
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 276 - 286
December 7, 2022 ©2022 Association for Computational Linguistics

T5QL: Taming language models for SQL generation

Samuel Arcadinho, David Aparício, Hugo Veiga, António Alegria
Outsystems

{samuel.arcadinho, david.aparicio, hugo.veiga, antonio.alegria}@outsystems.com

Abstract

Automatic SQL generation has been an active
research area, aiming at streamlining the ac-
cess to databases by writing natural language
with the given intent instead of writing SQL.
Current state-of-the-art (SOTA) methods for
semantic parsing depend on large language
models (LLMs) to achieve high predictive ac-
curacy on benchmark datasets. This reduces
their applicability, since LLMs require expen-
sive GPUs. Furthermore, SOTA methods are
ungrounded and thus not guaranteed to always
generate valid SQL. Here we propose T5QL, a
new SQL generation method that improves the
performance in benchmark datasets when us-
ing smaller LMs, namely T5-Base, by ≈ 13pp
when compared against SOTA methods. Addi-
tionally, T5QL is guaranteed to always output
valid SQL using a context-free grammar to con-
strain SQL generation. Finally, we show that
dividing semantic parsing in two tasks, candi-
date SQLs generation and candidate re-ranking,
is a promising research avenue that can reduce
the need for large LMs.

1 Introduction

Automated code generation has long been consid-
ered one of the fundamental tasks in computer sci-
ence (Pnueli and Rosner, 1989). Recently, deep
learning (DL) methods for code generation have
been proposed which overcome the lack of flexibil-
ity of more traditional approaches (Le et al., 2020).
Some DL approaches can act as code completion
tools (Svyatkovskiy et al., 2020; Chen et al., 2021)
while others can use natural language (NL) as input
to generate code (Yin and Neubig, 2017), i.e., se-
mantic parsing (Kamath and Das, 2018). The latter
methods are particularly helpful for developers that
are not proficient in all programming languages
that are part of their development pipeline. For
example, a developer might be familiar with the
controller language (e.g., Python) but unfamiliar
with the database access language (e.g., SQL).

2 4 6 8
0.4

0.5

0.6

0.7

0.8

beam size

ex
ac

tm
at

ch
ac

cu
ra

cy

T5QL-Base T5-Base
PICARD-Base PICARD-3B

Figure 1: Exact-match accuracy of the highest scor-
ing prediction as a function of beam size on the Spider
development set. Our method, T5QL, significantly im-
proves upon T5-Base and is superior to PICARD-Base.
PICARD-3B remains the SOTA for very large LMs, i.e.,
PICARD-3B uses T5-3B which is ≈ 13x larger than
T5-Base. Results for PICARD-Base and PICARD-3B
are straight (dashed) lines since Scholak et al. (2021)
only report results in the setting using database content
for a single point, namely beam search with 4 beams.

Generating SQL from NL is challenging because
the NL query might be ambiguous (e.g., columns
from different tables can have the same name).
Futhermore, obtaining labelled pairs of NL queries
to SQL is hard, time-consuming, and requires la-
bellers that are proficient in SQL. In recent years,
benchmark datasets have been used by developers
to evaluate their methods, namely Spider (Raffel
et al., 2019) and CoSQL (Yu et al., 2019).

PICARD (Scholak et al., 2021) is the current
SOTA method, i.e., the highest ranked method on
Spider. It is built on top of T5 (Raffel et al., 2019),
a general purpose LLM. As proven by Merrill et al.
(2021), LLMs are ungrounded and thus can gener-
ate any token at any given step, which may result in
invalid SQL; thus, to improve upon T5, PICARD

276

prunes the search tree in order to avoid generating
invalid SQL. However, since PICARD fully prunes
branches during beam search, it is not guaranteed
to always generate an answer. Another major issue
with PICARD is that it needs a very large LM to
achieve good performance: PICARD gets ≈ 75.5%
exact match (EM) accuracy in Spider’s develop-
ment set when using T5-3B, but only ≈ 66.6%
when using the smaller T5-Base.

Here, we propose T5QL, a novel SQL generation
method that achieves 69.3% EM on Spider develop-
ment set using T5-Base instead of the ≈13x larger
T5-3B. T5QL uses constrained decoding to ensure
that it always generates valid SQL, and it always
generates an answer. Our main contributions are:

1. Narrow the gap between large and small LMs
(Figure 1). With beam size equal to 4 and
using T5-Base, T5QL achieves 69.3% EM
accuracy on Spider, versus 66.6% obtained by
PICARD. PICARD with T5-3B is still SOTA
(75.5%) but it requires much larger GPUs,
which are expensive and thus not available for
regular practitioners.

2. Propose a constrained decoding method that
always generates valid SQL, except for infre-
quent model hallucinations. In Appendix A.1
we show one such case.

3. Propose a novel ranker model for SQL gen-
eration. This model re-ranks the generator
model’s predictions after beam search, boost-
ing EM on Spider for larger beam sizes (e.g.,
8 beams) from 67.9% to 69.6%.

