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Abstract

The main focus of data augmentation research
has been on the enhancement of generation
models, leaving the examination and improve-
ments of synthetic data evaluation methods
less explored. In our work, we explore a num-
ber of sentence similarity measures in the con-
text of data generation filtering, and evaluate
their impact on the performance of the targeted
Natural Language Understanding problem for
the example of intent classification and named
entity recognition tasks. Our experiments on
ATIS dataset show that the right choice of fil-
tering technique can bring up to 33% in sen-
tence accuracy improvement for targeted un-
derrepresented intents.

1 Introduction

Recent advances in transfer learning methods have
been a driving force in the progress of many Natu-
ral Language Understanding (NLU) tasks. These
methods typically involve pre-training of a large-
scale language model, followed by the task-specific
fine-tuning (Peters et al., 2018; Devlin et al., 2019).
Although these approaches have helped achieve
state-of-the-art results on a variety of supervised
learning tasks, they do not directly address the prob-
lem of task-specific annotated data sparsity. This
is where data augmentation techniques come in to
play, boosting model performance for a given su-
pervised task by generating novel data points that
are similar in characteristics to the available data.

The main thrust of data augmentation research
has been focused on improving generation mod-
els (Yu et al., 2017; Golovneva and Peris, 2020;
Kim et al., 2020; Liu et al., 2020; Sun et al., 2020;
Anaby-Tavor et al., 2020), while comparatively lit-
tle work has been done on comprehensively evalu-
ating and filtering high-quality synthetic utterances.
Current approaches suggest the use of a combina-
tion of automated metrics that evaluate utterances at
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the word or embedding level (Sharma et al., 2017;
Liu et al., 2020).

Popular word-based evaluation approaches are
based on comparing n-grams in the original and
generated text, and were originally developed for
machine translation evaluations. Among them com-
monly used scores are Bilingual Evaluation Un-
derstudy (BLEU) score (Papineni et al., 2002),
Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) (Lin, 2004), and Metric for Evalu-
ation of Translation with Explicit ORdering (ME-
TEOR) (Lavie and Agarwal, 2007). Both BLEU
and ROUGE-N are based on comparing the n-gram
overlap of the reference and generated texts and
counts the number of token matches, with the differ-
ence being that ROUGE is recall-focused whereas
BLEU is precision-focused. METEOR uses a set
1-gram mappings between the reference and gen-
erated text to get a weighted F-score, and adds a
penalty function for incorrect word order.

Word-based sentence evaluation can give low
scores for predictions with high lexical variation,
but these predictions are not necessarily poor qual-
ity. To address that, one could use embedding simi-
larity (Sharma et al., 2017), that will measure the
semantic similarity between the reference and pre-
diction based on the cosine similarity between word
and sentence embeddings.

While high-quality generated data should be sim-
ilar to the source data at hand, it is also important
for this data to be novel. To measure the diversity
of the generated text, one can use self-BLEU (Zhu
et al., 2018) score, which is computed by averag-
ing the BLEU scores of each generated utterance
using the rest of the generated text as the refer-
ence set. Furthermore, in an effort to address the
diversity-quality trade-off of synthetically gener-
ated data, (Montahaei et al., 2019) propose joint
diversity-quality metrics: MS-Jaccard similarity
calculated as the average n-gram Jaccard index of
the generated text, and Frechet BERT Distance
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(FBD) calculated as the Frechet distance between
the generated text distribution and the reference set
distribution while using BERT’s feature space for
the text.

Some approaches have been made to create a
statistical model that would serve as an indepen-
dent data evaluator. In their work, (Lowe et al.,
2017) propose an RNN-based Automatic Dialogue
Evaluation Model (ADEM) that predicts human
evaluation score for the generated utterance. The
drawback of this approach is that it requires addi-
tional data collection to train the model.

Despite a variety of approaches to annotated data
evaluation, there is no golden standard, moreover,
they often disagree on evaluation (Bhandari et al.,
2020). However, the real value of the generated
data can be only evaluated through the downstream
task, for example by estimating how much perfor-
mance improvement synthetic data can bring to the
targeted supervised NLU task.

In our work, we are connecting automated data
evaluation with the downstream tasks, and apply
it as a filtering mechanism to generated utterances.
Instead of attempting to build correlations with
expensive human evaluations, we indirectly eval-
uate the quality of the generated data through
the performance of the intent classification (IC)
and named entity recognition (NER) tasks on the
widely used Air Travel Information System (ATIS)
dataset (Hemphill et al., 1990).

