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Abstract

Improving the coherence of long text genera-
tion is an important but challenging task. Ex-
isting models still struggle to generate a logi-
cal and coherent sentence sequence. It is dif-
ficult for a model to plan long text generation
and avoid generating incoherent texts from a
high-level semantic perspective. We conjec-
ture that this is due to two factors: (1) current
training methods mainly rely on maximum like-
lihood estimation computed from token-level
probability prediction; (2) the role of incoher-
ent texts has been largely under-explored, thus
the noised generated texts with errors are out-
of-distribution for the model. To address these
issues, in this paper, we propose a Contrastive
Soft Prompt (CSP) model for improving the
coherence of long text generation. It learns text
representations in the hidden space for better
planning long text generation. To this end, it
jointly learns to generate a text representation
close to representations of coherent texts and
away from incoherent ones, and then generates
long text taking this representation as the soft
prompt. We conduct experiments on two public
story generation datasets, and experimental re-
sults show that our method can generate more
coherent stories than the state-of-the-art model.

1 Introduction

Generating coherent long text plays a key role
in many applications, e.g. news report gen-
eration (Leppänen et al., 2017), story gen-
eration (Guan et al., 2021), text adventure
games (Hausknecht et al., 2020). Taking story
generation as an example, it requires the model
to generate a reasonable story for a given prompt
or a given leading context.

In recent years, pre-trained language models
(Lewis et al., 2020; Radford et al., 2019) have
demonstrated their scalability to large-capability
and datasets, becoming a de-facto standard for text
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Input (Leading Sentence):
FEMALE baked a cake for her boyfriend’s birthday.
Output 1:
She put the cake in the oven. When the cake was done, she
frosted it. Then she frosted it. She forgot to put sugar in
it.
Output 2:
She spent the morning preparing the cake and putting it in
the oven. She left the oven on too long. When she came
back the cake was ruined. FEMALE was very sad she ’d
wasted her birthday.

Table 1: Some stories written by text generation models
(The name is replaced with "FEMALE".). The gener-
ated stories suffer from incoherence issues (in bold), i.e.
repeating "frosted it", "for her boyfriend ’s birthday"
but "wasted her birthday".

generation tasks. These state-of-the-art models al-
ready closely resemble humans in the generation
of short sentences (Pu et al., 2022). However, as
table 1 shows, even with a pre-trained language
model, it is still difficult to generate a coherent
long text, which indicates that generating a coher-
ent and logical long text is a challenging task. It is
observed that pre-trained language models are ca-
pable of generating related keywords and achieving
good intra-sentence coherence, but still struggle to
generate coherent long texts, suffering from gen-
erating repetitive plots (Xi et al., 2021), unrelated
events, or conflicting logic (Holtzman et al., 2019),
e.g. "for her boyfriend’s birthday" but "wasted
her birthday" in table 1. We conjecture that above
mentioned issues are mainly caused by two rea-
sons. Firstly, current training methods mainly rely
on maximum likelihood estimation which is com-
puted from token-level probability prediction. It
hinders the model from understanding and plan-
ning the generation in the entire text perspective.
Secondly, the role of negative samples has been
largely under-explored, especially hard negative
samples. Thus, the noised generated texts with
errors are out-of-distribution for the model.

To alleviate the above issues, in this paper, we
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propose CSP, a Contrastive Soft Prompt based text
generation model. It learns long text representa-
tions in a hidden space, and the model can plan
long text generation and distinguish coherent long
text and incoherent texts in this hidden space. To
this end, we design losses to jointly learn long text
representations as well as the ability to plan text
generation and distinguish coherent and incoher-
ent texts from the hidden space, specifically, (1)
contrastive loss for distinguishing positive samples
which are human written texts and negative samples
which are generated by applying perturbations to
positive ones; (2) contrastive loss for distinguishing
different texts; (3) the generation loss for surface
realization in text taking representations in hid-
den space as the soft prompt (Lester et al., 2021).
These losses are designed to help the model to learn
text representations useful for planning coherent
long-text generation. In addition, by taking the gen-
erated representations as the soft prompt for text
generation, we adopt a language model to learn
text representations, and the generated representa-
tions serve as extra information for the language
model to condition on (Lester et al., 2021). Our
contributions are twofold. First, we propose a
novel generation model named CSP for improving
the coherence of long text generation. CSP learns
high-level representations for long text in hidden
space, and jointly learns to plan text generation and
distinguish between coherent and incoherent texts
utilizing the high-level representations. Secondly,
we conduct extensive experiments on two-story
generation tasks. Experimental results demonstrate
that our method can generate more coherent stories
than the state-of-the-art model.