The remainder of the paper is organized as fol-
lows. Section 2 presents SOTA for SQL genera-
tion. Section 3 describes T5QL’s main components,
namely constrained decoding and the ranker. Sec-
tion 4 shows our results. Finally, Section 5 con-
cludes our work.

2 State-of-the-art

Automated program generation has long been one
of the major goals of computer science. Various
program synthesis tools have been proposed that
generate SQL from code fragments (Cheung et al.,
2012) or pairs of input-output examples (Orvalho
et al., 2020). However, code fragments might not
be readily available if the developer does not write
code or does not want to, and creating enough input-
output examples for the program synthesis tool to

be effective might be cumbersome. Other tools
generate SQL from NL which is more developer-
friendly (Yaghmazadeh et al., 2017).

The complexity of generating SQL from NL
varies with the length and complexity of the SQL
query and the size of the database schema. Thus,
in order to properly evaluate and compare methods’
performance, multiple benchmark datasets have
been proposed, namely Spider (Raffel et al., 2019),
Spider-SSP (Shaw et al., 2021), and CoSQL (Yu
et al., 2019). We describe these benchmarks in de-
tail in Section 4.2 and discuss how they relate to
our research questions (enumerated at the start of
Section 4).

The current SOTA for SQL generation (i.e., the
methods that achieve the highest performance on
benchmark datasets) comprises DL methods. DL
methods for code generation avoid the complex-
ity of traditional program synthesis and, thus, are
generally faster during generation (Parisotto et al.,
2016; Hayati et al., 2018; Sun et al., 2019).

RatSQL’s authors argue that predicting SQL di-
rectly from NL is hard and can be made easier by
instead predicting an intermediate representation
(IR) that is more similar to NL than SQL is (Wang
et al., 2019; Gan et al., 2021). With this insight,
they obtained SOTA results on Spider. However,
their IR is not capable of representing all SQLs
and, thus, for some queries the correct SQL is not
obtainable, leading to a loss of EM accuracy. Other
approaches were built on top of RatSQL with good
results (Zhao et al., 2021; Shi et al., 2020; Yu et al.,
2020). One of the major disadvantages of these
methods is that, since they use custom architec-
tures, they cannot leverage pre-trained LLMs in
their decoding step. Being able to leverage LLMs
is beneficial since they can be used for multiple
tasks. For example, Xie et al. (2022) unifies struc-
tured knowledge grounding tasks into a text-to-text
format and are thus able to train the same model
for different tasks.

To the best of our knowledge, Shaw et al. (2021)
were the first to propose a method that uses an
LLM, namely T5, and evaluate it on Spider. They
concluded that their method had good predictive
capabilities, but sometimes generated syntactically
incorrect SQL and had lower precision in out-of-
distribution examples. Since T5 is ungrounded,
it cannot be guaranteed to always generate valid
SQL; the same is true for other LLMs (Merrill et al.,
2021). In order to address the issue, Xiao et al.

277

Generator 
(T5)

Ranker 
(CodeBERT)

Constrained

Decoder

SQL

Grammar

> from User [NEXT]

NEXT: - select

 - as X

 - join

 ...

Account

- userID

- country

User

- ID

- name

- birthdate

- country

1: from User select name, country

2: from User select * order by country

 ...

from User  
select *

order by country

2

1

3

4 5

Give me the users

sorted by country

Figure 2: T5QL model architecture. T5QL receives as input an NL query and a database schema (step 1). Then, the
generator model, T5, consults the constrained decoder to know which tokens are valid (step 2) and predicts the next
token (step 3). This step is done iteratively. The generation is done using beam search, thus producing a set of k
candidates which are given as input to the ranker model (step 4). Finally, the ranker model ranks all candidates and
a final prediction is outputted by T5QL (step 5).

(2016) propose a method that constrains the output
generation based on grammatical rules. They also
compare a model trained with constraints and verify
that using the constraints only during inference
improves the model.

Targeting code generation specifically, Scholak
et al. (2021) propose PICARD, a method that con-
strains the model generation by removing wrong
outputs during beam search. By doing so, PICARD
is the current SOTA in the Spider benchmark. How-
ever, they report that PICARD did not generate any
SQL for 2% of the queries. Poesia et al. (2022) im-
prove LLM performance in the few-shot setting by
introducing two components, one that selects the
examples to be given to the model and another that
constrains the generation of syntactically correct
SQL. However, fine-tuned models (e.g., PICARD)
still perform better in the general task than their
model, which was trained in the few-shot setting.

In this work, we use one model to generate
candidates, a generator, and another to re-rank
them, a ranker. This choice is motivated by recent
work (Chen et al., 2021) where the authors show
that a re-ranking method boosted performance for
code generation. Regarding semantic parsing more
concretely, Ye et al. (2022) use a ranker model
to select candidates, and then a fine-tuned model
generates the final output; their model shows good
generalization capabilities and outperforms previ-
ous methods for question answering on knowledge
graphs. More recently, Krishna et al. (2022) argue
that when current LLMs are given a prefix prompt
they can often generate text that is incoherent with
the prefix. They propose a ranker model that scores

the generator’s candidates for an input prefix and
obtain results that outperform earlier models in
both automatic and human evaluation.

