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Abstract

Prefix-tuning is a parameter-efficient and pow-
erful technique for adapting a pre-trained lan-
guage model to a downstream application.
However, it uses the same dataset-level tuned
set of parameters for all examples in the dataset.
We extend the framework with a dynamic
method, CONTROL PREFIXES, which allows
for the effective inclusion of input-dependent
information, thereby demonstrating how prefix-
tuning can be used for controlled text genera-
tion tasks. The method incorporates attribute-
level learnable representations into different
layers of a pre-trained Transformer, enabling
the generated text to be guided in a particular
direction. We provide a systematic evaluation
of the technique and apply it to five datasets
from the GEM benchmark for natural language
generation (NLG). Using only 0.1-2% addi-
tional trainable parameters, we show CON-
TROL PREFIXES can even outperform full fine-
tuning methods, and present state-of-the-art re-
sults on several data-to-text datasets, including
WebNLG. We also examine the common case
where input-dependent information is unavail-
able at test time and show CONTROL PREFIXES
can excel in this setting also.

1 Introduction

Approaches in text generation have been dominated
by adapting pre-trained language models (PLM) to
various downstream tasks. As the scale of PLMs
continue to climb, the cost of updating all the PLM
parameters per task, and resultant overhead of en-
tirely new parameter-sets per task becomes imprac-
tical. Furthermore, full fine-tuning has been shown
to result in catastrophic forgetting where knowl-
edge learnt from the pre-training task is lost and
natural language understanding overwritten (Peters
etal., 2019).

Recent work has demonstrated that it is possi-
ble to train these models by optimizing a negli-
gible fraction (0.01-2%) of additional parameters

while leaving the base PLM parameters unchanged
(Houlsby et al., 2019; Lester et al., 2021). Such
parameter-efficient transfer learning (PETL) can
achieve performance comparable to fine-tuning.
Prefix-tuning (Li and Liang, 2021), which trains a
prefix of additional key-value pairs at each layer,
and adapters (Rebuffi et al., 2017) are the two cur-
rent most popular PETL methods. Another alter-
native is in-context learning (ICL) (Brown et al.,
2020; Schick and Schiitze, 2020), which supplies
hand-written prompts and requires no gradient-
based training. ICL has however shown to result
in poor performance as the number of fine-tuning
examples increases beyond a handful (Lester et al.,
2021). We therefore believe that PETL methods
provide a more promising direction for study.

A weakness of most PETL methods is that the
same additional parameters are used for all exam-
ples within a single task. As yet, there has been
little research exploring PETL methods that in-
corporate input-dependent parameters (Liu et al.,
2021a) for finer-grained control. Our work closes
this gap by introducing a novel framework which
extends prefix-tuning and demonstrates the util-
ity of controlling parameter-efficient learning for
data-to-text tasks. The method uses multiple mod-
ular control prefixes, trained simultaneously, which
can change alongside the input according to the
guidance signal. These dynamic prefixes operate
together with the static prefix parameters and allow
for finer-grained control over the frozen PLM. The
chosen attributes can provide additional context
about the input, for example, the sub-domain of a
data-to-text triple, or specify some aspect of the
desired output, such as the target length for text
simplification.

Controlled text generation aims to guide genera-
tion towards the desired attributes, by incorporating
various types of guidance (e.g. highlighted phrases
(Grangier and Auli, 2018)). Previous work has fo-
cused on directly updating all the existing model’s
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parameters (Keskar et al., 2019) or using a discrim-
inator to guide generation (Dathathri et al., 2020).
Other methods aim to generate text with specific
target qualities, independent of overall task perfor-
mance (Yu et al., 2021). In contrast, our proposed
method is designed for maximizing downstream
task performance through controlled text genera-
tion, while also doing it in a way that is parameter-
efficient and compatible with PETL.

The resulting parameter-efficient architecture
outperforms previous approaches, many of them
based on full fine-tuning, when evaluated on the
WebNLG (Gardent et al., 2017), WebNLG+ 2020
(Castro Ferreira et al., 2020), DART (Radev et al.,
2020) and E2E Clean (Dusek et al., 2019) data-to-
text datasets using the official evaluation scripts.
We also show that although these modular prefixes
are formed from shared reparameterizations and
operate at every layer, they provide a level of inter-
pretability, as similar control prefix representations
are learned by the model for semantically similar
attribute labels. This fact allows us to employ a
zero-shot technique to deal with the more common
case in controlled generation, where attribute-level
information is absent at inference time. In addi-
tion, we show the superiority of the architecture
to an alternative architecture of introducing iden-
tical guidance signal into prefix-tuning. In total,
we evaluate CONTROL PREFIXES on five popu-
lar datasets from the GEM benchmark (Gehrmann
et al., 2021, 2022) for natural language generation
and demonstrate the technique is easily extendable
to new tasks. !

2 CONTROL PREFIXES

2.1 Background

To evaluate our architecture, we focus on the data-
to-text generation task, where structured data (such
as database fields or tuples from a knowledge
graph) is transformed into natural language. The
objective is to model the conditional probability
P(Y|X) with X representing the structured input
and Y representing the tokenized output sequence.
As is done for current state-of-the-art (SOTA) sys-
tems (Ribeiro et al., 2020; Radev et al., 2020),
we linearize the structured table or graph input
into a tokenized sequence. For example, with the
WebNLG dataset, X is the linearized graph and Y
is a lexicalization of this graph—descriptive text

"'We open-source CONTROL PREFIXES at https://
github.com/jordiclive/ControlPrefixes.

expressing all and only the information in the in-
put. However, the data also contains additional
information we can exploit: WebNLG is clustered
semantically into 15 different subdomains, and we
can use the subdomain of each example as an ex-
plicit input-dependent attribute for our model.

In this work, we experiment with T5-large (Raf-
fel et al., 2020) and BART arge (Lewis et al.,
2020) as the underlying pre-trained LMs with pa-
rameters ¢. As we consider fixed LM methods,
these parameters ¢ are always kept frozen. Both
are Transformer encoder-decoder where decoding
proceeds auto-regressively. They have been pre-
trained with the denoising objective, so they are
good candidates for the data-to-text task. They
have also been employed by top performers in pub-
lic challenges such as the WebNLG+ 2020 Chal-
lenge (Castro Ferreira et al., 2020).

2.2 Intuition

Using a frozen PLM that captures broad natural
language understanding provides the model with a
parameter-efficient starting point that already has
capacity for linguistic fluency. Combining these
frozen parameters with a trainable task represen-
tation for data-to-text allows the model to learn
how to use the LM to lexicalize graphs. More-
over, introducing attribute-level parameters, such
as the subdomain of the data-to-text input, allows
us to guide the generation further into a required
direction relevant to all inputs associated with that
domain.

The general task-specific parameters can them-
selves adapt to the modular control prefixes, which
change according to the guidance signal for each
input X. CONTROL PREFIXES can therefore
leverage input-level information while being a
parameter-efficient tuning method.? For this work,
we only consider discrete labels as attributes for
the guidance signal.