In summary, our contributions are as follows:

1. We propose a novel synthetic text data evalu-
ation framework by adapting different word-
based and embeddings-based similarity mea-
sures for post-generation quality evaluation
linked to the performance improvement of the
targeted NLU problem on the example of IC
and NER tasks.

2. We propose a way to adapt a classification
model, which can serve as an independent
data evaluator and does not require additional
data collection.

3. We adapt generation models to produce la-
beled data with and without delexicalization.

4. We conduct experiments on ATIS dataset, a
standard benchmark dataset for intent classi-
fication and slot labelling. Our experimental
results show that proposed methods help to
improve generated data quality which reflects
in model performance improvements.

2 Synthetic data evaluation

Data sparsity is a common issue in multiple areas of
NLU research. It is often a difficult and costly exer-
cise for researchers to secure the required amounts
of high-quality annotated data to train their models.
In our work, we aim to generate synthetic data that
can be used to improve NLU model training. We
use the original training data along with intent and
slot labels as a source to the data generation model.
Each utterance u = w0, w1, ..., wn of length n is
represented as a sequence of tokens, where w0 is
utterance’s intent, and wi (i = 1..n) denotes the
ith slot of the utterance. In this paper, we will use
sentence and utterance interchangeably. Once data
is generated, we use several text evaluation met-
rics to filter out high-quality utterances that will
potentially bring greater benefit for the model.

2.1 Word-based sentence similarity
To evaluate the quality of the synthetic utterances
through word similarity, we calculate the n-gram
BLEU scores of the generated sentence pairing
with each sentence in the original training data with
the same intent. We also calculate the maximum of
the n-gram BLEU scores with all other intents, then
assign the difference between these two scores as
our maxBLEU score for the generated sentence.
This score considers both the similarity of the gen-
erated utterance to within-intent source data and the
dis-similarity to out-of-intent utterances. For each
generated utterance u for intent j, we calculate the
in-intent BLEU score BLEUj = BLEUN (u, Uj)
where N = min(4, length(u)), Uj is the reference
set of source utterances in intent j ∈ I , and calcu-
late the out-of-intent BLEU score as the maximum
BLEU scores across all other intents. Finally our
quality score for the generated utterance is given
by the difference:

maxBLEU =BLEUj−
maxBLEUN (u, Ui)i∈I,i 6=j (1)

Instead of maximization, we can also use aver-
age operation to estimate the out-of-intent score to
get the avgBLEU score:

avgBLEU =BLEUj−
meanBLEUN (u, Ui)i∈I,i 6=j (2)

maxBLEU score will show how the generated
utterance is similar to the closest intent, other than

19



the generated one j, while avgBLEU score reflects
how much close the utterance is to all other in-
tents on average. Inherently, the maxBLEU and
avgBLEU scores are similarity measures, while we
aim to preserve both the similarity and dissimilarity
within/out-of-intent that is in the original source
data. The Jaccard distance on the other hand mea-
sures both the similarity and the diversity of the the
data (Montahaei et al., 2019):

JD(Sui , Suj ) = 1− |Sui ∩ Suj |
|Sui ∪ Suj |

(3)

where ui, uj denote two different sen-
tences/corpora, Sui = w ∈ ui denotes the
set of words in the sentence ui. We apply
intra-group similarity check by using Jaccard
distance check, the steps are as follows:

1. for each intent j in the reference, calculate the
pairwise distance between each utterance and
take the mean as the intent threshold, tj ;

2. for each generated utterance u, based on
its first generated token (i.e. the intent
k it is predicted to be), calculate the Jac-
card distance between uand all sentences in
the reference intent group it falls into, if
mean(JD(u, um)um∈Uk

) < tk, then the gen-
erated sentence will be retained.

2.2 Embedding-based sentence similarity

In additional to token/ngram-based utterance simi-
larity check, we also utilize word embedding which
takes semantic context information into account for
word similarity. For a given utterance, we con-
struct a sentence embedding by averaging the em-
beddings of words composing in the sentence as
in embedding similarity (Sharma et al., 2017). To
compare the utterances, we use the popular cosine
distance

CD(ui, uj) = 1− ēui · ēuj

‖ēui‖‖ēuj‖
(4)

where ēui , ēuj denote the average sentence embed-
ding for sentences ui, uj respectively.

With this definition, we apply the same intra-
group similarity check algorithm as mentioned in
the previous session to filter the generated sen-
tences. In our experient, we use the pre-trained
fastText English embeddings (Grave et al., 2018).