2 Method

Our task aims at generating a multi-sentence text
Y = (y1, y2, ..., ym), given a text input X =
(x1, x2, ..., xn). Figure 1 shows the structure of
our proposed model. Our proposed model consists
of three parts, prompt generator, prompt posterior
generator, and text generator. The prompt generator
aims at generating a soft prompt that represents the
hidden representation of the text to be generated.
The prompt posterior generator is used to help train
the prompt generator, which provides the hidden
representations of positive and negative samples so
that the prompt generator is trained to generate soft
prompts close to positive samples and away from
negative ones. The text generator generates the text

using the soft prompt and the input.

2.1 Prompt Generator
Soft prompt serves as extra information for the lan-
guage model to condition on (Lester et al., 2021).
The prompt generator aims at generating a soft
prompt which is used by the text generator for gen-
eration. To improve the coherence of long text gen-
eration, the model learns to generate soft prompts
close to the representations of coherent texts and
away from incoherent texts in hidden space, which
is introduced in the following subsections.

The prompt generator takes the concatena-
tion of X and a special token sequence P =
([P1], [P2], ..., [Pk]) as the input, and outputs a soft
prompt S = s1, s2, ..., sk, where P represents
the placeholders for generating the soft prompt,
S ∈ Rk×d is the soft prompt, k is the length of soft
prompt, d is the hidden dimension. The prompt
generator can be any sequence-to-sequence model,
e.g. a Transformer model (Vaswani et al., 2017).
In our experiment, we use GPT-2 (Radford et al.,
2019) as the backbone for the prompt generator.
Specifically, let X ′ be the concatenation of X and
P , and we denote the GPT-2 as a function f . We
take the hidden states of GPT-2 as the output, which
is a sequence with length n + k, we use the sub-
sequence of the output sequence corresponding to
P as the soft prompt, i.e.

X ′ = X ∥ P
Y ′ = f(X ′) (1)

S = Y ′
n+1:n+k

where ∥ is the concatenation operation, and
Y ′
n+1:n+k represents the sub-sequence from n+ 1

to n+ k elements, i.e. the hidden states of f corre-
sponding to P .

2.2 Posterior Prompt Generator
In analogy to the prompt generator, the posterior
prompt generator is also a seq2seq model. Its input
is the concatenation of three parts, (1) the input X;
(2) the output Y or a negative sample Y−, and we
will introduce the construction of negative exam-
ples in the following subsection; (3) a special token
sequence Q = ([Q1], [Q2], ..., [Qk]). The posterior
prompt is computed from

X ′′
+ = X ∥ Y ∥Q

Y ′′
+ = f(X ′′

+) (2)

S+ = Y ′′
n+m+1:n+m+k
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Figure 1: The structure of our proposed model. Prompt generator aims at generating a soft prompt closed to coherent
texts and away from incoherent texts in the hidden space. Posterior prompt generator encodes positive and negative
samples into representations in the hidden space, and helps to train prompt generator. Memory bank stores the text
representations produced in previous training steps, and also help to train prompt generator. Note that the posterior
prompt generator and memory bank are only used during training and can be dropped during inference. The prompt
generator and posterior prompt generator share most of parameters except for embeddings of [P1], [P2], ...,[Pk], and
[Q1], [Q2], ...,[Qk]. Text generator aims at generating text given the soft prompt and the input in auto-regressive
manner. The special token <eos> represents the end of the text.

where Y ′′
n+m+1:n+m+k is the hidden states of f

corresponding to Q, S+ represents the posterior
soft prompt for a sample in the training dataset.
The posterior soft prompt for a negative sample S−
can be generated similarly. Both S+ and S− will
be used to train the prompt generator, which will
be introduced in the subsection of contrastive loss.

2.3 Negative Sample Generation

We construct negative samples to cover unfavored
incoherent texts. To enable the model to learn to
distinguish both intra-sentence and inter-sentence
errors, we construct negative samples from both
the N-gram level and sentence level. To construct
negative samples, we randomly apply the following
perturbations to texts:

Repetition. In recent studies, it is observed that
many NLG models produce repeated text contents,
particularly with maximum-likelihood-based de-
coding strategies (Holtzman et al., 2019). Thus we
generate negative samples by randomly repeating
N-grams or sentences, aiming at telling the model
to not repeat content when generating texts.

