adding predicate descriptions.

Generation Difficulty Table 3 shows the perfor-
mance of all models on the EASY and HARD par-
titions. All models have noticeably worse perfor-
mance on HARD examples, where more abstrac-
tion is needed. The best performing model, T5
(row 16), has a gap of 0.16 METEOR between the
EASY and HARD partition, while the prompt tuned
GPT2-XL (row 14) has the smallest difference in
performance between the partitions. It is clear that
these models perform well overall when copying
from the input suffices, but do poorly when sig-
nificant rewriting is required. In many domains,
we may prefer models with more diverse, creative
generations, a task at which these models do not
do well. On the other hand, DART is a mostly au-
tomatically derived dataset, with significant errors
in some examples, where the reference text may
contain information that is unsupported by the in-
put triple. These examples may pervade the HARD
partition.

Next, we investigate the impact of adding pred-
icate descriptions on D2T of the HARD partition.
In the few-shot setting, adding predicate descrip-
tions improves the BLEU score to 20.54 on the
HARD partition (row 18). Conditioning the model
on predicate descriptions significantly enhances its
re-writing ability. For the prompt tuned GPT2-XL,
BLEU score improves to 33.1 (row 19). However,
we do not see any gains for 0-shot GPT or TS (rows
17 and 20). Overall, GPT2-XL benefits from predi-
cate descriptions on examples where significant re-
writing is needed, even when additionally prompt
tuned. GPT2-XL with prompt tuning achieves com-
petitive results with benchmark T5 on the HARD
partition (33.1 vs 38.49 BLEU).

Human Evaluation To further examine the
pathological behaviors of the models, we randomly
sampled 50 examples from the DART test set for
human evaluation. For each example, the output
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Source Hallucination | Missing Info |  Fluency 1

Reference 1.53 1.19 4.51
GPT2-XL(3-shot) 3.26 3.61 3.17
GPT2-XL-PT 1.73 3.35 4.64
GPT2-XL-PT + Ranking 1.73 2.79 4.75
TS jarge 1.16 1.23 4.79
Agreement 0.64 0.77 0.50

Table 4: Results of the qualitative evaluation. |: Lower
is better. 7: Higher is better. Inter-annotator agreement
is measured by Kendall’s 7 rank correlation coefficient.

of TS and GPT2-XL in the 3-shot, prompt tuned,
and re-ranked settings were presented to two an-
notators.'” We also showed the reference text as
another candidate, with the generating model iden-
tity hidden. Annotators evaluated output quality
based on three criteria: (1) whether it contains hal-
lucinated content (hallucination) (2) whether the
text is missing information from the input records
(missing info), and (3) fluency. Annotators indi-
cated agreement with each of these Likert items
on an ordinal scale from 1 (strongly disagree) to 5
(strongly agree).

Table 4 presents the average annotator score ac-
cording to each of these Likert items. GPT2-XL
in the 3-shot setting often misses information. No-
tably, both prompt-tuned variations generate very
fluent text. Re-ranking improves the quality of
the generations by decreasing the amount of miss-
ing information and improving fluency. While the
best GPT2-XL model does very similar to T5y,ge
in terms of fluency, on average it hallucinates or
misses information more often.

Re-ranking GPT2-XL prompt tuned is both pa-
rameter efficient and generalizes very well to novel
predicates. It also does very well on examples that
require more re-writing. It approaches the perfor-
mance of fine-tuned T5y,ree according to avoiding
hallucinations and fluency. During the human eval-
uation, we observe that this model would often miss
the subject or object of the predicate in its gener-
ations (see our human evaluation for details). We
can mitigate this problem without additional model
training through a re-ranking strategy to ensure
that the selected generation contains all relevant
information.

We first create multiple candidate generations by
increasing beam size during decoding. Next, we
compute the percentage of head and tail entities
covered in the text. Finally, we pick the candidate
that contains the highest percentage of entity spans

"Two of the paper authors.

from the input triple.!! Rows 5 and 15 show the re-
sults of re-ranking a GPT2-XL prompt tuned model.
Re-ranking modestly improves performance on all
partitions, and across all metrics except BLEU.