2.3 Independent evaluator
Finally, we use a machine learning model to eval-
uate synthetic data quality. Unlike ADEM model
(Lowe et al., 2017), our evaluator, similar to the
filtering method used in (Anaby-Tavor et al., 2020),
does not aim to predict human evaluation scores.
Instead, it acts as an independently trained discrimi-
nator that assigns the probabilities for the utterance
to be real. For our evaluator, we first train a BERT-
based intent classification model on the train par-
tition of ATIS. To account for the data imbalance,
we add class weights calculated based on class fre-
quencies to the cross-entropy loss. This model is
then used to evaluate each synthetic utterance u.
An utterance is considered as legitimate and added
to the augmented set only if the model confidence
on predicting intent w0 = i, i ∈ I , is greater than
pre-defined threshold ti. Each threshold is calcu-
lated as follows:

ti =

{
max(pj), ∀j 6= i, j ∈ J, |J | > 1

min(pi), if J = {i}
(5)

where J ⊂ I is a set of all hypotheses for utter-
ances that in the reference belong to the intent
i ∈ I .

3 Experiments

In this section, we describe experimental setup,
evaluation metrics and provide the summary of the
experimental results.

3.1 Data
In our experiments, we use the Airline Travel In-
formation System (ATIS) dataset imported from
the Microsoft Cognitive Toolkit (CNTK). ATIS is a
standard benchmark dataset widely used for intent
classification and slot filling tasks. It consists of
a set of spoken utterances in the context of airline
information, classified into one of 26 intents with
127 slot labels. Table 1 shows train, dev and test
sizes per intent. We note that the intent distribution
of ATIS is highly imbalanced with over 70% of the
data belonging to the one intent (atis_flight) while
others intents have very low number of utterances
sometimes within only one subset, train, dev or
test.

3.2 Delexicalization
Similar to (Yu et al., 2020), in order to reduce
noise and add more variety to the generated data,
we experiment with using delexicalized utterances.
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Table 1: Utterance count in training, development and
test partition of ATIS dataset per intent.

intent train dev test
atis_flight 3309 357 632
atis_airfare 385 38 48
atis_ground_service 230 25 36
atis_airline 139 18 38
atis_abbreviation 130 17 33
atis_aircraft 70 11 9
atis_flight_time 45 9 1
atis_quantity 41 10 3
atis_flight#atis_airfare 19 2 12
atis_city 18 1 6
atis_airport 17 3 18
atis_distance 17 3 10
atis_capacity 15 1 21
atis_ground_fare 15 3 7
atis_flight_no 12 0 8
atis_meal 6 0 6
atis_restriction 5 1 0
atis_airline#atis_flight_no 2 0 0
atis_aircraft#atis_flight#atis_flight_no 1 0 0
atis_cheapest 1 0 0
atis_ground_service#atis_ground_fare 1 0 0
atis_airfare#atis_flight_time 0 1 0
atis_airfare#atis_flight 0 0 1
atis_day_name 0 0 2
atis_flight#atis_airline 0 0 1
atis_flight_no#atis_airline 0 0 1

We preprocess the data by replacing slot values
(some consisting of multiple tokens) with their
corresponding slot labels, before feeding it into
our data generation model. Once we obtain the
generated data, we re-fill the slot labels present in
these utterances with randomly sampled slot values
which correspond to the label. The utterances thus
created are used for the downstream tasks.

The following are the detailed steps together
with examples:

• Use original training data to create catalogs,
that for each label will contain a list of corre-
sponding slot values extracted from catalogs,
e.g.: {city_name: [london, denver, new york,
boston]};

• For input data in generation model,
anonymize slot values with slot labels,
e.g. from “buy a ticket to denver” to “buy
a ticket to city_name". This will help the
generation model focus on carrier phrase
and learn syntactic variations, rather than
semantic similarities between slot values,
as well as help to reduce the amount of
noise in generated data, such as when model
incorporates meaningless or confusing parts

of the slot values (for example, "find the
ticket price from new to san");

• Generate data using data generation model,
e.g. generate sentence like “atis_airfare find
the ticket price from city_name to city_name"
with intent appended to the beginning of the
utterance;

• Fill the slot value with catalogs by random
sampling, e.g. from generated utterance “find
the ticket price from city_name to city_name"
we backpropagate to "find the ticket price
from new york to boston".