Deletion. We randomly delete sentences or N-
grams from the original text, to let the model dis-
tinguish a coherent text and an incoherent text with
missing content.

Insertion. We randomly insert sentences or N-
grams into the random positions of the original text.
In this way, the model learns to distinguish negative
samples with extra text contents.

Substitution. We randomly substitute sentences
or N-grams with a random sentence or N-gram in
the training corpus.

Reorder. We randomly shuffle the order of the
sentences in a text. This will produce stories with
wrong temporal order or wrong causality.

2.4 Contrastive Loss

Given the soft prompt S and positive posterior soft
prompt S+ and negative posterior soft prompt S−,
we design the contrastive loss to let S be closed to
the positive posterior soft prompt and away from
negative ones, to avoid generating incoherent texts.
We also adopt extra negative samples from a mem-
ory bank inspired by previous contrastive learning
methods (Wu et al., 2018; He et al., 2020). We
sample extra negative samples S′

− from a memory
bank B. After each training step, S and S+ are
stored in the memory bank B. We map S, S+, S−,
and S′

− to a hidden space, e.g. for S, we have

v = Wprojpool(S) (3)
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Dataset #Input tokens #Output tokens #Train sample #Val sample #Test sample
ROCStories 14.5 56.3 88344 4908 4909
WritingPrompts 30.0 185.7 26758 2000 2000

Table 2: Statistics of the datasets.

where pool 2 represents a function which average
the matrix with dimension k × d into a vector with
dimension d. We use a Wproj to map the origin
pool(S) into a hidden space. Similarly, we map
S+, S−, S′

− to v+, v−, v′− respectively.
In this paper, infoNCE (Oord et al., 2018) is

considered as the contrastive loss function:

Lc = − log
exp(

v · v+
τ

)

∑
v−

exp(
v · v−
τ

) +
∑
v′−

exp(
v · v′−
τ

)

(4)

where τ is a temperature hyperparameter.

2.5 Text Generator
Given a soft prompt S and the input X , the text
generator aims at generating a text Y . We also
use GPT-2 as the backbone of the text generator.
Following GPT-2, we learn the text generation in
an auto-regressive manner. It is learned from cross-
entropy loss, i.e.

Z = f(S ∥X ∥ Y )

H = Zk+n+1:k+n+m

P (yt|y < t,X) = softmax(HtW + b) (5)

Lce = −
m∑

t=1

logP (yt|y < t,X)

where Z is the hidden states of the text generator,
and H is the hidden states corresponding to the
output, W and b are trainable parameters.

We also introduce a text reconstruction loss sim-
ilar to autoencoder, i.e.

Zae = f(S+ ∥X ∥ Y )

Hae = Zae
k+n+1:k+n+m

P ae(yt|y < t,X) = softmax(Hae
t W + b) (6)

Lae = −
m∑

t=1

logP ae(yt|y < t,X)

2We also tried to flatten operation in our experiments, it
has similar performance with pool operation while flatten rep-
resents a function which reshapes the matrix with dimension
k × d into a vector.

By optimizing Lae, the model tries to learn a hid-
den representation for a whole text, and the text
content can be reconstructed from this hidden rep-
resentation.

The loss function for our model combines Lc,
Lce, and Lae, i.e.

L = λcLc + λceLce + λaeLae (7)

where λc, λce and λae are hyper-parameters.

3 Experiments

3.1 Dataset

We evaluate our model on two publicly avail-
able story generation datasets, named ROCSto-
ries (Mostafazadeh et al., 2016) and Writing-
Prompts (Fan et al., 2018). We use the same prepro-
cessing method as the previous work (Guan et al.,
2020, 2021), i.e. all the names are replaced with
special placeholders for better generalization. For
ROCStories, we use the first sentence as the input
and expect the model to generate the remaining
content of the story. For WritingPrompts, the input
is the writing prompt, and the model is expected to
generate a story according to the writing prompt.
We use the same filter strategy and validation and
test split as the previous work (Guan et al., 2021).
Table 2 shows the statistics of these two datasets.