2.3 Description

A prefix (Li and Liang, 2021) is a set of additional
learned key-value pairs at every layer. Our model
uses a general task prefix Py ("task-specific pa-
rameters") and also trains a set of control prefixes
Cp that change depending on the input ("attribute-
level parameters"). This requires attribute-level
information or guidance G, to indicate which con-
trol prefixes to be used while processing a given

2We use the term parameter-efficient to denote methods
that update <2% of a base LM’s parameters.
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Figure 1:

Prefix-tuning and CONTROL PREFIXES in the single-task setup for a PLM such as BART srgg . The

same single-task batch (examples 1,2,3,4 and 5) is considered for both setups. Left: Prefix-tuning has one general
prefix P for all examples. Right: CONTROL PREFIXES utilizes additional attribute information at the input-level, G,
in i). This conditional information is used in ii) to dictate which control prefix (C4, Cp, C¢) to use for a particular
example in a batch. This takes advantage of prefix-tuning’s capacity to include different prefixes in one forward

pass.

input X.> Let us consider the parallel corpus
Z = {(Xj, Y7, Gj> }jzle, where G7 indicates
all the conditional attribute-level information for
the sample j. The goal is to optimize through gradi-
ent descent the final inference parameters, 6, whilst
the underlying ¢ parameters of the pre-trained LM

remain frozen:

N

0* = argmnglog D (Yj | Xj,Gj;Pg,Cg,qb) .

j=1

(D
Encoder-decoder We use d to represent the hid-
den state dimension and L the number of layers.
We use (E, D¢, Ds) to denote the three classes
of attention present in each layer: self-attention
in the encoder (F), decoder cross-attention (Dc)
and decoder self-attention (Ds). For an attention
computation in the [-th layer, the query, key and
value matrices are denoted (); € RN*d and K,
Vi € RMXd where N is the number of tokens in
the series relating to queries, and M is the number
of tokens in the series relating to keys and values.

General Prefix For each attention class
(E, D¢, Ds), a distinct prefix of key-value pairs
is learnt, P {P1,...,Pr}, where P, €
RP*24 vl € {1,...,L}. P € RP*2L and p is
the prompt length, i.e. the number of additional
key-value pairs in each attention computation. In
prefix-tuning*, for an attention computation in the

*We discuss cases where G is not present in §5.2.

*There has been confusion in recent work concerning dif-
ferent forms of prefix-tuning (Li and Liang, 2021). For details
and observations of the benefits conferred by key-value pair
prefix-tuning, see Appendix C.

[-th layer, K; and V] are augmented to become

K =[P K], V/=[Pwv;V] (2

where K], V) € RE+Mxd The overall

general prefix, parameterized by 6, is Py
{PE, PPe, PP™} where Py € RP*64L,

Control Prefixes In addition to the general pre-
fixes, we introduce control prefixes that change
depending on the input attribute value. Let us con-
sider one attribute, for example the domain of the
input table (e.g. sports team, athlete etc.) with R
possible values: Cy = {Cy1,...,Cp r}, Where
Cp, € RPX64L yr € {1, R}. Cy,, represents
the control prefix learnt for the r-th attribute label
and the parameter p. denotes the control prompt
length for this particular attribute.> Let A be a
function which returns the corresponding control
prefix for the attribute label indicated by G. Using
CONTROL PREFIXES, the attention keys K; and
values V; are augmented to become:

K" = [A(Q)k; P K1),

" 3)
V" =[AG),v; Pv: V]

where K], V" € RlpetptM)xd,

Shared Re-parameterization Li and Liang
(2021) found that prefix optimization is stabilized
by increasing the number of trainable parameters.
This is achieved by introducing a feed-forward net-
work to re-parameterize the prefix. Rather than one
network, we use three distinct two-layered large

5The method can be generalized to multiple attributes, each
with control prefixes of different length.
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feed-forward neural networks for each attention
class, applied row-wise. For each attention class
(E,Dc,Ds), P = MLP(P) where P € R"*% is
smaller than the matrix P € RP*%¢L and each
MLP has an intermediate dimension k£ which we
set to 800. Once training is complete, the output
of the MLP can be saved as the new prefix and the
MLP parameters themselves can be discarded.

As described for the general prefix, Py, each
control prefix, Cy ., comprises three constituents
for each attention class: Cy, = {CF,CPc,CP*}.
The re-parameterization of Cy ,. occurs in the same
manner as Py, sharing the same MLPE, MLPPe
and MLPP*.  We found that using shared re-
parameterization matrices provided performance
improvements and led to more stable learning,
while also significantly reducing the total number
of parameters.

3 Experimental Setup

3.1 Datasets, Guidance and Metrics

Following Li and Liang (2021), we evaluate on the
data-to-text datasets DART (Radev et al., 2020) and
WebNLG (Gardent et al., 2017). In addition, we
report results on E2E Clean (Dusek et al., 2019)6,
a dataset focused on the restaurant domain. The
structured knowledge input in these datasets is in
the form of a graph or table and can be linearized
for sequence-to-sequence learning.

WebNLG contains graphs from DBPedia (Auer
et al., 2007) and the dataset is clustered semanti-
cally into different categories. The test set is di-
vided into two partitions: “Seen”, which contains
10 DBpedia categories present in the training set,
and “Unseen”, which covers 5 categories never
seen during training.” These categories, such as
Airport or Food are used as a guidance attributes
for CONTROL PREFIXES (indicated by A; in Ta-
ble 1); our approach for the unseen categories is
discussed in §5.2. The intuition of the category
providing useful information is supported by stud-
ies showing a clear disparity in the performance
of different model types between different cate-
gories (Moryossef et al., 2019; Castro Ferreira
et al., 2020). By providing the category explicitly,
the model is able to adjust its generation depending
on the required target domain.

The same version as in GEM (Gehrmann et al., 2021).

7 All the training category labels are visible in Appendix
D, where we visualize control prefixes, corresponding to each
training category.

DART is an open-domain, multi-source corpus,
with six sources: internal and external human an-
notation of both Wikipedia tables and WikiSQL,
as well as the two existing datasets WebNLG and
E2E Clean. Radev et al. (2020) showed fine-tuning
T5-large on the WebNLG dataset with only the hu-
man annotated portion of DART achieves SOTA
performance, whilst using the whole DART dataset
is not as effective. Nevertheless, this inspired the
idea of using the six DART sub-dataset sources
as a controllable attribute, represented by Ao in
Table 1. This strategy was inspired by previous
work which incorporates auxiliary scaffold tasks
in multitask learning to improve span-labeling and
text classification (Swayamdipta et al., 2018; Co-
han et al., 2019; Cachola et al., 2020). For E2E
Clean, which is itself a part of DART, our CON-
TROL PREFIXES model is trained on the additional
components of the DART dataset with the explicit
data source labels as guidance to act as scaffold
framework.

CONTROL PREFIXES incorporates the attribute
knowledge into a parameter-efficient architecture,
giving it greater control over the generation process
and allowing us to guide the output in a required
direction. This provides a way of incorporating
information about the data that would otherwise
be left unused (such as the source domain of the
input), or directing the generated output based on
user preferences (for example by specifying the
length of a simplified text).

We ensured that the attribute values used at in-
ference time are permitted by all the shared task
organizers corresponding to each dataset. In sec-
tion §5.2 we also investigate settings where the at-
tribute values are previously unseen or unavailable
during inference. Also, note that additional train-
ing data is permitted by the organizers of the E2E
Clean and WebNLG datasets. For example, the
SOTA for WebNLG is a T5-large model fine-tuned
on WebNLG and the human annotated portion of
DART (Radev et al., 2020).

3.2 Metrics and Evaluation using GEM

We use the official evaluation scripts and report
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), and TER (Snover et al., 2006)
metrics®. In support of thorough NLG evaluation,
we also report lexical similarity and diversity char-

8 Additional evaluation script metrics, including machine-
learned are found in Appendix A
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acterization metrics, including machine-learned
metrics, from the GEM (Gehrmann et al., 2021)
evaluation suite in Appendix Tables 8,9.