3.3 Data generation

For data generation, we use the Sequence Gen-
erative Adversarial Networks (SeqGAN) model
developed by (Yu et al., 2017). Generative Ad-
versarial Nets (GANs) consist of two competing
networks, generator and discriminator. Generator
network implicitly learns data distribution through
the feedback it receives from discriminator net-
work, that is trained to distinguish fake and real
data points. Unlike classic GANs, SeqGAN specif-
ically addresses the issues of discrete tokens gener-
ation through a stochastic policy in reinforcement
learning that will guide token-by-token sequence
generation. The discriminator judges at sequence-
level with the intermediate state-action value calcu-
lated using Monte Carlo (MC) search. While (Yu
et al., 2017) applied the MC search at sequence-
level, (Golovneva and Peris, 2020) expanded this
work to apply the reinforcement learning reward as
an average of the token-level rewards. Their results
showed significant improvement in accuracy met-
rics for domain classification, intent classification,
slot F1 and Frame accuracy in their task mimicking
the bootstrapping of a new language. We use their
methods as a basis for our data generation tasks
here. It is worth noting, that synthetic data eval-
uation approach does not depend on the method
chosen for data augmentation, but is driven by the
downstream supervised NLU tasks.

Table 2: Performance results for stack-propagation
model on ATIS dataset: baseline.

method slot F1 intent acc sentence acc
baseline, published 95.900% 96.900% 86.500%
baseline, in-house 96.031% 96.678% 89.212%
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Table 3: Performance results for stack-propagation model on ATIS dataset in terms of slot F1 score, intent accuracy
(acc), and sentence acc. All metric values are calculated using the average of multiple trials, and t-test is used to
determine whether the results are statistically significant or not. In the table, the results with * are statistically
significant with p < 0.1, and best performing model for each metric is highlighted in bold. Utterance counts are
provided for train and dev partitions combined. Data were generated with (wd) and without (nd) delexicalization.

method # gen
utt

# utt
after
filter

total
# utt slot F1 intent

acc
sentence

acc

baseline 4,978 96.031% 96.678% 89.212%
no filtering, nd 7,519 12,497 95.996% 91.601% 85.330%
maxBLEU, nd 7,519 2,637 7,615 96.172% 96.529% 89.959%*
weighted BERT, nd 7,519 2,503 7,481 95.983% 97.088% 89.586%*
jaccard, nd 7,519 3,317 8,295 96.308% 96.267% 89.436%
avgBLEU, nd 7,519 3,099 8,077 95.948% 96.417% 89.205%
cosine, nd 7,519 1,992 6,731 95.900% 95.633% 88.578%
BERT, nd 7,519 4,739 9,717 94.882% 96.081% 83.763%
no filtering, wd 9,591 14,569 90.488% 86.338% 70.549%
maxBLEU, wd 9,591 1,152 6,130 95.926% 96.715% 89.287%
weighted BERT, wd 9,591 4,885 9,863 96.044% 96.939% 89.548%*
jaccard, wd 9,591 3,348 8,326 95.998% 96.753% 89.474%
avgBLEU, wd 9,591 3,499 8,477 95.056% 95.529% 88.026%
cosine, wd 9,591 1,834 6,812 95.755% 96.305% 88.578%
BERT, wd 9,591 5,332 10,310 94.134% 96.001% 83.521%

3.4 Model Architecture

For IC and NER tasks, we select one of the re-
cent state-of-the-art models, that achieved high per-
formance in intent classification and slot labeling
tasks on the ATIS dataset. A Stack-Propagation
Framework with Token-Level Intent Detection pro-
posed by (Qin et al., 2019) for joint intent detec-
tion and slot filling, that explicitly use intent in-
formation for slot labeling task. Unlike multitask
framework, where two tasks share only encoder,
stack-propagation explicitly provides features from
one task (IC) to another (NER). Additionally to ac-
count for contextual information, BiLSTM encoder
is enriched with self-attention.

3.5 Baseline

We evaluate model performance according to the
three metrics: intent accuracy for IC task, micro-
averaged slot F1 for NER prediction, and overall
sentence accuracy which is the relative number of
utterances for which the intent and all slots are
correctly identified. First we train the model on
non-augmented ATIS dataset, and average results
over 3 runs. As shown in the Table 2, results pub-
lished by (Qin et al., 2019) on application of a
Stack-Propagation Framework to ATIS dataset are
consistent with our results.

3.6 Results

In Table 3, we provide a summary of all experimen-
tal results which include data counts both pre- and
post-filtering and final metric values. Using Seq-
GAN model described in Section 3.3) we generate
two sets of 9600 utterances, one with delexicaliza-
tion and one without. The generated data sets are
approximately twice the size of the original train-
ing partition. Although we use training data for all
intents as an input to the data generation model, we
only augment utterances for underrepresented in-
tents, which excludes the biggest atis_flight intent.
We then remove any generated utterances which do
not start with a valid intent. This led to 7519 and
9591 augmented sentences with and without delex-
icalization respectively. We apply our six filtering
mechanisms as described in Section 2. based on
the following approaches: maxBLEU, avgBLEU,
Jaccard distance, cosine distance, BERT-based eval-
uator with and without class weight added to the
loss function. We use the resulting filtered sets as
augmentation for each experiment and present re-
sults of our quality evaluation tasks (IC and NER)
in Table 3.