3.2 Baselines

We compare our method with several baselines, in-
cluding fine-tuning pre-trained language models,
the previous state-of-the-art method, and variants
of our method.
BART (Lewis et al., 2020): It is fine-tuned on the
ROCStories and WritingPrompts datasets based on
the publicly available BART model checkpoint.
GPT-2 (Radford et al., 2019): It is fine-tuned on
the ROCStories and WritingPrompts datasets based
on the pre-trained GPT-2 model.
HINT (Guan et al., 2021): It is the previous state-
of-the-art method on ROCStories and Writing-
Prompts datasets, which continue the pretraining
of BART on book corpus with two additional ob-
jectives, i.e. inter-sentence semantic similarity and
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Figure 2: The structures of some baseline methods, including VAE-like, GOG, and GOG (w/ CL).

distinguishing between normal and randomly shuf-
fled sentence orders.
VAE-like: Similar to VAE (Kingma and Welling,
2013), it uses Gaussian distribution as the prior
probability distribution for the soft prompt S. Com-
pared to our method, it replaces the contrastive loss
with the ELBO loss function. The left of figure 2
shows the structure of VAE-like.
GoG: It stacks two GPT-2 models, and is fine-tuned
on ROCStories and WritingPrompts datasets. The
middle of figure 2 shows the structure of GoG.
GoG (w/ CL): It also stacks two GPT-2 models,
and is fine-tuned on the downstream datasets with
language modeling objective and contrastive loss.
Compared to our method, the hidden representa-
tions used to compute contrastive loss are the linear
mapping of the average of hidden representations.
The right of figure 2 shows the structure of GoG
(w/ CL).
CSP (w/o CL): It is a variant of our model, which
removes the contrastive loss Lc.
CSP (w/o AE): It is a variant of our model, which
removes the reconstruction loss Lae.
CSP (w/ PT): It has the same structure and loss
function as our method, but based on model pa-
rameters which are continue pre-trained on book
corpus. We use the same loss as our model during
continue pretraining.

3.3 Automatic Evaluation

Evaluation Metrics We adopt several commonly
used metrics to evaluate the performance, includ-
ing (1) UNION: It is a learnable metric proposed
by Guan and Huang (2020), which adopts a classi-
fier trained from human-written texts and negative
samples constructed by applying perturbations to
human-written texts. The UNION score is the av-

erage classifier score of texts and measures the
coherence and context-relatedness of the generated
texts. (2) Orderness: It is also a learnable metric.
It relies on a classifier trained to distinguish human-
written texts and randomly shuffled sentences. This
metric reflects the degree to which texts are in rea-
sonable sentence order. Both UNION and Order-
ness are trained on the training sets of ROCSto-
ries or WritingPrompts. (3) Perplexity (PPL): It
measures how well a probability model predicts
the ground-truth samples. (4) BLEU (B-n): It re-
flects the n-gram overlap ratio between generated
texts and ground-truth texts (Papineni et al., 2002).
(5) Lexical Repetition (LR-n): It is the percentage
of generated texts which repeat 4-gram at least n
times (Shao et al., 2019a). (6) Distinct-4 (D-4): It
is the ratio of distinct 4-grams in all 4 grams in the
texts.

Results on ROCStories. As shown in the ta-
ble 3, our proposed method outperforms all the
baselines on 6 out of 7 metrics on the ROCSto-
ries dataset. As for the structure and coherence
of generated texts, our model achieves the best
UNION and Orderness metrics. Our model has
higher PPL compared to GPT-2, and it is because
the contrastive loss Lc provides a regularization,
and the model may allocate more probability to
diverse texts. This conjecture can be supported by
diversity-related metrics. Our model will generate
more diverse texts and thus has higher distinct and
lower lexical repetition. Although our model im-
proves diversity, it still has better BLEU than base-
lines, indicating that our model is inclined to gener-
ate diverse but reasonable n-grams. With continued
pretraining on book corpus, our model improves
UNION and distinct metrics further and decreases
repetition metrics. As both HINT and CSP (w/PT)
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Models UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
BART 0.684 0.906 10.72 0.293 0.131 0.312 0.651
GPT-2 0.767 0.935 8.72 0.315 0.143 0.239 0.695
HINT 0.772 0.920 9.20 0.331 0.154 0.263 0.678
VAE-like 0.805 0.938 9.16 0.316 0.143 0.231 0.693
GoG 0.828 0.946 9.32 0.318 0.146 0.197 0.710
GoG (w/ CL) 0.838 0.945 9.30 0.322 0.148 0.200 0.706
CSP 0.853 0.952 12.18 0.332 0.158 0.186 0.747
CSP (w/o CL) 0.837 0.945 9.31 0.315 0.144 0.202 0.714
CSP (w/o AE) 0.848 0.949 12.64 0.327 0.149 0.172 0.757
CSP (w/ PT) 0.863 0.950 11.72 0.333 0.151 0.160 0.772

Table 3: Automatic evaluation results on the ROCStories dataset.