Although we use data-to-text and text simpli-
fication datasets to demonstrate the technique is
effective, it can be applied to any generation task
cast as a sequence-to-sequence problem which sim-
ilarly benefit form parameter-efficient control.

3.3 Training Details

We implement prefix-tuning and CONTROL PRE-
FIXES for T5-large rather than GPT-2, as T5-large
provides a stronger baseline and enables compar-
ison with SOTA systems.” For the data-to-text
datasets, we follow Ribeiro et al. (2020) and lin-
earize the triples that form the input graph, prepend-
ing the special tokens <H>, <R>, and <T> before
the subject, predicate, and object of an individual
triple. The embeddings relating to these special
tokens are the only embeddings we train, as our
work is focused on fixed LM methods. We also
prepend “translate Graph to English: ™ to every
input (Raffel et al., 2020). We provide full training
and hyperparameter details in Appendix E.

4 Data-to-Text Results

We indicate the guidance signal(s) used by each
CONTROL PREFIXES model with A; for the
WebNLG subdomain category and Ay for the
DART sub-dataset source.

Results in Table 1 show that for DART, both
CONTROL PREFIXES (A2) and prefix-tuning at-
tain higher performance than the current SOTA,
which is T5-large fined-tuned (Radev et al., 2020),
by 1.29 and 0.54 BLEU points respectively. Note
the results in the main body of the GEM paper
(Gehrmann et al., 2021) are reported on the valida-
tion set rather than the test set as is done here.

The SOTA for WebNLG is a T5-large model
fine-tuned on WebNLG and the human annotated
portion of DART (Radev et al., 2020). Compared
to this model, CONTROL PREFIXES achieves a 0.83
higher BLEU overall, and 1.33 on the Seen cate-
gories. Notably, CONTROL PREFIXES (A1) outper-
forms CONTROL PREFIXES (A1,45) on the Seen
component of the dataset, but does not general-
ize as well to the unseen categories, indicating the
benefit of using both controllable attributes. The

“BART} arcr exhibits inferior performance to T5-large on
data-to-text; for example, 9.7 BLEU points lower on WebNLG
Unseen (Ribeiro et al., 2020).

prefix-tuning model with additional DART data,
like the SOTA, is trained on only the human an-
notated portion and yields a minor performance
increase of 0.05 BLEU compared to prefix-tuning
solely trained on WebNLG. We believe this indi-
cates that for fine-tuning, training on a comple-
mentary type of additional data allows the PLM to
maintain more NLU by not over-fitting a narrow
distribution, leading to better LM generalization.
In contrast, for prefix-tuning, much of this gain
has already been realized by retaining the original
frozen parameters.

The SOTA (Harkous et al., 2020) for E2E Clean
consists of a fine-tuned GPT-2 with a semantic
fidelity classifier trained on additional generated
data. CONTROL PREFIXES (Aj3), which can lever-
age the heterogeneous DART datasets, outperforms
this model in terms of the BLEU score. We also
report results on the less popular WebNLG+ 2020
(Castro Ferreira et al., 2020) dataset (GEM), the
second official WebNLG competition, in Appendix
D.

S Zero-shot Learning

5.1 Visualizing Control Prefixes

We experiment with visualizing the optimized con-
trol prefixes, in order to investigate what patterns
they have learned. For this, we train a model for the
task of text simplification, using the relative text
compression rate as an attribute for the control pre-
fix (additional details of this experiment in §7). Fig.
2 displays t-SNE (Maaten and Hinton, 2008) visu-
alizations of the learned control prefix parameters
in the decoder self-attention. A clear monotonic
pattern emerges, showing that control prefixes for
similar compression rate values are close to each
other in the representation space. This property
can be useful for investigating different attributes
or inferring representations for unseen attribute val-
ues. In Appendix F we present additional graphs
for control prefixes in the encoder and the cross-
attention of the model.

5.2 Unseen WebNLG Categories

The control prefix parameters are optimized during
training for each attribute value. However, in some
settings we may need to handle attribute values that
were not present in the training data and therefore
have no matching control prefixes available. For
example, the category attributes in the WebNLG
Unseen subset are all novel and were not repre-
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% DART % WebNLG % E2E Clean

BLEU METEOR TER| S U A BLEU METEOR
T5-large fine-tuned 100  50.66 40 43 100 64.89 54.01 5995 100 41.83 38.1
SOTA 100  50.66 40 43 100 65.82 56.01 61.44 100 43.6 39
Prefix-tuning 1.0 51.20 40.62 43.13 1.0 6695 5539 61.73 1.0 43.66 39.0
CONTROL PREFIXES (A1) - - - - 14 6732 5538 6194 - - -
+Data: DART
Prefix-tuning 1.0 51.20 40.62 43.13 1.0 67.05 5537 61.78 1.0 43.04 38.7
CONTROL PREFIXES (A2) 1.1 5195 41.07 4275 1.0 6699 5556 61.83 1.0 44.15 39.2
CONTROL PREFIXES (A71,A5) - - - - 14 67.15 5641 62.27 - - -

Table 1: Data-to-text test set results reported on the respective official evaluation scripts. ¢% denotes the trainable

parameters as a % of the fixed-LM parameters required

at inference time. T5-large fine-tuned results for WebNLG

are from Ribeiro et al. (2020) and for DART are from Radev et al. (2020). Several of the baseline results were only
reported to the significant figures shown. A; signifies models trained with control prefixes for the WebNLG category
attribute, and Ao with control prefixes for the DART sub-dataset source attribute. For WebNLG, S, U and A refer to

BLEU scores for the Seen, Unseen and All portions of

the dataset. The DART results are reported on the official

evaluation script for v1.1.1, the same version as the official leaderboard. A CONTROL PREFIXES model attains

state-of-the-art results for each dataset.

Figure 2: t-SNE visualizations for the decoder self-
attention constituent of the simplification model’s length
compression control prefixes. Each circle represents a
control prefix corresponding to each length ratio (bins
of fixed width 0.05, from O to 1.1).

sented in the training set. While no suitable control
prefixes exist for these categories, they each have a
textual label available in the dataset. Experiments
in Fig. 2 also established that similar attribute la-
bels learn similar parameter values in their control
prefixes. This gives us some prior on the properties
of the unseen categories, which we show is enough
to perform zero-shot transfer with control prefixes.

We first map the textual label of each WebNLG
category to a Glove embedding(Pennington et al.,
2014).!9 Then for each Unseen category, we find

1Glove Common Crawl (840B tokens, 2.2M vocab, cased,

OOV  Zero-shot

WebNLG 56.35
WebNLG+ 2020 50.02

56.41
50.39

Table 2: A comparison of the BLEU performance on
the Unseen portions for WebNLG test sets, with i) a
single OOV Control Prefix used for all samples from
unseen categories, or ii) the zero-shot transfer approach
outlined, utilizing the available textual labels.

the Seen category with the highest cosine similarity
in the embedding space, and use its learned control
prefix to also represet the corresponding Unseen
category. For example, the control prefix for the
seen category SportsTeam is used for examples
relating to the unseen category Athlete.'!

Table 2 shows results for the zero-shot transfer
method on both WebNLG datasets. For compar-
ison, we also report results using a single out-of-
vocabulary (OOV) control prefix for all unseen
categories. This OOV control prefix is trained by
randomly selecting 2% of the categories in each
training batch and replacing them with a general
OOV category. These results indicate that zero-shot
transfer based on word embeddings and textual la-
bels provides an advantage over learning a single
OOV representation.