3 Method

We start this section by presenting an overview
of our method and its architecture (Figure 2). Then,
we focus on each of its main components, namely
constrained decoding and the ranker. Finally, we
discuss the scoring function and evaluation metrics.

3.1 Overview

Our method outputs the corresponding SQL query
for a given NL query and a database schema. The
database schema comprises a list of tables and their
respective columns. Figure 2 shows a simple NL
query, "Give me the users sorted by country", and
a toy database schema with only two tables, User
and Account. The generator, T5, receives the NL
and the database schema as input and, starting with
an empty string, it iteratively predicts the next to-
ken. However, unlike regular T5, the next token
prediction is limited by the constrained decoder
to only consider tokens that form a valid SQL
query up to that point. For example, if the cur-
rent query is "from User", the next valid tokens
include "select", "as X", and "join", but do not
include "from" or "User". We discuss why we
invert the from and the select statements in Sec-
tion 3.2. We use beam search to generate multiple
candidate queries, which are given as input to the
ranker model.

278

3.2 Constrained decoding

We use constrained decoding to limit which tokens
are considered by the generator to make the next
token prediction. In order to enforce valid tokens,
we build a context-free grammar (CFG) of SQL
statements. Our constrained decoding method, de-
scribed in Algorithm 1, is similar to the one pro-
posed by Poesia et al. (2022): for each decoding
step, given the current generation P , T5QL finds
the maximum parsable prefix P ∗, this means that
all SQL tokens in the prefix P ∗ have valid syntax
(lines 2–5). Then, using the lookahead feature of
the parser, T5QL tokenizes all possible suffixes
for P ∗ and adds them to trie T (lines 6–10). Fi-
nally, T5QL computes possible generation tokens
by searching the possibles suffixes for P in T (lines
11–12).

Algorithm 1 Constrained decoding

1: procedure NEXTTOKEN(P , T) ▷ P is the
current SQL generation and T the current trie

2: P ∗ ← FINDPARSABLEPREFIX(P)
3: S ← GETPARSERSTATE(P ∗)
4: N ← PARSERNEXTTOKENS(S)
5: N∗ ← FILTERWRONGTOKENS(S,N)
6: for n in N∗ do
7: C ← P ∗ + n
8: CT ← SENTENCETOKENIZER(C)
9: T ← ADDTOTRIE(T,CT)

10: end for
11: P T ← SENTENCETOKENIZER(P)
12: returnGETCHILDREN(T, P T)
13: end procedure

We note that, while our grammar is context free,
our constrained decoding method uses context to
make decisions: FILTERWRONGTOKENS (line 5
of Algorithm 1) constrains the SQL generation by
only allowing the generation of columns that are
defined in the from statement and by mapping table
aliases to the original tables. We should point out
that, while this is currently not performed by our
method, we could extend constrained decoding to
enforce more rules, such as only allowing tables to
be joined using valid foreign keys or limiting the
where statement to only have conditions that have
the proper return type given the column types (e.g.,
if a column "X" is of type string, "X > 10" is not a
valid generation).

Next, we focus on the grammar. For brevity,
we only show higher-level statements below; the

entire grammar is shown in our Codalab page1.
Statements inside square brackets indicate that they
are optional (e.g., a SQL query can have an empty
where statement).

⟨sql⟩ |= ⟨expr⟩
⟨expr⟩ |= ⟨query⟩ |

⟨expr⟩ union ⟨expr⟩ |
⟨expr⟩ intersect ⟨expr⟩ |
⟨expr⟩ except ⟨expr⟩

⟨query⟩ |= from ⟨from-expr⟩
select ⟨select-expr⟩
[where ⟨where-expr⟩]
[group by ⟨groupby-expr⟩]
[having ⟨having-expr⟩]
[order by ⟨orderby-expr⟩]
[limit ⟨limit-expr⟩]

Our grammar only supports SQL select state-
ments since our focus are queries that retrieve data
from a database. These select statements can be
a single query or contain subqueries joined by
unions, intersects, and excepts. We note that the
from and the select statements are inverted. This is
done because, besides restricting T5 to only gen-
erate syntactically correct SQL, we also restrict
it to only generate SQL with valid table names
(i.e., tables that exist in the database schema) and
valid column names (i.e., columns that exist in the
database schema for the given table). To restrict
the generation to only valid columns, it is helpful
to first know the valid tables, which are obtained
in the from statement. Thus, T5QL first parses the
from statement and stores the selected tables; then,
when the select statement is parsed, T5QL already
knows what columns are valid since they had to ap-
pear in the selected tables (e.g., from the example
from Figure 2, if the current query is "from User
select", then "user.ID" and "user.name" are
valid token predictions while "account.country"
and "account.userId" are not).