Models UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-5↓ D-4↑
BART 0.302 0.909 32.02 0.219 0.079 0.381 0.409
GPT-2 0.325 0.769 27.11 0.209 0.075 0.558 0.418
HINT 0.353 0.909 30.71 0.221 0.083 0.323 0.445
VAE-like 0.387 0.935 27.98 0.242 0.090 0.384 0.463
GoG 0.394 0.926 28.71 0.245 0.091 0.326 0.483
GoG (w/ CL) 0.393 0.924 28.99 0.244 0.092 0.361 0.460
CSP 0.520 0.936 32.01 0.255 0.097 0.230 0.555
CSP (w/o CL) 0.382 0.929 27.76 0.245 0.091 0.385 0.454
CSP (w/o AE) 0.449 0.932 33.26 0.246 0.092 0.274 0.537
CSP (w/ PT) 0.711 0.940 32.08 0.278 0.102 0.154 0.682

Table 4: Automatic evaluation results on the WritingPrompts dataset.

use book corpus, the comparison of these two mod-
els further shows the effectiveness of our model.

Results on WritingPrompts. Table 4 shows
the results on the WritingPrompts dataset. Texts
in the WitingPrompts dataset are longer than texts
in ROCStories, and most baseline methods tend
to repeat texts, with low distinct and high repeti-
tion metrics. However, our model can alleviate this
issue evidenced by lexical repetition and distinct
metrics. Our model can increase the distinct metric
up to nearly 10 percents. In addition, the improve-
ment of UNION is much more significant than on
ROCStories, with about 50% relative improvement
compared to HINT, although HINT also adopts spe-
cially designed loss for improving coherence. Our
model also achieves 1 point BLEU improvement
compared to best baseline method. With continue
pretraining on book corpus, our model can further
improve coherence and diversity, specifically, im-
prove UNION from 0.520 to 0.711 and B-1 from
0.255 to 0.278, and also significantly improve dis-
tinct and decreases repetition metrics.

The comparison of GOG and CSP shows that
our model structure for computing text representa-

tion is more effective than simply averaging hidden
states. Furthermore, the experimental results of
CSP (w/o CL) and CSP (w/o AE) show that the con-
trastive loss and reconstruction loss can improve
the performance of our model.

3.4 Manual Evaluation

For manual evaluation, we conduct a pair-wise
comparison on two aspects, namely fluency and
coherence, following recent studies (Guan et al.,
2021; Xu et al., 2020). The metric fluency measures
linguistic quality while coherence focuses on logi-
cality, e.g. causality and temporal relationship. We
randomly sample 100 generated texts from the test
set of ROCStories and invite three annotators (they
are all volunteers) to give a preference concern-
ing fluency and coherence respectively (win, lose
or tie). As table 5 shows, our model outperforms
all the baselines on both fluency and coherence
aspects. We use Fleiss’s kappa (Fleiss, 1971) to
measure the inter-annotator agreements, most of
the results are moderate (0.4 ≤ κ ≤ 0.6) or sub-
stantial (0.6 ≤ κ ≤ 0.8). However, our model still
generates some incoherent texts and is judged to
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Models
Fluency Coherence

Win Lose Tie κ Win Lose Tie κ

CSP vs. GPT-2 27 3 70 0.75 58 5 37 0.76
CSP vs. HINT 22 7 71 0.72 57 4 39 0.61
CSP vs. VAE-like 15 4 81 0.69 62 10 28 0.59
CSP vs. GOG 20 5 75 0.66 57 9 34 0.55
CSP vs. GOG (w/ CL) 35 3 62 0.84 52 6 42 0.79
CSP vs. CSP (w/o CL) 14 2 84 0.64 62 6 32 0.60

Table 5: Manual evaluation results on the ROCStories dataset. κ is the Fleiss’ kappa (Fleiss, 1971), measuring the
inter-annotator agreement (most of them are moderate or substantial).