300d vectors).
" Appendix I displays model output for WebNLG along
with the zero-shot procedure.
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»% ASSET TurkCorpus
SARI FKGL | SARI FKGL |
Gold Reference - 44387 6.49  40.04 8.77
BART| aArgg With ACCESST 100  43.63 6.25 42.62 6.98
BART ArGE fine-tuned 100 39.91* 7.73* 39.55* 7.73*
Prefix-tuning 1.8 40.12 7.28  39.06 7.28
CONTROL PREFIXES 1.8 43.58 597 4232 7.74

Table 3: Simplification results on ASSET and TurkCorpus test sets. TThis model is from Martin et al. (2020), where
the authors fine-tuned BART} argg model alongside control tokens for the four attributes. The CONTROL PREFIXES
model is trained with control prefixes for these same four attributes. Prefix-tuning and CONTROL PREFIXES use
BART | arGE as the fixed LM. The * denotes baseline results calculated in this study—the model outputs of Martin
et al. (2020) are publicly available. The BART srgg with ACCESS and CONTROL PREFIXES model are the average
test set results over 5 random seeds. We bold the best results of parameter-efficient models in the results tables,
while fully fine-tuned models and human performance are reported for reference.

6 Token-level control

For comparison, we also investigated a simpler ar-
chitecture: prefix-tuning combined with control
tokens (Keskar et al., 2019). In this setting, the
model receives the same guidance signals as CON-
TROL PREFIXES, but instead uses trainable control
tokens for representing the attribute values. The
main model is kept frozen, while the general prefix
is optimized along with embeddings for the con-
trol tokens, allowing us to benchmark against a
different parameter-efficient architecture. Note, we
chose to compare against a prefix-tuning based ar-
chitecture as the fully fine-tuned models lag behind
prefix-tuning in Table 1.

The results for this experiment are included in
Appendix G. We found that CONTROL PREFIXES
consistently outperformed control tokens on all
three data-to-text datasets. This indicates that CON-
TROL PREFIXES is a superior parameter-efficient
framework for leveraging additional information,
whilst maintaining the fixed-LM property. Control
tokens lack the shared re-parameterization of static
and dynamic parameters. They are only able to
inject information at the embedding level, making
them less expressive than the CONTROL PREFIXES
method.

CONTROL PREFIXES fundamentally depends on
the strength of the guidance signal. This is re-
flected in the constraint of attribute information be-
ing available with the dataset. However, we show
that CONTROL PREFIXES is a powerful general
method which can utilize this signal to achieve a
consistent improvement across an array of tasks.

7 Applicability to other tasks

Finally, we investigate the application of CONTROL
PREFIXES to generation tasks beyond the data-to-
text setting. For these experiments, we integrate the
method with a sequence-to-sequence model trained
for text simplification on the WikiLarge (Zhang
and Lapata, 2017) dataset. Following Martin et al.
(2020), the model uses four simplification-specific
attributes as control prefixes: the length compres-
sion ratio, replace-only Levenshtein similarity, ag-
gregated word frequency ratio and dependency tree
depth ratio. '?

In Table 3 we report SARI (Xu et al., 2016)
and FKGL (Kincaid et al., 1975) metrics.!® For
comparison, we report results for BART argg With
ACCESS (Martin et al., 2020), which is a fully
fine-tuned model that also integrates the same four
attributes but uses control tokens instead. The
results show that CONTROL PREFIXES is able
to outperform the fully fine-tuned BART on the
task of simplification, even though it optimizes
only 1.8% of the parameters. When compared to
BART/ arge With ACCESS, the results for CON-
TROL PREFIXES are competitive while still being
substantially more parameter-efficient. Note this
model has the benefit of full fine-tuning and we are
already at maximum performance for the datasets
as assessed by these metrics. This is indicated by
the Gold Reference scores, which evaluates against
other human annotators.

12Refer to Martin et al. (2020) for full attribute details.

3We use the FKGL and the latest version of SARI imple-
mented in EASSE (Alva-Manchego et al., 2019) which is also
used by Martin et al. (2020).
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8 Related Work

Controlled generation aims to incorporate various
types of guidance beyond the input text into the
generation model (Kikuchi et al., 2016). Johnson
et al. (2016) trained a translation model with con-
trol tokens to encode each language, and Keskar
et al. (2019) pre-trained a 1.63B parameter model,
alongside conditional control tokens demonstrating
these learnt to govern stylistic aspects. In addition
to having the benefit of updating all model parame-
ters, these methods only act at the embedding level.

Alternatives exist, such as using a plug-and-play
mechanism to perturb the LM hidden states towards
a target attribute (Dathathri et al., 2020). Strate-
gies such as these are computationally intensive,
resulting in a slow generation speed and the shift
in conditional probability has been shown to in-
crease text degeneration (Holtzman et al., 2020;
Gehman et al., 2020). GSum (Dou et al., 2020) is
an example of work that has explored using learned
guidance prediction models at test time. However,
both the prompt and LM parameters are tuned.

There has been little work using controlled gen-
eration in the data-to-text domain. Su et al. (2021)
were able control both the intra-text sentence and
inter-sentence structure of generated output. This
architecture exhibits inferior performance to our
method on the mutual evaluation dataset WebNLG.
Additionally, CONTROL PREFIXES uses fewer ad-
ditional parameters and can incorporate multi-
attribute control with prefixes of varying sizes.

Several successive works (Logeswaran et al.,
2020; Liu et al., 2021b; Lester et al., 2021) em-
ploy prompt tuning, where unlike the discrete text
prompts in ICL, trainable soft embeddings are
prepended to the input. Again the technique acts
only at the embedding level, thus limiting any con-
trol that can be exerted from data-point guidance.
This shortcoming also exists with ICL and multi-
task prompting (Sanh et al., 2021; Qin and Eisner,
2021). Prefix-tuning is more expressive and, along
with Vedd et al. (2021), serves as inspiration for
this work. However, prefix-tuning trains each pre-
fix separately and no relationship between prefixes
is modelled. The parameters are static with no
mechanism to incorporate guidance.

There have been few works exploring input-
dependent parameters trained alongside static
prompt parameters (Liu et al., 2021a). Perhaps
most similar to our work is Yu et al. (2021), who
use an attribute alignment function to encode to-

kens of attributes. Unlike our work, there are no
dedicated task parameters and the method aims
to generate text with specific target attributes, in-
dependent of task performance. With CONTROL
PREFIXES, the intention is to also maximize task-
specific performance, which is why we maintain
a large static component to specify the task itself,
which is directly learnt simultaneously with the
dynamic parameters in a shared framework.

9 Conclusion

We have proposed CONTROL PREFIXES, a general
framework for integrating attribute-level informa-
tion into pre-trained language models. In addition
to the general prefix for the overall task, special pre-
fixes are optimized for each attribute value and in-
corporated into different levels of the Transformer.
This allows for finer-grained control over generated
text, either by providing additional context about
each input example or by allowing the user to spec-
ify some aspect of the desired output. The main
language model parameters are kept frozen while
only the multiple prefixes are optimized for a par-
ticular task, providing a very parameter-efficient
method.

Our experiments show that CONTROL PREFIXES
outperforms all existing methods for several data-
to-text tasks including WebNLG and DART. This
is in spite of learning less than 2% of the base LM’s
parameters and using signal from attribute level in-
formation that is available for the tasks. CONTROL
PREFIXES also achieves higher results when com-
pared to an alternative prefix-tuning architecture
that makes use of the same attribute-level informa-
tion, showing that the proposed framework is better
able to integrate the additional signals with the rest
of the model.

We also saw that the method can still be applied
when suitable prefixes do not exist for a particular
attribute value, by constructing the required prefix
based on semantic similarity. Experiments on text
simplification also verified that CONTROL PRE-
FIXES can be applied on other tasks and datasets
beyond the data-to-text setting.