For a given query and database schema pair, we
augment the grammar shown previously with two
extra rules specifying the valid tables and the valid
columns. For the example from Figure 2, we would
add the following production rules:

1https://worksheets.codalab.org/worksheets/
0x0049b642db90440e9eaf9cf6a850b4c9

279

https://worksheets.codalab.org/worksheets/0x0049b642db90440e9eaf9cf6a850b4c9
https://worksheets.codalab.org/worksheets/0x0049b642db90440e9eaf9cf6a850b4c9

⟨table-name⟩ |= user | account
⟨column-name⟩ |= user.id | user.name |

user.birthdate |
user.name |
user.country |
account.userId |
account.country

When a table has an an alias, we add one ex-
pression for the alias and another for the original
table table (e.g., for a column "alias1.columnA",
we add two expressions to the 〈column-name〉
rule: "alias1.columnA" and "tableX.columnA",
assuming that alias1 corresponds to tableX).

The grammar is given as input to the Lark
parser2. We use Lark since it is one of the fastest
parsers for Python, and it includes a look-ahead
feature that we require.

3.3 Ranker

We use beam search to generate a set of k candidate
queries and employ a ranker model to choose the
best option among the k candidates. We hypothe-
size that splitting the task of SQL generation into
two tasks, (1) SQL candidates generation and (2)
SQL candidate ranking, boosts the performance of
the complete task since each model is only focused
on a simpler task.

We use a trained generator model to generate the
dataset to train the ranker model. The T5 model
described in Section 3.2 samples 16 SQL queries
for each input (NL query and database schema pair)
in the training dataset using beam search. From the
16 generated SQLs we sample the 12 with lowest
tree edit distance (TED) (discussed in Section 3.5)
to guarantee that we select hard negative examples.
If the generator model does not predict the correct
SQL in any of the 12 SQLs samples, we discard
the one with the highest TED and add the correct
SQL as one of the samples. Using the same sam-
pling strategy (i.e., based on TED), we sample an
additional two SQLs from the training dataset per-
taining to the same database as the input, for a total
of 14 SQLs for each input.

For the ranker model, we fine-tune CodeBERT
(Feng et al., 2020) in a cross encoder setting. The

2https://github.com/lark-parser/lark

ranker is given pairs of NL and SQL and predicts
the probability of the pairs being correct, i.e., the
SQL corresponding to the NL. We also append the
terminals found in the NL using the method pro-
posed by Lin et al. (2020) to the final NL (e.g., for
the NL "People from ’France’", the NL is trans-
formed into "People from ’France’ | France").

3.4 Scoring Function

Similarly to Yee et al. (2019), we compute the final
prediction score for a given input by combining the
generator’s probability score with the ranker’s prob-
ability score using the linear combination shown
in Equation 1, where t is the length of the SQL,
and λ is a tunable weight. In order to compare
the generator’s probability p(y|x) with the ranker’s
probability p(x, y), we scale the generator’s proba-
bility by t.

1

t
log p(y|x) + λ log p(x, y) (1)

3.5 Evaluation metrics

The most commonly used evaluation metrics for
SQL comparison are EM and execution match
(EX). EM checks if two SQLs are syntactically
equivalent, while EX checks if running two SQLs
yields the same output. While desirable, EX is
more computationally expensive than EM since it
requires running the SQL statements, which might
not even be possible if we do not have access to the
database content. When measuring the method’s
performance, it is also relevant to highlight if it also
predicts terminal values or not; T5QL generates the
full SQL query, including terminal values.

Since EM is binary, its value might not be very
informative for the user nor the model. Partial
matches sub-divide the comparison to only portions
of the SQL statement, such as the from clause or the
where clause. Thus, one SQL prediction might be
wrong in multiple parts of the query, and this more
granular information can be useful to improve the
model. However, these measures are still coarse;
thus, we use the TED in some experiments (namely
in the ranker) when we want more information on
the difference (or distance) between two SQLs.

In order to compute the TED between two SQL
statements, we transform each SQL statement into
a tree and use APTED3 to compute the TED be-
tween two trees. Due to SQL’s semantics, we first
normalize the SQL to a canonical representation

3https://github.com/DatabaseGroup/apted

280

https://github.com/lark-parser/lark
https://github.com/DatabaseGroup/apted

2 4 6 8
0.4

0.5

0.6

0.7

0.8

beam size

ex
ac

tm
at

ch
ac

cu
ra

cy

Oracle T5QL
T5QL wo/ Ranker T5
T5QL Ranker Score PICARD-3B

Figure 3: EM accuracy in Spider’s development set by
beam size. All methods use T5-Base as their LM except
for PICARD-3B which uses T5-3B. The performance
of PICARD-3B is shown as a straight line since the
authors only report results on the development set using
database content for a single point (beam search with 4
beams). The Oracle plot shows the performance ceiling
for T5QL, i.e., the performance of T5QL using a perfect
ranker that always outputs the correct SQL if the gener-
ator offers it as one of the candidates after beam search.

(e.g., sort the list of tables in the select alphabet-
ically, transform left joins into right joins). Then
modify APTED to guarantee that the TED is mean-
ingful (e.g., the cost of removing a terminal and
column name should be the same).