Noise type UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
N-gram 0.853 0.951 11.40 0.324 0.149 0.185 0.747
Sentence 0.869 0.951 11.43 0.320 0.147 0.166 0.749
N-gram+Sentence 0.853 0.952 12.18 0.332 0.158 0.186 0.747

Table 6: Effectiveness of different types of noise on the ROCStories dataset.

"lose" compared to baselines.

3.5 Effectiveness of different negative samples

Table 6 shows the effectiveness of different types
of noise on the ROCStories dataset. Using negative
samples constructed from sentence noise is more
effective than N-gram noise in lexical repetition
and UNION metrics, and achieves similar PPL,
BLEU, distinct and Orderness metrics. Combining
N-gram and sentence noise will achieve about 1
point BLEU improvement.

3.6 Influence of different memory bank sizes

Table 7 shows the performances of our models with
different memory bank sizes. When the memory
bank size is 0, the model only needs to distinguish
between human-written texts and negative samples
constructed by applying N-gram noise and sentence
noise, which has better PPL and distinct metrics.
We also observed that without a memory bank, the
soft prompts mainly lie in two areas, one for posi-
tive samples and the other for negative samples. By
adding a memory bank, the model learns better text
representation that could encode the differences be-
tween different texts, and achieves better UNION
and BLEU metrics. However, PPL increases when
we use a memory bank, and we conjecture that it is
mainly because the model allocates more probabil-
ity to some other reasonable stories.

3.7 Case Study

We present a case in table 8 to demonstrate that
CSP can generate texts with better coherence than

the previous SOTA model HINT.

4 Related Work

Long Text Generation Many recent long text
generation studies try to tackle the incoherence
problem by designing model structures, training
methods and incorporating extra knowledge. Li
et al. (2015) propose a hierarchical RNN model to
learn the sentence-level representation. Fan et al.
(2018) propose a hierarchical CNN model, and they
also adopt a gated multi-scale self-attention mech-
anism to capture long-range context information.
These two methods focus on modeling both word-
level and sentence-level representations aiming at
capturing long-range dependency. Another line
of work adopts plan-then-generate methods (Yao
et al., 2019; Shao et al., 2019b; Tan et al., 2021;
Goldfarb-Tarrant et al., 2020). They first gener-
ate a high-level plan, and then generate the whole
text according to the plan. The main problem of
these works is that the models are biased to the
plans extracted from human-written texts during
training and lack of exposure to generated plans
(Tan et al., 2021). There are also some works that
try to incorporate knowledge base into text gener-
ation models (Guan et al., 2020; Xu et al., 2020)
to improve the ability to generate commonsense
stories. However, these methods mainly focus on
commonsense stories, and may not be effective
for generating other types of stories. Guan et al.
(2021) propose the HINT model, which is the pre-
vious state-of-the-art method. HINT adopts two
extra losses for training, i.e. inter-sentence seman-
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Memory bank size UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
0 0.832 0.948 9.21 0.322 0.147 0.164 0.760
600 0.851 0.948 11.15 0.319 0.146 0.183 0.735
65536 0.853 0.952 12.18 0.332 0.158 0.186 0.747

Table 7: Influence of different memory bank sizes on the ROCStories dataset.

Input (Leading Sentence):
MALE had a roommate.
Output of HINT:
MALE was a hard worker and a great student. MALE
knew MALE was very smart and smart. MALE chal-
lenged MALE to a game of basketball. MALE beat
MALE by a landslide.
Output of CSP:
he was very messy. MALE’s roommate’s mom said he
needed to be more organized. MALE’s roommate agreed
to do so. MALE’s roommate was much more organized.

Table 8: Generated stories by the previous SOTA model
HINT and our model CSP (Names are replaced with
"MALE"). In this case, CSP generates a more coherent
text than HINT (incoherent issues are in bold).

tic similarity and discrimination between normal
and random shuffled sentence orders. Compared
to HINT, our method focuses on learning a better
representation in a hidden space for better planning
long text generation.