7 Conclusion and Future Work

In this work, we systematically analyze the perfor-
mance of two PLMs — T5 and GPT2-XL — for D2T
generation by examining performance based on
the choice of adaptation mechanism: fine-tuning,
prompt tuning, and few-shot learning. We observe
that while fine-tuning on more data leads to better
performance, when no training data is available,
GPT2-XL (0-shot) outperforms T5. With a small
number of training examples, few-shot GPT2-XL
is a more appropriate solution for D2T.

We also conduct a thorough investigation of D2T
challenges for PLMs by evaluating them on two
divisions of the DART test set: novel predicates
and abstractive examples. We show that the per-
formance of fine-tuned TS5 drops significantly on
unseen predicates. On the other hand, the perfor-
mance of few-shot GPT2-XL on unseen predicates
can be enhanced even with shots containing un-
related predicates. We also notice that T5 and
GPT2-XL both do well at D2T by copying the
input. However, they do noticeably worse on exam-
ples where significant re-writing is needed. Adding
domain knowledge (predicate descriptions) to the
prompts can improve the performance of few-shot
GPT2-XL on this subset by a large amount. We
also conduct a human evaluation of the generations
and find that prompt tuned GPT2-XL generations
can be improved by re-ranking generations by over-
lap with the input entity spans.

Future work in D2T generation should consider
more challenging examples, and should consider
ways in which to generate more diverse variations
for expressing a given predicate. This should in-
clude more challenging and disparate domains,
such as finance or medicine. In these cases, one
may see benefits from including predicate descrip-
tions, which performed well on the most abstractive
examples.

Limitations

An important challenge for D2T is how to train
models that can generalize to new domains. While

"'We use a beam size of 20 during decoding. Prior to
measuring the entity coverage in the candidates, we normalize
the text by lower casing and removing special characters.
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this work looked at a related class of examples
(instances with unseen predicates), it would be
interesting to investigate how PLMs trained on
one domain can be efficiently adapted to perform
D2T on another unrelated domain (e.g., sports
to finance). This would require creating domain-
specific datasets for D2T.

Moreover, we observed that adding domain
knowledge (predicate descriptions) to prompts can
improve the performance of few-shot GPT2-XL
on abstractive examples. We suspect that this idea
may work better on specialized domains, with bet-
ter relation descriptions, or with a larger language
model; we could not test this without a specialized
D2T dataset with better task relation descriptions.

Finally, many applications prefer generating
novel or interesting descriptions for a data record
over “safe” and “generic” ones, which are predom-
inant in our training data (Li et al., 2015, 2016;
Baheti et al., 2018; Shao et al., 2021). Evaluating
PLMs for diversity of generated text is an orthogo-
nal and promising future direction.
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Figure 3: Impact of fine-tuning data size on performance
of T5. Numbers reflect average performance over 5
different data samples, with standard error of the mean
indicated by bars.

Appendices
A Data Splits

Examples from the EASY and HARD partitions are
shown in Figure 4. The copy baseline achieves
good results on the EASY examples. On the other
hand, the examples from the HARD partition are
more abtractive — generating descriptions for these
examples requires substantial rewriting. In several
cases, the reference text has a low fidelity with
respect to the input record. For example, when one
or more triples in the input are not described in the
reference text. This is a data quality issue and is a
common occurrence in DART.

B Results

Experimental results on SEEN and UNSEEN parti-
tions are presented in Table 5. As reported in § 6,
T5 performs well on this task (row 6). The 0-shot
GPT2-XL outperforms the copy baseline in terms
of all metrics except for chrF++ (row 2). GPT2-XL
with a 3-shot prompt does much better than the O-
shot case. Prompt tuning improves the results both
in terms of BertScore and BLEURT (row 4). We
see another gain in the performance by adding re-
ranking (row 5). These trends are consistent with
what we observed for BLEU, METEOR, and TER
in Table 2.

We do not see a consistent performance drop
going from SEEN to the UNSEEN partition when
looking at chrF++, BertScore, and BLEURT. This
is somewhat surprising, but also hard to interpret
given that chrF++ relies on character n-gram and
BertScore and BLEU rely in contextualized embed-
dings.