4 Experiments

We start by describing the experimental setup in
Section 4.1. Then, we detail each dataset and the
relevant evaluation metrics in Section 4.2. Then,
each subsequent section (Section 4.3–4.6) tries to
answer each of the following research questions:

Q1. Does constrained decoding improve the gen-
erator’s performance?

Q2. Does T5QL have compositional generaliza-
tion capabilities?

Q3. Does T5QL generalize to the conversational
setting?

Q4. Instead of using a very large generator, can
we improve performance using a ranker?

4.1 Experimental setup
For our experiments we use a G4DN Extra Large
AWS machine, which has an NVIDIA T4 Tensor

Core GPU installed and 4 CPU-cores. We make
our code available in our public Codalab page45.

4.2 Datasets

We evaluate T5QL on three benchmark datasets:
Spider (Raffel et al., 2019), Spider-SSP (Shaw
et al., 2021), and CoSQL (Yu et al., 2019).

Spider comprises 10,181 NL and database
schemas pairs, on 200 different database schemas.
Evaluation on Spider consists of two main leader-
boards: EX with terminal values and EM without
terminal values. At the time of writing, PICARD
is the current SOTA method on both leaderboards.

Spider-SSP is a different splitting of the Spi-
der dataset, with the aim of testing compositional
generation instead of cross-database generalization,
i.e., in the original Spider data split, a database
schema seen in train is not seen in eval or test.
Splits in the Spider-SSP dataset are made in three
different fashions: random split, a split based on
source length, and a split based on Target Maxi-
mum Compound Divergence (TMCD). The goal
here is to evaluate if the model can have good per-
formance on queries that it has not seen in training.

While Spider consists of a single NL and do-
main model pair mapped into a single SQL query,
CoSQL consists of a conversational dataset with
multiple iterations of NL plus data model being
mapped to a SQL query. The goal of CoSQL is
to simulate a user progressively exploring a data
model. CoSQL contains 4,298 interactions and
≈ 12, 000 questions, on the same 200 data models
used in Spider. Evaluation is done using EM with-
out terminal values and reported using two differ-
ent metrics: question match (QM) and interaction
match (IM). QM evaluates if all SQLs are correctly
predicted, while IM evaluates if the questions for
the same interaction are correctly predicted.

4.3 Q1. Constrained decoding

LMs are unconstrained and thus can generate any
token at any given time. For SQL generation, LMs
may generate SQL that are syntactically incorrect,
which impact their performance.

Here, we compare the performance of an uncon-
strained LM against T5QL without the ranker com-
ponent. Both methods use the same LM, namely
T5-Base, and are trained using the same training

4https://worksheets.codalab.org/worksheets/
0x0049b642db90440e9eaf9cf6a850b4c9

5We will make the code available in github after the blind
review process is finalized.

281

https://worksheets.codalab.org/worksheets/0x0049b642db90440e9eaf9cf6a850b4c9
https://worksheets.codalab.org/worksheets/0x0049b642db90440e9eaf9cf6a850b4c9

configuration; the only difference is that T5QL uses
constrained decoding as described in Section 3.2.
Both methods serialize the database schema as a
string and append it to the source sequence sim-
ilarly to Suhr et al. (2020). Similarly to Scholak
et al. (2021), we train both methods for a maximum
of 512 training epochs with mini batch size of 5,
205 gradient accumulation steps, with a learning
rate of 1e−4, and an adafactor optimizer with ep-
silon set as 1e−6. We evaluate the models using
beam search with 1, 2, 4, and 8 beams. Contrary to
Scholak et al. (2021), we report results for a batch
size of 1025 instead of 2048 since it lead to better
results in our case.

Figure 3 shows the performance of several meth-
ods and those results are discussed in this subsec-
tion and in the next ones. All methods use T5-Base
as its LLM, except for PICARD which is the cur-
rent SOTA and uses T5-3B, a much larger LM.

From Figure 3, we observe that T5 achieves
≈ 55.1% EM accuracy using one beam, and its
performance does not improve with the beam size.
Our method, T5QL, without the ranker compo-
nent (i.e., T5QL wo/ Ranker in Figure 3) achieves
≈ 65.7% EM accuracy using one beam, a gain of
≈ 10.6pp, which is a relative gain of ≈ 19.2%.
Using 2 and 4 beams, we improve T5QL’s perfor-
mance to ≈ 67.6% and ≈ 68%, a gain of ≈ 1.9pp
and ≈ 2.3pp, respectively, when compared against
T5QL using only one beam. We observe a loss of
performance when using 8 beams. These results
highlight the advantage of using constrained de-
coding for SQL generation: by using a CFG to
guarantee that the LM always generates valid SQL,
we improve the model’s performance.

4.4 Q2. Compositional generalization

Compositional generalization of LLMs has at-
tracted attention in recent years. Shaw et al. (2021)
propose Spider-SSP, a dataset that can be used to
measure the compositional generalization of SQL
generation methods. In this section we use Spider-
SSP to evaluate if constraint decoding increases the
compositional generalization capabilities of T5QL.