Our results show that three filtering methods
consistently outperform the baseline, regardless
of whether delexicalized or not, when considering
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the overall sentence accuracy metric. These are
maxBLEU and Jaccard scores, as well as BERT
model with class weights. The overall highest im-
provement in sentence accuracy in observed when
using maxBLEU with no delexicalization.

Contrary to expectations, we do not see much
improvement offered by the use of delexicalization,
with delexicalized augmentation outperforming
non-delexicalized augmentation only in the case of
Jaccard-based filtering. Filtering using the word-
based sentence similarity methods - maxBLEU and
Jaccard - show similar results, while the BERT-
based classifier with weighted loss function outper-
forms on intent classification task. This is most
likely due to the fact that the classifier was trained
on the intent classification task at the slot value
level, so it can be expected to be better at filtering
those sentences where true sentence intent does not
match the first token of the generated sequence,
while it does not capture the correctness of the la-
bels. maxBLEU shows better performance than
aveBLEU, likely due to it being better at detecting
and filtering those generated utterances that be-
long to a wrong intent. maxBLEU filtering without
delexicalization produces the best overall sentence
accuracy. In particular, in Table 4 we see up to
33% in overall sentence accuracy improvement for
targeted underrepresented intents.

Table 4: Sentence accuracy comparison between in-
house baseline and model with training data augmented
by filtering generated data with maxBLEU score crite-
ria. Per-intent performance shows significant improve-
ments on intents with small amount of training data.

intent # test utt baseline maxBLEU
atis_flight 632 94.357% 94.568%
atis_airfare 48 97.222% 97.917%
atis_airline 38 92.105% 93.860%
atis_ground_service 36 66.667% 66.667%
atis_abbreviation 33 76.768% 87.879%
atis_capacity 21 84.127% 82.540%
atis_airport 18 59.259% 62.963%
atis_flight#atis_airfare 12 41.667% 47.222%
atis_distance 10 40.000% 43.333%
atis_aircraft 9 81.481% 74.074%
atis_flight_no 8 100.000% 100.000%
atis_ground_fare 7 66.667% 66.667%
atis_city 6 88.889% 61.111%
atis_meal 6 55.556% 77.778%
atis_quantity 3 77.778% 88.889%
atis_day_name 2 0.000% 0.000%
atis_flight_time 1 33.333% 66.667%
atis_flight#atis_airline 1 33.333% 0.000%
atis_flight_no#atis_airline 1 33.333% 33.333%
atis_airfare#atis_flight 1 0.000% 0.000%

We run additional experiments to demonstrate

that the maxBLEU filtering allows us to obtain
higher quality utterances than simple random sam-
pling. We randomly sample utterances from our
GAN-generated dataset to match the utterance
count yielded by maxBLEU filtering and add those
to the original training set as shown in Table 5.
We then train our NLU models on this dataset and
obtain metric values for comparison. The results
show that in all evaluations obtained using a train
set augmented with maxBLEU filtered data sig-
nificantly outperform those obtained using a train
set augmented with random-sampled data (t-test
p < 0.1). This shows that the maxBLEU filter-
ing method helps in choosing utterances of signif-
icantly higher quality when compared to simple
random sampling.

Table 5: Comparing maxBLEU filtering with random
sampling.

method slot F1 intent acc sentence acc
rand sample, nd 95.910% 94.401% 86.861%
maxBLEU, nd 96.172% 96.529% 89.959%*

4 Conclusions

We have explored a number of different approaches
for augmented data evaluation, that we used as a
filter for generated data. We evaluated the effec-
tiveness of the evaluations metrics based on the
selected targeted supervised NLU tasks, intent clas-
sification and named entity recognition. Experi-
ments show that the maxBLEU filtering method
without delexicalization produces the best over-
all/sentence accuracy, while weighted BERT-based
classifier and Jaccard distance provide the best per-
formance in terms of intent accuracy and slot F1
scores, respectively. Filtering through word-based
sentence similarity measures - maxBLEU and Jac-
card - show consistent improvement across all met-
rics, while BERT-based classifier with weighted
loss function filtering significantly outperforms on
intent classification task. We relate it to the fact
that being trained on the intent recognition task on
full sentences, the classifier network can capture
the correctness of the utterance intents, while it
underperforms on evaluating the correctness of the
labels.
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