In future work, additional guiding attributes can
be investigated for text generation, such as the de-
sired formality and sentiment. In addition, this
method can be integrated with a wider range of
model architectures, beyond text generation appli-
cations, that require parameter-efficient methods of
control.
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10 Limitations & Ethical Impact

Evaluating NLG is notoriously challenging (Ce-
likyilmaz et al., 2020). For example, Freitag et al.
(2020) and Mathur et al. (2020) find that when
comparing two high-quality systems, differences
according to a metric may also reflect how the ref-
erences are written or flaws in the metric itself.
To combat this, in addition to using the official
task evaluation scripts, we report an array of GEM
Gehrmann et al. (2021) metrics that represent lex-
ical similarity and semantic equivalence in Table
8. We are also conscious that NLG models intrinsi-
cally trade off diversity and quality. We therefore
report diversity and system characterization results
in Table 9.

The technique described requires data-point in-
formation in the form of discrete categorical vari-
ables. Future work would look to investigate how
best to integrate continuous information. In ad-
dition, as highlighted throughout CONTROL PRE-
FIXES fundamentally depends on the strength of the
guidance signal. The success of the zero-shot pro-
cedure depends on how well the semantic category
labels are written for the unseen categories.

The technique is also limited by the predictive ca-
pabilities of the base frozen language model. One
benefit, however, is that optimizer states for the
base language model do not need to be stored dur-
ing training, making training more computationally
efficient.

We acknowledge that biases pose a huge prob-
lem in the Machine Learning and NLP commu-
nity. We conducted experiments with BART and
T5. Both models are trained on large amounts of
textual data such as news, books, and web text,
which may contain any kinds of biases. Although
our research is conducted under the purview of pa-
rameter efficient NLP methods, we still used up to
6 V100-SXM2-16GB GPUs. There is a responsi-
bility for the considerable CO2 emissions in the
NLP community and for developing more resource-
efficient training and inference methods.
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A Additional Results

Additional results using the official evaluation
scripts for the data-to-text datasets are reported
in Tables 4,5,6 to supplement the results in Table 1.

B GEM Automatic Evaluation

Supporting results using the GEM package
for model evaluation (https://github.com/
GEM-benchmark/GEM-metrics) are provided in
Tables 8,9.

C Prefix-tuning

We make two previously unremarked upon obser-
vations of the benefits conferred by using the key-
value pair prefix-tuning described in §2.3 com-
pared to prefix-tuning involving augmenting the
activations directly (Hu et al., 2021) or prompt-
embedding tuning of prompt length p. i) The
form discussed does not restrict the input length
of the base LM. ii) The time complexity at in-
ference time is reduced; for example, if we take
a multi-head self-attention computation (M =
N), the time complexity at inference time is
O((N + p)Nd + Nd?) rather than the greater
O((N + p)?d + (N + p)d?).

D WebNLG+ 2020 Results

WebNLG+ 2020 is not a component of DART—it
was used for the second official WebNLG com-
petition (Castro Ferreira et al., 2020). There are
16 training categories (the 15 categories from
WebNLG, but with new examples), alongside 3
unseen categories. Table 7 displays WebNLG+
2020 results using the same model architectures as
used for WebNLG. A similar pattern is revealed,
in that CONTROL PREFIXES outperforms prefix-
tuning with CONTROL PREFIXES (A1,45) as the
top-performing model. This illustrates again the
benefit of using both controllable attributes.

In the WebNLG and WebNLG+ 2020 training
sets, for the same tripleset, multiple distinct lex-
icalizations exist. In our experiments, the exam-
ples sharing identical tripleset inputs have the same
triple order after linearization. This is to aid in com-
parison with current systems for WebNLG, DART
and E2E Clean. Permuting the triples for these ex-
amples will introduce a source of randomness for
result comparison.

@ WrittenWork

@Airport

@ComicsCharacter

@SportsTeam

@Building

oCity

@Food

(a) WebNLG

Building
Monument Company
WrittenWork

Comics! Character
Airport
Astronaut Artist

CelestialBody
Athlete

SportsTeam

(b) WebNLG+ 2020

Figure 3: t-SNE visualizations for the encoder con-
stituent of control prefixes representing WebNLG cat-
egories seen during training. Each circle represents a
category seen during training for the CONTROL PRE-
FIXES (A1) model. All 15 categories are seen categories
in WebNLG+ 2020, along with the category Company.
WebNLG+ 2020 has 3 additional unseen categories to
those shown.

E Additional Training Details

All implementations in this study are built on top
of the Transformers library (Wolf et al., 2020). As
TS5 has relative position biases, we set these in all
layers pertaining to offsets where the key is part of
a prefix to zero. For BART Argg We adapt the orig-
inal implementation (Li and Liang, 2021). Table 11
displays the hyperparameters used when training
the models reported in this paper.

The general prompt length and each control
prompt length are architecture-specific parameters
that we choose based on performance on the val-
idation set. We use gradient accumulation across
batches to maintain an effective batch size above 64,
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a linear learning rate scheduler for all models and
beam-search decoding. AdamW (Loshchilov and
Hutter, 2017) and AdaFactor (Shazeer and Stern,
2018) were used for optimization. We chose the
checkpoint with the highest validation score using
BLEU for data-to-text and SARI for simplification.
For all tasks, we train our models on single Tesla
V100-SXM2-16GB machines, with mixed preci-
sion for BART] aArgg based models (fp16) and full
precision for T5-large based models (fp32).

The CONTROL PREFIXES models with the
DART sub-dataset source attribute (As) use DART
as additional data and were trained in two stages:
i) on DART, ii) solely on the downstream dataset.
The WebNLG prefix-tuning model with DART data
shown in Table 11 uses only the human annotated
portion of DART. The prefix-tuning models using
all of the DART data for WebNLG and E2E Clean
were similarly trained in two stages, with identical
hyperparameters to CONTROL PREFIXES models
using As. Training prefix-tuning on all of DART
for WebNLG yielded lower performance than with
only the human-annotated DART portion as addi-
tional data, so was not reported in Table 1.

Decoding specific parameters were not
tuned—we instead mirrored what the top-
performing fine-tuned based system used for the
particular LM and dataset. For example, a beam
width of 5 as in Ribeiro et al. (2020) for T5-large
on all data-to-text datasets.

F Simplification Length Control

Target Compression Ratio
700 0.25

0.5

600 0.75
1.0

500

Count

300
200

100

0.2 0.4 0.6 1.2 1.4 1.6

8 1.
Compression Ratio

Figure 4: Histogram illustrating the influence of different
target length ratios on the actual length compression ratio
output distribution for the simplification CONTROL PREFIXES
model on the TurkCorpus validation set.

Fig. 4 depicts the length compression ratio out-
put distribution on the validation set for CONTROL
PREFIXES, where a length control prefix of a spe-

cific attribute value (0.25,0.5,0.75,1.0) is specified.
This clearly demonstrates CONTROL PREFIXES is
capable of controlling the target length with respect
to the input. Table 12 displays example output gen-
erations with each of the 0.25,0.5,0.75,1.0 values
specified.

(a) Decoder Masked-attention (Dm)

(b) Encoder (F)

(c) Decoder Cross-attention (Dc)

Figure 5: t-SNE visualizations for constituents of the
length compression control prefixes learnt as part of
the simplification CONTROL PREFIXES model. Each
diagram depicts representations of control prefixes cor-
responding to each length value (41 bins of fixed width
0.05, from 0 to 2) for a particular attention mechanism.
The dimension represented on the x-axis is stretched
from a 1:1 to 2:1 aspect ratio for labelling clarity.