Shaw et al. (2021) already reported that T5-Base
model struggles in most splitting strategies, partic-
ularly when using length-based split and TMCD
split; we reproduce those results in Table 1 in rows
T5-Base and T5-3B. We note that, in their experi-
ments, the predicted SQL follows the convention
of predicting first the select statement and then the

from statement. As discussed in Section 3.2, T5QL
first predicts the from statement and then the select
statement. Thus, we evaluate two different models:
T5-Base, which is similar to the model evaluated
by Shaw et al. (2021), and T5QL-Base wo/ CD
which is T5QL without the constrained decoding
component (and without the ranker). We compare
these models against T5QL-Base and T5-3B; the
latter also predicts the select statement first.

We observe that T5QL-Base wo/ CD obtains sig-
nificantly higher EM than T5-Base, namely for the
TMCD split where there is a gain of 22pp, which
is a 52% relative gain. These results highlight that
predicting the tables before predicting the columns
seems to help the model. This result corroborates
the results obtained by Lin et al. (2020), which
use a representation similar to ours. We also verify
that T5QL-Base slightly, but consistently, improves
upon the results obtained by T5QL-Base wo/ CD
for all splitting strategies, namely in TMCD where
there is a gain of 2pp. Finally, we conclude that our
strategy narrows the performance gap between the
performance of methods using small LMs (i.e., T5-
Base) and very large LMs (i.e., T5-3B) by compar-
ing the performance of T5QL-Base against T5-3B.

4.5 Q3. Generalize to conversational setting

Often users might want to explore their data with-
out having to write SQL. Thus, a conversational
setting where user’s iteratively ask questions to an
AI is particularly interesting. Yu et al. (2019) pro-
pose a dataset comprised of multiple question-SQL
pairs, each consisting of several user interactions.
They evaluate SQL generation methods using QM
and IM. In this section we use CoSQL to evaluate
if constrained decoding increases the performance
of T5SQL in the conversational setting.

We observe gains of≈ 7.9% and≈ 5.5% in QM

Spider-SSP

Model Rand. Templ. Len. TMCD

T5-Base 76.5 45.3 42.5 42.3
T5QL-Base wo/ CD 84.7 58.3 50.6 64.4
T5QL-Base 85.7 61.1 54.4 65.9
T5-3B 85.6 64.8 56.7 69.6

Table 1: EM accuracy in the Spider-SSP dataset using
different splitting strategies. T5QL-Base wo/ CD (i.e.,
without constrained decoding) and T5QL-Base adopt
the strategy of predicting SQL with the from statement
before the select statement, while T5-Base and T5-3B
do the opposite, which is the default.

282

CoSQL

Model QM IM

T5QL-Base wo/ CD 42.8 14.8
T5QL-Base 50.7 20.3
PICARD - 3B 56.9 24.2

Table 2: QM and IM in the CoSQL development set.

and IM, respectively, when we add constrained de-
coding to T5QL-Base. We observe that PICARD-
3B is still SOTA for the task, but the gap is sig-
nificantly narrower. This is further evidence that
constrained decoding can improve the performance
of LMs in multiple SQL generation tasks.

4.6 Q4. Ranker

Current SOTA methods, such as PICARD, use
beam search to find the best candidate and out-
put it as the final prediction. Here we test whether
we can boost predictive performance by, instead
of using the beam-selected best candidate as the
final prediction, having a ranker that finds the best
candidate among the list of candidate predictions
found by the generator.

Our first step to validate this hypothesis is to run
beam search for multiple beam sizes k, namely 1, 2,
4, and 8, and measure the accuracy@k. In our set-
ting, the accuracy@k can be regarded as an oracle
ranker than can always find the correct candidate
if it is present in the list of candidate generations.
From Figure 3 we observe that this oracle could
achieve 78.2% EM accuracy with 8 beams, sur-
passing the performance of PICARD-3B but using
T5-Base instead of T5-3B, which is highly desir-
able due to T5-3B’s expensive nature in terms of
GPU costs. Thus, our goal here is to build a ranker
model that can boost the performance of T5QL
without the ranker (T5QL wo/ Ranker in Figure 3)
and approximate it to the oracle’s performance.

We note that the ranker model should be of a
comparable size to the generator, i.e., fit in the
same GPU. Otherwise, the advantage of using a
small LM as the generator is lost since we assume
that the practitioner has hardware that can fit the
larger ranker, which might not be true. Here we
use T5-Base as the generator and CodeBERT as
the ranker, which are of comparable size.

To train the ranker model, we first create a
dataset following the steps described in Section 3.5.
Then, we fine-tune a CodeBERT model for 50,000
training steps, using a batch size of 32 and 1 gra-

dient accumulation step, with a 1e−3 learning rate
and an AdamW optimizer with weight decay of
1e−2 and a linear schedule with warmup of 1% of
the steps. We use Equation 1 to score the generated
SQL; we conduct hyperparameter tuning for λ and
conclude that λ = 2e−2 performs best.