Contrastive Learning In recent years, con-
trastive learning has made great advances in com-
puter vision (Tian et al., 2020; He et al., 2020;
Chen et al., 2020; Misra and Maaten, 2020), natu-
ral language processing tasks (Wang et al., 2021a;
Pan et al., 2021; Zhang et al., 2021a; Gao et al.,
2021; Kim et al., 2021), as well as multi-modal
tasks (Radford et al., 2021; Wang et al., 2021b). In
the NLP domain, contrastive learning is adopted
for sentence representation (Zhang et al., 2021a;
Gao et al., 2021; Kim et al., 2021). Pan et al.
(2021) use contrastive learning to learn a universal
cross-language representation for better multilin-
gual translation performance. Inspired by these
works, we adopt contrastive learning to learn a bet-
ter text representation, aiming at helping the model
to plan long text generation from a high level and
avoid generating incoherent texts.

Prompt Tuning Recently, some works have
shown the effectiveness of prompt tuning in zero-
shot and few-shot tasks (Brown et al., 2020; Gao
et al., 2020). By designing or automatically search-
ing templates and demonstrations, prompt tuning
provides effective techniques for fine-tuning lan-
guage models using only a few examples. Further-

more, the soft prompt is proposed as a parameter-
efficient finetuning method (Li and Liang, 2021;
Liu et al., 2021; Lester et al., 2021; Zhang et al.,
2021b), i.e. the parameters of the pretrained lan-
guage model remain fixed, and we add only a
few trainable parameters as a prefix to the input
sequence. Our work is inspired by recent soft
prompt works, however, these works mainly focus
on parameter-efficient finetuning, while our work
aims at improving the coherence of long text gen-
eration. We jointly learn high level text represen-
tations in hidden space and take the representation
as the soft prompt for better long text generation.

Learning from Negative Examples Welleck
et al. (2019) have tried to avoid the model gener-
ating repetitive, dull text by unlikelihood training.
Li et al. (2019) use unlikelihood training to gener-
ate text consistent with persona information. Un-
likelihood loss is computed from tokens, and our
method mainly focuses on high level representa-
tions in hidden space. Another line of studies on
employing negative examples is adversarial learn-
ing (Yu et al., 2017; Li et al., 2017), which plays
a minimax game between a generative model and
a discriminative model to generate texts that can
not be distinguished from human-written texts. We
anticipate that unlikelihood training and adversarial
training are largely complementary to our method.

5 Conclusion

In this paper, we propose a contrastive soft prompt
method for improving the coherence of long text
generation. It learns long text representations in the
hidden space for better planning long text genera-
tion. To this end, it jointly learns to generate a text
representation close to representations of coherent
texts and away from incoherent ones and gener-
ates long text taking this representation as the soft
prompt. We conduct experiments on two public
story generation datasets, and experimental results
show that our method can generate more coherent
stories than the state-of-the-art model.
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A Appendix

A.1 Details of experiments
The model structure of the prompt generator, pos-
terior prompt generator, and text generator are the
same with GPT-2, and the parameter weights are
initialized with a pre-trained GPT-2 checkpoint.
The soft prompt length is 20 in our experiment.
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Instruction
1. Read the input (a leading sentence or prompt), and 
compare two stories.
2. Select the story  which is better with regard to 
fluency and coherence. Where fluency measures 
linguistic quality while coherence focuses on 
logicality, e.g. causality and temporal relationship. 
These two aspects are evaluated independently.

Input: 
MALE had a roommate.

Text 1:
MALE was a hard worker and a great student…

Text 2:
he was very messy…

1 wins 
2 wins
tie

1 wins 
2 wins 
tie

fluency coherence

Figure 3: Manual annotation instruction.

The memory bank size is 65536. We set λc = 1.0,
λce = 0.1 and λae = 0.1. We finetune the model
on ROCStories and WritingPrompts for 22000
steps respectively. We use adam optimizer, and
the learning rate is set to 5e−5, no weight decay,
and the batch size is 16. During generation, we
use nucleus sampling with p=0.9, and the softmax
temperature is 0.7. Our model contains 234 mil-
lion parameters. We run our experiments on one
GeForce RTX 3090, and it takes about 34 and 39
hours for training models on ROCStories and Writ-
ingPrompts datasets respectively.

A.2 Annotation Instruction
Figure 3 shows the annotation instruction. we con-
duct pair-wise comparison on two aspects, namely
fluency and coherence. The metric fluency mea-
sures linguistic quality while coherence focuses on
logicality, e.g. causality and temporal relationship.
We randomly sample 100 generated texts from the
test set of ROCStories and invite three annotators
(they are all volunteers) to give a preference about
fluency and coherence respectively (win, lose or
tie). The comparison pair of texts are presented in
random order.
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