Training Curves In this experiment, we seek to
answer that how much data does T5 require to do
well on this task? Specifically, how many exam-
ples are required for T5 to exceed the performance
of the few-shot GPT2-XL? We fine-tune T5 on
increasingly larger amounts of training data. We
start off with an off-the-shelf TS5 model with no
additional training. We then vary the number of
training examples in {10, 20, 50, 100, 200, 500}.'2
We repeat each setting five times by resampling a
training set and fine-tuning T5, and report results
for each training set size averaged cross all test
partitions. Figure 3 shows the BLEU performance
(y-axis) of TS as a function of number of training
examples (x-axis). Performance of the copy base-
line, O-shot, 3-shot, and prompt tuned GPT2-XL
are indicated by horizontal lines. Without any task-
specific fine-tuning, TS5 does slightly worse than
the copy baseline, easily outperformed by 0-shot
GPT2-XL. In settings without training data, GPT2-
XL is the clear choice. TS continues to lag behind
GPT2-XL 3-shot until trained on at least 200 ex-
amples, and meets the performance of GPT2-XL
prompt tuned after training on 500.

C Sample Model Output

In this section, we share a few samples from the
DART test set as well as outputs generated by dif-
ferent models. We qualitatively compare different
models and highlight a few of their common errors.

Task Prompting As seen in Examples 1 and 2,
GPT2-XL in the O-shot setting often copies the
input. GPT2-XL with a 3-shot prompt generates a
much more fluent text than the O-shot case. This
can be seen in Examples 2, 4, and 5. Although
GPT2-XL with few-shot prompting generates more
fluent text, it often generates hallucinated content
(see Example 3).

We see that prompt tuning further boosts our
performance and generates a more coherent text in
comparison to few-shot GPT2-XL (see Example 1
and 3). Moreover, it hallucinates much less than
the few-shot setting (e.g. see Example 3). We also
saw this previously in Table 2, as the prompt tuned
GPT2-XL achieved lower TER score. In contrast
to TS training, in which all model parameters are
updated, prompt tuning adapts only a small fraction

12We use the same hyper-parameters as before except for
the number of training epochs and batch size. To avoid over-
fitting on small data, we only fine-tune for 1 epoch. We use
batch size of 2.
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ID Model chrF++ 7 BERTScore(F1) 1 BLEURT 1
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 0.33 034 033 0.83 0.85 0.83 | -0.59 -0.29 -0.58
2 GPT2-XL (0-shot) 0.34 0.34 034 ] 0.88 0.87 0.88 | -0.46 -0.30 -0.46
3 GPT2-XL (3-shot) 0.48 044 048 | 091 091 091 | -0.19 -0.17  -0.19
4  GPT2-XL-PT 0.40 044 040 | 092 092 092 | -0.11 0.06 -0.10
5  GPT2-XL-PT + Reranking | 0.46 047 046 | 092 092 0.92 | -0.01 0.12  0.00
6 TSiarge 0.64 0.64 0.64 | 095 095 095 | 038 044 0.39
+ Description
7  GPT2-XL (0-shot) 0.31 023 030 | 0.88 0.86 0.88 | -0.46 -0.54 -0.46
8  GPT2-XL (3-shot) 0.47 042 046 | 091 090 091 | -0.19 -0.16 -0.19
9  GPT2-XL-PT 0.39 045 039 | 091 092 091 | -0.14 0.09 -0.13
10 TSparge 0.64 0.63 0.64 | 0.95 095 095 | 0.38 043 0.38

Table 5: Performance on the DART test set, partitioned by whether predicates are SEEN, UNSEEN, and overall. 1:
Higher is better.

of the model parameters. However, in many cases
the generated text is as good as the benchmark T5
(see Example 2). Despite generating very fluent
text, prompt tuned GPT2-XL often misses infor-
mation from one or more relations (Examples 1, 3,
and 4).

Re-ranking Re-ranking based on entity cover-
age solves the missing information issue in several
cases. For example, in Example 3, the entity Alvis
Speed 25 which is missed by the prompt tuned
GPT2-XL, is covered after re-ranking. The ben-
efit of re-ranking also can be seen in Example 4.
On the other hand, in Example 2, ranking does
not solve the missing information issue. This is
because argument "yes" of "family-friendly" prob-
ably would not naturally appear in generated text
(e.g., "Yes, this is a family-friendly restaurant").
For such cases, the re-ranking heuristic will not
provide useful feedback.