We analyze if combining the generator’s score
with the ranker’s score is superior to using each
of the score’s individually. From Figure 3 we con-
clude that combining the ranker model’s score with
the generator model’s score (i.e., the T5QL plot)
improves the best EM from 67.9% to 69.3% when
compared against T5QL without the ranker score.
Furthermore, we also observe that using only the
ranker score (i.e., the T5QL Ranker Score plot)
leads to a drop in performance even when com-
pared against T5QL wo/ Ranker. This effect is
more noticeable for larger beam sizes, which indi-
cates that the ranker model struggles to differentiate
the correct SQL from the wrong SQL.

From these experiments, we conclude that the
ranker boosts the performance of the generator.
However, the ranker’s score needs to be combined
with the generator’s score to guarantee that the
ranker’s score does not completely dominate the
generator’s predictions. We should also note that
there is a very large gap between our ranker and
the oracle, which leaves room for future research
to improve the ranker model. We believe that this a
promising line of research that can further narrow
the gap between the performance between small
LMs and large LMs.

Finally, we run T5SQL on Spider’s test set and
obtain 66.8% EX and 65.9% EM. These results
rank among the top-10 best models in terms of EX,
and as the 22nd best in terms of EM6, whilst using
small models. Small models have the advantage of
being less computationally expensive and allowing
more easily for the use of ensemble methods.

5 Conclusion

Here we put forward T5QL, a new method for
SQL generation with SOTA performance on bench-
mark datasets when using small LMs. T5QL uses
constrained decoding to improve predictive perfor-
mance and also to guarantee that the generated SQL
is always valid. Futhermore, we complement the
generator model with a ranker model that is capa-
ble of choosing the best candidate SQL from a pool
of a few candidates.

6https://yale-lily.github.io/spider

283

https://yale-lily.github.io/spider

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Alvin Cheung, Armando Solar-Lezama, and Samuel
Madden. 2012. Inferring sql queries using program
synthesis. arXiv preprint arXiv:1208.2013.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages. arXiv e-prints, page
arXiv:2002.08155.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer
from natural language specifications. arXiv preprint
arXiv:2109.05153.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Graham
Neubig. 2018. Retrieval-based neural code genera-
tion. arXiv preprint arXiv:1808.10025.

Aishwarya Kamath and Rajarshi Das. 2018. A
survey on semantic parsing. arXiv preprint
arXiv:1812.00978.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. Rankgen: Improving text gener-
ation with large ranking models. arXiv preprint
arXiv:2205.09726.

Triet HM Le, Hao Chen, and Muhammad Ali Babar.
2020. Deep learning for source code modeling and
generation: Models, applications, and challenges.
ACM Computing Surveys (CSUR), 53(3):1–38.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. arXiv preprint
arXiv:2012.12627.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A Smith. 2021. Provable limitations of acquir-
ing meaning from ungrounded form: What will future
language models understand? Transactions of the
Association for Computational Linguistics, 9:1047–
1060.

Pedro Orvalho, Miguel Terra-Neves, Miguel Ven-
tura, Ruben Martins, and Vasco Manquinho. 2020.
Squares: a sql synthesizer using query reverse en-
gineering. Proceedings of the VLDB Endowment,
13(12):2853–2856.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2016. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855.

Amir Pnueli and Roni Rosner. 1989. On the synthesis
of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. arXiv
preprint arXiv:2201.11227.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? ArXiv,
abs/2010.12725.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2020. Learning Con-
textual Representations for Semantic Parsing with
Generation-Augmented Pre-Training. arXiv e-prints,
page arXiv:2012.10309.

Alane Laughlin Suhr, Kenton Lee, Ming-Wei Chang,
and Pete Shaw. 2020. Exploring unexplored gen-
eralization challenges for cross-database semantic
parsing.

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li,
and Lu Zhang. 2019. A grammar-based structural
cnn decoder for code generation. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 33, pages 7055–7062.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 1433–1443.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1341–1350,
Berlin, Germany. Association for Computational Lin-
guistics.

284

http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. CoRR,
abs/2201.05966.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Type-and content-driven syn-
thesis of sql queries from natural language. arXiv
preprint arXiv:1702.01168.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In ACL.

Kyra Yee, Yann Dauphin, and Michael Auli. 2019.
Simple and effective noisy channel modeling for
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5696–5701, Hong Kong,
China. Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint
arXiv:1909.05378.

Liang Zhao, Hexin Cao, and Yunsong Zhao. 2021. GP:
Context-free Grammar Pre-training for Text-to-SQL
Parsers. arXiv e-prints, page arXiv:2101.09901.

A SQL generation analysis

In this section we analyse in detail the predictions
generated by T5QL. In Appendix A.1 we measure
how often T5QL outputs valid SQLs and give an
example of one invalid SQL. In Appendix A.2 we
show an example of how constraining column name
generation can boost performance.

A.1 Valid SQL generation
First, we check if T5QL using constrained decod-
ing can still generate unparsable SQL. We obtain
T5QL-Base’s predictions in Spider’s development
set for beam sizes of 1, 2, 4 and 8. We observe that:

• T5QL never generates an unparsable SQL for
the top-1 beam when the beam size > 1.