Fig. 5 is supplementary to §5.1, showing all con-
stituents of the length compression control prefixes
for all attribute values. In the WikiLarge training
data, there are far fewer training samples where the
simplified output is much longer than the complex,
original input in WikiLarge. This explains why the
representations are not as interpretable for values
greater than 1.2.
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G Prefix-tuning + Control Tokens

We propose another architecture ‘prefix-tuning +
control tokens’, where all of the original LM param-
eters, ¢, still remain fixed, including the embedding
matrix. Control has to be exerted through the few
control embeddings and prefix-tuning’s ability to
steer the frozen ¢ parameters through < 2% addi-
tional parameters. We use this method to inform
the model of the same discrete guidance informa-
tion as in CONTROL PREFIXES, but with control
tokens instead of control prefixes.!* This alter-
native method is less expressive than CONTROL
PREFIXES, in much the same way as prefix-tuning
is more expressive than prompt-embedding tuning.
Prefix-tuning + control tokens also does not benefit
from the shared re-parameterizations (§2.3) that
we argue allow for more effective demarcation of
control of the fixed LM in each attention class sub-
space.

Table 10 reveals that CONTROL PREFIXES out-
performs prefix-tuning + control tokens on the data-
to-text datasets, while the results are both com-
parable to the Gold References on simplification
datasets. This indicates that CONTROL PREFIXES
is better able to integrate and leverage guidance
signal at the input-level, whilst maintaining the
fixed-LM property, than prefix-tuning + control to-
kens.

H Varying Prompt Length

Our research is not solely focused on parameter
efficiency, but also on the effectiveness of adapting
an already parameter efficient, fixed-LM method
(adding <2% additional parameters). The only way
to add parameters with prefix-tuning is to increase
the prompt length. XSum is the only dataset con-
sidered where performance does not plateau when
increasing prompt length!>, therefore we ensure
CONTROL PREFIXES does not have more parame-
ters than prefix-tuning to ensure a fair comparison.
Fig. 6 illustrates how performance saturation is ob-
served—after a certain prompt length performance
plateaus. Different datasets require varying prompt
lengths to attain near maximum performance in a
parameter search for prompt length. For the data-to-
text datasets, near maximum performance (>99%

“Only the embeddings pertaining to the controllable at-
tributes and the prefix are trained.

5We do not observe performance degradation, such as
described by Hu et al. (2021), when utilizing different forms
of prefix-tuning. This is shown in H.

of the maximum validation score in the search) is
reached with a prompt length of 1 or 2.

9% (BARTLarce)
0.0 0.5 1.0 15 2.0 2.5 3.0
100 ; ; ;

e

Performance as % of Maximum

—— ASSET (Simplification)
0 50 100 150 200 250 300
p (Prompt Length)

(a) BARTLARGE

Performance as % of Maximum

96
Dataset

—— DART
E2E Clean
—— WebNLG

95, : 0 ) ‘ ! ! 5 \
0 25 50 75 100 125 150 175 200
p (Prompt Length)

(b) T5-large

Figure 6: Prefix-tuning results of a model parameter
search on several datasets for the optimal prompt length
per dataset. These results are for the metric monitored
per task on the respective validation sets indicated in
the legend. ¢% denotes the % of additional parame-
ters to the number of fixed-LM parameters required at
inference time. The y-axis is a relative measure: the
validation set performance as a % of the maximum at-
tained in the parameter search.

I Qualitative Examples

For data-to-text, Table 14 displays example CON-
TROL PREFIXES output for WebNLG input belong-
ing to unseen categories, along with the zero-shot
procedure. Table 14 depicts example CONTROL
PREFIXES (A1,A2) output alongside prefix-tuning
model output for WebNLG+ 2020 input. For sim-
plification, Table 13 compares the fixed-LM guided
generations of CONTROL PREFIXES to the fine-
tuned BART arge With ACCESS (Martin et al.,
2020).
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6%

BLEU METEOR TER| BERTScore(F1)

T5-large fine-tuned* 100 50.66 40 43 0.95
Prefix-tuning 1.0 51.20 40.62 43.13 0.95
CONTROL PREFIXES (41) 1.1 51.95 41.07 42.75 0.95

Table 4: Detailed results on the DART test set to complement Table 1. T5-large fine-tuned is the current SOTA
(Radev et al., 2020). We report results on the official evaluation script for v1.1.1, the same version as the official
leaderboard, available here: https://github.com/Yale-LILY/dart. *Results for this model were only reported
to the significant figures shown. ¢% denotes the % of additional parameters to the number of fixed-LM parameters

required at inference time.

&% BLEU METEOR TER |

S U A S U A S U A
T5-large 100 64.89 54.01 59.95 46 43 44 34 41 37
SOTA 100 65.82 56.01 61.44 46 43 45 32 38 35
Prefix-tuning 1.0 66.95 5539 61.73 46.73 4271 4487 3134 39.01 34.86
CONTROL PREFIXES (A7) 14 67.32 5538 6194 46.78 4277 4492 3096 39.01 34.65

+Data: DART

Prefix-tuning 1.0 67.05 5537 61.78 46.69 42.82 4490 3136 3879 34.77
CONTROL PREFIXES (42) 1.0 66.99 5556 61.83 46.67 42.87 4491 3137 3853 34.65
CONTROL PREFIXES (41,42) 1.4 67.15 5641 6227 46.64 43.18 45.03 31.08 38.78 34.61

Table 5: Detailed results on the WebNLG test set to complement Table 1. S, U and A refer to the Seen, Unseen and
All portions of the WebNLG dataset. Several of the baseline results were only reported to the significant figures

shown.

¢% BLEU NIST METEOR R-L CIDEr
T5-large 100 41.83 6.41 0.381 56.0 197
SOTA 100 43.6 - 0.39 57.5 2.0
Prefix-tuning 1.0 43.66 6.51 0.390 572  2.04
+Data: DART
Prefix-tuning 1.0 43.04 6.46 0.387 56.8 199
CONTROL PREFIXES (42) 1.0 44.15 6.51 0.392 573  2.04

Table 6: Detailed results on the E2E Clean test set to complement Table 1. The SOTA baseline result was only

reported to the significant figures shown.

¢% BLEU METEOR chrF++ TER| BLEURT
T5-large* 100 51.74 0.403 0.669 0417 0.61
Prefix-tuning 1.0 54.74 0.417 0.693  0.399 0.62
CONTROL PREFIXES (A1) 1.6 54.97 0.417 0.693 0.398 0.62
+Data: DART
CONTROL PREFIXES (A>) 1.0 5492 0.418 0.695 0.397 0.62
CONTROL PREFIXES (A1,42) 1.6 5541 0.419 0.698  0.392 0.63

Table 7: WebNLG+ 2020. The overall WebNLG+ 2020 test set results using the official evaluation script. *As
the model outputs are publicly available, we are able to run evaluation to achieve the same precision. TResults
from Pasricha et al. (2020), who before fine-tuning on the WebNLG+ data, further pre-train T5-large using a Mask
Language Modelling objective (with 15% of the tokens masked) on the WebNLG corpus and a corpus of DBpedia.
Aj signifies models trained with control prefixes for the WebNLG category attribute, and A with control prefixes

for the DART sub-dataset source attribute.
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Metrics (Lexical Similarity and Semantic Equivalence)