Predicate Descriptions As mentioned in Sec-
tion 6.1, in several cases, the description extracted
from WordNet and WikiData are trivial. In Exam-
ple 2, the definition of relations food, area, and
near add no information beyond the word itself,
and therefore not helpful for the model. On the
other hand, it seems like defining relation MAN-
UFACTURER in Example 3 has improved genera-
tions of GPT2-XL in both the few-shot and prompt-
tuned settings. In some cases, while the predicate
description can be potentially useful, the model ig-
nores the augmented description. For example, in 4,
the definition of relation GENRE is not covered in
the generated text of any of models.
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EAsy Examples

<H> Adolfo Sudrez Madrid-Barajas Airport <R> LOCATION <T> Madrid, Paracuellos de Jarama, San Sebastidn de
los Reyes and Alcobendas

Reference: Adolfo Sudrez Madrid—Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastidn de los
Reyes and Alcobendas.’

<H> Alaa Abdul-Zahra <R> CLUB <T> Sanat Mes Kerman F.C.
Reference: Alaa Abdul-Zahra’s club is Sanat Mes Kerman F.C.

<H> Alderney Airport <R> RUNWAY_NAME <T> "14/32"

Reference: Alderney Airport runway name is 14/32

<H> Asuncion <R> IS_PART_OF <T> Gran Asuncion

Reference: Asuncion is a part of Gran Asuncion.

<H> Airey Neave <R> AWARD <T> Military Cross

Reference: Airey Neave was awarded the Military Cross.

HARD Examples

<H> 2004 <R> MOVEMENTS <T> Promotion Playoffs - Promoted <H> 2004 <R> POSITION <T> 1st
Reference: Sports stats for Ljungskile SK

<H> Khokhan Sen <R> MATCHES <T> 14 <H> Khokhan Sen <R> INNINGS <T> 21 <H> Khokhan Sen <R>
RANK <T> 9 <H> Khokhan Sen <R> CAUGHT <T> 20 <H> Khokhan Sen <R> STUMPED <T> 11 <H> Khokhan Sen
<R> DISMISSALS <T> 31

Reference: The innings when caught was 20 was 21

<H> thierry morin <R> POSITION <T> defender <H> [TABLECONTEXT] <R> NAME <T> thierry morin <H>
[TABLECONTEXT] <R> [TITLE] <T> Players

Reference: Thierry Morin was a defender for Paris Saint-Germain.

<H> ALV X-1 <R> COUNTRY_ORIGIN <T> United States <H> United States <R> ETHNIC_GROUP <T>
African Americans <H> United States <R> DEMONYM <T> Americans

Reference: Originating in the United States and by Americans, some of African decent is the ALVX-1.",’ALVX-1 comes
from the US where Americans live and African Americans are an ethnic group

<H> past tense <R> SEASON_# <T> 4 <H> past tense <R> ORIGINAL_AIR_DATE <T> october29,2008 <H> past
tense <R> NO._IN_SERIES <T> 13 <H> past tense <R> U.S._VIEWERS_(MILLIONS) <T> 7.93 <H> past tense <R>
DIRECTED_BY <T> michael pressman <H> past tense <R> WRITTEN_BY <T> craig turk

Reference: Past Tense was the 13th episode in the series.

Figure 4: Examples from the EASY and HARD partition
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Example #1

<H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker) <R> STATUS
<T> ""In service"" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov (icebreaker)
<R> BUILDER <T> Arctech Helsinki Shipyard

Reference: The icebreaker Aleksey Chirikov was built at the Arctech Helsinki Shipyard in Helsinki. The Aleksey Chirikov
(icebreaker) is in service and its ship beam is 21.2

Description: BUILDER means a person who constructs something

GPT2-XL (0-shot): <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker)
<R> STATUS <T> "In service" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov
(icebreaker) <R> BUILDER <T>

GPT2-XL (3-shot): Aleksey Chirikov (icebreaker) is of type 21.2.

GPT2-XL (3-shot) + Description: Aleksey Chirikov (icebreaker) was a Russian icebreaker.
GPT2-XL-PT: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.

GPT2-XL-PT + Description: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Reranking: Aleksey Chirikov (icebreaker) is in service at Arctech Helsinki Shipyard.

TSiarge: The ship Aleksey Chirikov was built by Arctech, Helsinki Shipyard and has a ship beam of 21.2 metres. It is currently

in service.