• Invalid SQL is generated when the LM (i.e.,
T5) enters a loop, as can be seen in Listing 1.
Since the SQL length is limited, T5QL outputs
the incomplete (and invalid) SQL. The loop,
even if abnormal, is valid SQL syntax, e.g, an
average of averages.

• For larger beam sizes (e.g, 8) we saw that
the aforementioned model hallucinations are
mainly present in the lower scored beams.

Listing 1: Invalid SQL generated by T5QL. For space
concerns we abbreviate the generated SQL.

from stadium select name , capacity
order by avg(avg(avg(avg(
avg(avg(avg(avg(avg(avg(
avg(avg(avg(avg(avg(avg(
avg(avg(avg(avg(max(avg(
min(min(min(min(min(max(
max(max(max(max(max(max(
max(max(max(max(max(max(
max(max(max(max(max(max(
max(max(max(max(...

Next, we analyse whether model size reduces
the number of invalid SQL generated by T5QL.
We obtain the predictions in Spider’s development
set using T5QL-Base and T5QL-Large with and
without constrained decoding. We report results of
the four methods using 4 beams.

We observe that increasing the size of the model
also increases the ability of the model to gener-
ate parsable SQL: T5QL-Base wo/ CD generates
≈ 20% invalid SQLs, while T5QL-Large wo/ CD
generates only ≈ 5% invalid SQLs (Figure 4). No-
tice, however, that 5% is still a substantial amount
of invalid SQLs. On the other hand, when using
constrained decoding, T5QL always produces valid

285

http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2109.08678
https://arxiv.org/abs/2109.08678
https://arxiv.org/abs/2109.08678
https://doi.org/10.18653/v1/D19-1571
https://doi.org/10.18653/v1/D19-1571
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/2101.09901

T5Q
L-B

ase
wo/

CD

T5Q
L-B

ase

T5Q
L-L

arg
e wo/

CD

T5Q
L-L

arg
e

80

85

90

95

100

model

pe
rc

en
ta

ge
of

pa
rs

ab
le

sq
l

Figure 4: Percentage of parsable SQL, in the Spider’s
development set, in each model configuration. All meth-
ods use beam search with 4 beams and we report results
for the first beam.

SQLs when considering only the top-1 beam of
beam search with 4 beams; this is true for both
T5QL-Base and T5QL-Large.

A.2 Enforce existing table and column names

Finally, we analyse what is the impact of constrain-
ing the table and column names during SQL gen-
eration. When T5QL does not constrain column
and table names, it can generate examples such as
the one in Listing 2 where "song_id" is a column
name that does not exist in the schema. When con-
straining column and table names, T5QL always
generates existing column and table names, and, in
this case, predicts the correct SQL (Listing 3).

Listing 2: Invalid SQL generated by T5QL wo/ CD. In
this case the T5QL generated an non-existing column.

from singer as t1 join
singer_in_concert as t2 on
t1.song_id = t2.song_id
select t1.name , count(*)
group by t1.song_id

Listing 3: Valid and correct SQL generated by T5QL
with CD for the same example as Listing 2.

from singer as t1 join
singer_in_concert as t2 on
t1.singer_id = t2.singer_id
select t1.name , count(*)
group by t1.singer_id

1 2 3 4
0.4

0.5

0.6

0.7

beam size

ex
ac

tm
at

ch
ac

cu
ra

cy

Base wo/ CD Large wo/ CD
Base wo/ R Large wo/ R
Base Large

Figure 5: Comparison of EM accuracy in Spider’s de-
velopment between different model configurations. The
"Base" model refers to T5QL-Base with constraint de-
coding and reranking; models "wo/ CD" are the mod-
els without constraint decoding nor reranking, whereas
models "wo/ R" are the models without reranking.

B Larger models

Experiments shown for our proposed method,
T5QL, used T5-Base as the generator LM. We
make this choice since our focus is to show that
small LMs can have good performance even when
compared against very large LMs. Nevertheless,
evaluating if the proposed techniques, namely con-
strained decoding and reranking, scale to larger
LMs is an interesting research question. Thus, we
evaluate whether constrained decoding and rerank-
ing improve the performance of T5SQL-Large.

From Figure 5 we observe that the performance
of T5QL-Base (i.e., Base) is superior to T5-Large
(i.e., Large wo/CD) for 2–4 beams. When we add
the constrained decoding component to T5-Large
(i.e., Large wo/ R), the performance is significantly
superior. This results highlights the importance of
adding constrained decoding for SQL generation.
However, we do not observe gains of adding the
reranker model to T5-Large (i.e., Large), which
we observed in T5-Base. This might indicate, as
we pointed out in Section 3.3, that finding better
reranking strategies is an interesting research path.

We do not include results for T5QL-3B since our
main goal in this work is to increase performance
using multiple smaller components and domain-
aware techniques (e.g., constrained decoding) in-
stead of relying on very large models. Furthermore,
computing results for T5-3B is very costly in terms
of money and time.

286