Dataset Model
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT
DART Prefix-tuning 0.405 76.7 53.0 61.7 502 0.95 0.32
CONTROL PREFIXES (As) 0.410 77.3 53.7 624 51.1 0.96 0.33
E2E Clean Prefix-tuning 0.385 74.5 48.3 55.8 43.7 0.95 0.23
CONTROL PREFIXES (A2) 0.387 74.4 48.4 559 44.1 0.95 0.23
Prefix-tuning 0.443 81.1 59.6 67.8 603 0.96 0.43
WebNLG 2017  Prefix-tuning + DART 0.443 81.2 59.8 67.8 60.4 0.96 0.43
CONTROL PREFIXES (A1) 0.443 81.3 59.9 67.9 60.5 0.96 0.43
CONTROL PREFIXES (42) 0.443 81.3 59.8 68.1 60.5 0.96 0.43
CONTROL PREFIXES (A41,Az2) 0.444 81.4 60.0 68.0 60.8 0.96 0.43
Prefix-tuning 0.417 79.6 56.2 64.8 562 0.96 0.32
WebNLG+ 2020 CONTROL PREFIXES (A1) 0.417 79.5 56.3 65.1 56.3 0.96 0.32
CONTROL PREFIXES (As) 0.418 79.6 56.5 653 564 0.96 0.33
CONTROL PREFIXES (A1,A52) 0.419 80.0 56.9 654 56.8 0.96 0.34

Table 8: The set of additional lexical similarity and semantic equivalence results on the official Data-to-text test sets.
These metrics are proposed by Gehrmann et al. (2021) and calculated using the GEM evaluation suite. The hash
for BERTScore used is roberta-large_L17_no-idf_version=0.3.8(hug_trans=3.0.1) and for BLEURT the

version is BLEURT-base-128.

Metrics (Diversity and System Characterization)

Dataset Model
MSTTR  Distinct;  Distinct; H, H;  Unique;  Unique; [V|  Output Len.
DART Prefix-tuning 0.45 0.04 0.13 8.1 10.97 1.5k 5.2k 4.8k 21.2
CONTROL PREFIXES (A3) 0.45 0.04 0.13 8.11 10.98 1.5k 5.3k 4.8k 21.5
Prefix-tuning 0.32  0.003 0.01 570 7.28 6 57 130 24.8
E2E Clean
CONTROL PREFIXES (As) 0.32  0.003 0.01 5.71 7.29 8 73 140 25.3
Prefix-tuning 0.52 0.09 0.26 8.57 11.88 973 4.6k 3.4k 21.1
WebNLG 2017 Prefix-tuning + DART 0.52 0.09 0.26 8.57 11.87 968 4.0k 3.4k 21.1
CONTROL PREFIXES (A;) 0.52 0.09 0.26 8.57 11.89 997 47k 3.4k 21.2
CONTROL PREFIXES (A3) 0.52 0.09 026 8.57 11.88 965 4.6k 3.4k 21.1
CONTROL PREFIXES (A1,As2) 0.52 0.08 025 8.52 11.81 962 4.4k 3.4k 21.3
Prefix-tuning 0.66 0.04 0.13 8.05 1094 327 1.8k 1.6k 23.0
WebNLG+2020 CONTROL PREFIXES (A1) 0.66 0.04 0.13 8.05 10.92 326 1.8k 1.6k 23.0
CONTROL PREFIXES (As) 0.66 0.04 0.13 8.04 1092 326 1.8k 1.6k 23.1
CONTROL PREFIXES (A1,A>2) 0.66 0.04 0.13 8.05 10.9 300 1.7k 1.5k 23.0

Table 9: The set of additional diversity and system characterization results on the official Data-to-text test sets. These
metrics are proposed by Gehrmann et al. (2021) and calculated using the GEM evaluation suite. These include the
Shannon Entropy over unigrams and bigrams (H, H2), the mean segmented type token ratio over segment lengths
of 100 (MSTTR, Johnson (1944)), the ratio of distinct n-grams over the total number of n-grams (Distinct; o), and
the count of n-grams that only appear once across the entire test output (Uniqueq o, Li et al. (2016)), as well as the
vocabulary size over the output (|V|) and the mean output length of a system.
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DART WebNLG E2E Clean ASSET TurkCorpus

BLEU SARI QuestEval SARI QuestEval
Prefix-tuning + Control Tokens  51.72 61.89 43.57 43.64 0.63 42.36 0.66
CONTROL PREFIXES  51.95 62.27 44.15 43.58 0.64 4232 0.66

Table 10: Prefix-tuning + Control Tokens. Comparison of our best CONTROL PREFIXES model for each dataset
with prefix-tuning + control tokens for the same attributes. The guided simplification models are the average test set
results over 5 random seeds.

Model Stage  L-rate Opt Warmup-steps ~ Epochs ~ Batch Size  Effective Batch ~ Beam Width ~ LN-« Min Target ~ Max Target ~ No Repeat Trigram
DART (T5-large)
Prefix-tuning - Te-5 Ada 2000 40 6 96 5 1 0 384 No
CONTROL PREFIXES (A1) - Te-5 Ada 2000 40 6 96 5 1 0 384 No

E2E Clean (T5-large)

Prefix-tuning - 8e-5 Ada 2000 50 6 96 5 1 0 384 No

CONTROL PREFIXES (A2) 1 Te-5 Ada 2000 30 6 96 5 1 0 384 No
s (A2 2 Se-5 Ada 2000 50 6 96 5 1 0 384 No
WebNLG (T5-large)

Prefix-tuning - Te-5 Ada 2000 30 6 96 5 1 0 384 No
CONTROL PREFIXES (A1) - Te-5 Ada 2000 40 6 96 5 1 0 384 No
+Data: DART

Prefix-tuning - Te-5 Ada 2000 40 6 96 5 1 0 384 No
CONTROL PREFIXES (A2) 1 Te-5 Ada 2000 30 6 96 5 1 0 384 No

SRR A2 2 3e-5 Ada 2000 30 6 96 5 1 0 384 No
CONTROL PREFIXES (A1, A2) 1 Te-5 Ada 2000 30 6 96 5 1 0 384 No
S a2 2 3e-5 Ada 2000 30 6 9 5 1 0 384 No
ASSET & TurkCorpus (BART arGE )
Prefix-tuning - Se-5 AdamW 2000 30 8 64 6 0.8 3 100 v
CONTROL PREFIXES) - 4e-5 Ada 5000 30 8 64 6 1 3 100 v

Table 11: Hyperparameters. Detailed hyperparameter reporting for the models in this work. If the training
procedure is multi-stage, each stage is indicated. L-rate is the learning rate, all learning follows a linear learning
rate scheduler; Opt refers to the optimizer, Ada (Adafactor) or AdamW; Effective Batch = Batch size x # of gradient
accumulation batches; LN-« refers to the « in length normalization during beam search.
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ASSET Corpus

Source: The West Coast blues is a type of blues music characterized by jazz and jump blues influences, strong
piano-dominated sounds and jazzy guitar solos, which originated from Texas blues players relocated to California in
the 1940s.

Gold Reference’

The West Coast blues has jazz and jump blues influences. It also has piano-dominated sounds and jazzy guitar solos,
which originated from Texas blues players who moved to California in the 1940s.

CONTROL PREFIXES (A1.4)
Length Control: 0.25

West Coast blues is a type of blues music from the United States.

CONTROL PREFIXES (A1.4)
Length Control: 0.5

The West Coast blues is a type of blues music made from Texas blues players who moved to California in the 1940s.
It has jazz and jump blues influences.

CONTROL PREFIXES (A1.4)
Length Control: 0.75

The West Coast blues is a type of blues music that originated in Texas in the 1940s. It is characterized by jazz and
jump blues influences, strong piano-dominated sounds and jazzy guitar solos.