Example #2

<H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R> area <T> city centre
<H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia

Reference: The Mill pub is near Café Sicilia in the city centre that isn’t family friendly, is average and has Fast food.

Description: eatType means type of food served by a restaurant or restaurant chain. food means any substance that can be
metabolized by an animal to give energy and build tissue. area means area occupied by an object. near means move towards.

GPT2-XL (0-shot): Graph: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R>
area <T> city centre <H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Caf¢ Sicilia

English:

GPT2-XL (3-shot): The Mill is located in the city centre near Café Sicilia. It serves fast food in the price range of £20-25
with a moderate customer rating

GPT2-XL (3-shot) + Description: The fast food restaurant, The Mill, has an average rating of 3 out of 5 perhaps as it is not
friendly to kids. The Mill is located in the city centre area near Café Sicilia.

GPT2-XL-PT: The Mill is a fast food pub in the city centre near Café Sicilia.
GPT2-XL-PT + Description: The Mill is a family friendly pub near Cafe Sicilia.
GPT2-XL-PT + Reranking: The Mill is a fast food pub in the city centre near Café Sicilia.
TSiarge: The Mill is a fast food pub in the city centre near Café Sicilia.

Example #3
<H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis Car and
Engineering Company <R> LOCATION_CITY <T> Coventry
Reference: Alvis Speed 25 was made by the Alvis Car and Engineering Company of Coventry.
Description: MANUFACTURER means manufacturer or producer of this product.

GPT2-XL (0-shot): <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis
Car and Engineering Company <R> LOCATION_CITY <T> Coventry

GPT2-XL (3-shot): Alvis Speed 25 won the race in Coventry on April 25, 1996.

GPT2-XL (3-shot) + Description: Alvis Speed 25 is a car manufactured by Alvis Car and Engineering Company in Coventry,
England

GPT2-XL-PT: Alvis Car and Engineering Company is located in Coventry.
GPT2-XL-PT + Description: Alvis Speed 25 is manufactured in Coventry.
GPT2-XL-PT + Reranking: Alvis Speed 25 is manufactured by Alvis Car and Engineering Company in Coventry.

T5)arge: Alvis Car and Engineering Company is located in Coventry and manufactures the Alvis Speed 25.
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Example #4

<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic <H> Anders
Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders Osborne <R>
GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Billy Iuso
<H> Anders Osborne <R> ACTIVE_YEARS_START_YEAR <T> 1989

Reference: Anders Osborne musical career began in 1989. His career began in the blue’s genre. He has been associated
with the band, Galactic as well as Tab Benoit. Osborne also has ties to fellow musician Billy Iuso.

Description: GENRE means creative work’s genre or an artist’s field of work

GPT2-XL (0-shot): <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic
<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders
Osborne <R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED M

GPT2-XL (3-shot): Anders Osborne is an English singer, songwriter and guitarist.

GPT2-XL (3-shot) + Description: Anders Osborne is an active musician and composer.

GPT2-XL-PT: Tab Benoit and Anders Osborne are associated with Galactic.

GPT2-XL-PT + Description: Tab Benoit and Anders Osborne are associated with Galactic.

GPT2-XL-PT + Reranking: Tab Benoit is associated with Galactic and Anders Osborne is associated with Billy Iuso.

TSiarge: Anders Osborne is associated with the band Galactic, Billy Iuso, Tab Benoit and the genre of Blues. His active years
start in 1989.

Example #5
<H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB <T> A.C.
Milan
Reference: PSV Eindhoven had the fastest lab on the Nurburgring, and A.C. Milan was the winning club at that race.
Description: FASTEST_LAP means person who does the fastest lap during a motorsport race.

GPT2-XL (0-shot): <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB
<T> A.C. Milan

GPT2-XL (3-shot): A.C. Milan had the fastest lap in the race won by PSV Eindhoven.

GPT2-XL (3-shot) + Description: A.C. Milan set the fastest lap at the Nurburgring when the winning team was PSV
Eindhoven.

GPT2-XL-PT: Nurburgring is the fastest lap at A.C. Milan.

GPT2-XL-PT + Description: PSV Eindhoven is the winning club at the Nurburgring.
GPT2-XL-PT + Reranking: Nurburgring is the fastest lap at A.C. Milan

TS)arge: A.C. Milan won the race where PSV Eindhoven had the fastest lap.
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