CONTROL PREFIXES (A7.4)
Length Control: 1.0

The West Coast blues is a type of blues music characterized by jazz and jump blues influences, strong piano-
dominated sounds and jazzy guitar solos, which originated from Texas blues players who moved to California in the
1940s.

Table 12: Controlled text simplification: a qualitative example from the ASSET Corpus validation set, with our
corresponding CONTROL PREFIXES model outputs. Only the control prefix for the length control ratio is varied,
depicted in red. TNote, this is one random gold reference out of 10.

ASSET Corpus

Source: The Great Dark Spot is thought to represent a hole in the methane cloud deck of Neptune.

Gold Reference’

The Great Dark Spot represents a hole in the methane cloud of Neptune.

CONTROL PREFIXES

It is thought that the Great Dark Spot is a hole in Neptune’s methane cloud deck.

BART arge With ACCESS
The Great Dark Spot looks like a hole in the methane cloud deck of Neptune.
Source: Fives is a British sport believed to derive from the same origins as many racquet sports.
Gold Reference Fives is a British sport developed from the same origins as many racquet sports.

CONTROL PREFIXES

Fives is a British sport. It is believed to have its origins in racquet sports.

BART] arge with ACCESS
Fives is a British sport. It is thought to come from the same as many racquet sports.
Source: Nevertheless, Tagore emulated numerous styles, including craftwork from northern New Ireland, Haida
carvings from the west coast of Canada (British Columbia), and woodcuts by Max Pechstein.
Gold Reference’ Tagore copied many styles. These included craftwork from northern New Ireland, Haida carvings from western

Canada and woodcuts by Max Pechstein.

CONTROL PREFIXES

Tagore emulated many different styles of art, including Haida carvings from the west coast of Canada (British
Columbia), and woodcuts by Max Pechstein.

BARTLAR(;E with ACCESS

Tagore copied many styles. He copied craftwork from northern New Ireland, Haida carvings from the west coast of
Canada (British Columbia), and woodcuts by Max Pechstein.

Table 13: Fixed-LM vs fine-tuned controlled text simplification. CONTROL PREFIXES and BART| srgg With
ACCESS (Martin et al., 2020) generated simplifications chosen from the ASSET Corpus test set. "Note, this
is one random gold reference out of 10 for each example. The examples shown for CONTROL PREFIXES and
BART | arge With ACCESS are also randomly selected from one of the five model outputs.
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WebNLG

Unseen Category: Athlete
Zero-shot -> SportsTeam Source: <H> FC Torpedo Moscow <R> season <T> 2014-15 Russian Premier League <H> Aleksandr Chumakov <R> club
<T> FC Torpedo Moscow <H> FC Torpedo Moscow <R> manager <T> Valery Petrakov <H> FC Torpedo Moscow <R>
chairman <T> Aleksandr Tukmanov

Gold Valery Petrakov is the manager of FC Torpedo Moscow and its chairman is Aleksandr Tukmanov. Aleksandr Chumakov
plays for the club which spent the 2014-15 season in the Russian Premier League.

Prefix-tuning
Aleksandr Tukmanov and Valery Petrakov are the managers of FC Torpedo Moscow. The club played in the Russian Premier
League in 2014-15 and their chairman is Aleksandr Tukmanov.

CONTROL PREFIXES (A1)
Aleksandr Chumakov plays for FC Torpedo Moscow which is managed by Valery Petrakov. The club’s chairman is
Aleksandr Tukmanov and they played in the Russian Premier League in the 2014-15 season.

Unseen Category:
MeanOfTransportation
Zero-shot -> Airport Source: <H> Costa Crociere <R> location <T> Genoa <H> Costa Crociere <R> parent Company <T> Carnival Corporation
& ple <H> AIDAstella <R> operator <T> AIDA Cruises <H> AIDAstella <R> builder <T> Meyer Werft <H> AIDAstella
<R> owner <T> Costa Crociere

Gold Carnival Corporation & plc is the parent company of Costa Crociere in Genoa, who own the AIDAstella. AIDAstella was
built by Meyer Werft and is operated by AIDA Cruises.

Prefix-tuning
Costa Crociere is located in Genoa and is owned by Carnival Corporation & plc. AIDAstella is operated by AIDA Cruises
and was built by Meyer Werft.

CONTROL PREFIXES (A1)
Costa Crociere is located in Genoa and is owned by AIDA Cruises. AIDAstella was built by Meyer Werft and is operated by
AIDA Cruises. The parent company of Costa Crociere is Carnival Corporation & plc.

Table 14: WebNLG example generations: sources are shown in their linearized form, as fed to the T5-large based
models, with prefix-tuning output and one of the gold references shown for comparison with CONTROL PREFIXES
output. Triplesets are from WebNLG unseen categories and the zero-shot procedure is depicted using the textual
category labels. As an example, for the unseen category Athlete, the closest Glove embedding belonging to a seen
category label in embedding space is SportsTeam. Therefore the trained control prefix relating to SportsTeam is
used for this example at inference time.

‘WebNLG+ 2020

WebNLG MeanOfTransportation
(Seen with Unseen Entities) Source: <H> Pontiac Rageous <R> production Start Year <T> 1997 <H> Pontiac Rageous <R> assembly <T>

Michigan <H> Pontiac Rageous <R> assembly <T> Detroit <H> Pontiac Rageous <R> production End Year <T>

1997 <H> Pontiac Rageous <R> body Style <T> Coupe <H> Pontiac Rageous <R> manufacturer <T> Pontiac

Gold The Pontiac Rageous was a car with a coupe body style manufactured by Pontiac. Assembled in both Michigan and
Detroit, it went into production in 1997, ending in the same year.
Prefix-tuning The Pontiac Rageous is a coupe manufactured by Pontiac. It is assembled in Detroit, Michigan and began production
in 1997.

CONTROL PREFIXES (A1,A2) The Pontiac Rageous is manufactured by Pontiac in Detroit, Michigan. Its production began in 1997 and ended in
1997. The Pontiac Rageous has a coupe body style.

‘WebNLG (Unseen)
Unseen Category: MusicalWork

Zero-shot -> Artist Source: <H> Bootleg Series Volume 1: The Quine Tapes <R> genre <T> Rock music <H> Bootleg Series Volume
1: The Quine Tapes <R> preceded By <T> Squeeze The Velvet Underground album <H> Bootleg Series Volume 1:
The Quine Tapes <R> record Label <T> Polydor Records <H> Bootleg Series Volume 1: The Quine Tapes <R>
recorded In <T> San Francisco

Gold
The Velvet Underground Squeeze album was succeeded by the rock album Bootleg Series Volume 1: The Quine
Tapes, recorded under record label Polydor Records in San Francisco.

Prefix-tuning
The record label of Bootleg Series Volume 1: The Quine Tapes is Polydor Records. It was recorded in San Francisco
and was preceded by Squeeze The Velvet Underground. Its genre is rock music.

CONTROL PREFIXES (A1,A2) Squeeze The Velvet Underground was preceded by Bootleg Series Volume 1: The Quine Tapes, which was recorded
in San Francisco and released by Polydor Records. The genre of the album is rock music.

Table 15: WebNLG+ 2020 generations: sources are shown in their linearized form as fed to the T5-large based
models. The DART sub-dataset Source control prefix is highlighted, along with the final Category control prefix.
The zero-shot procedure is depicted for the Unseen Category MusicalWork. The closest embedding belonging to a
Seen category in embedding space is Artist.
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