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Abstract

Logic-to-text generation is an important yet un-
derrepresented area of natural language genera-
tion (NLG). In particular, most previous works
on this topic lack sound evaluation. We ad-
dress this limitation by building and evaluating
a system that generates high-quality English
text given a first-order logic (FOL) formula as
input. We start by analyzing the performance
of Ranta (2011)’s system. Based on this anal-
ysis, we develop an extended version of the
system, which we name LOLA, that performs
formula simplification based on logical equiva-
lences and syntactic transformations. We carry
out an extensive evaluation of LOLA using stan-
dard automatic metrics and human evaluation.
We compare the results against a baseline and
Ranta (2011)’s system. The results show that
LoOLA outperforms the other two systems in
most aspects.

https://gitlab.nl4xai.eu/eduardo.
calo/LoLa

L

1 Introduction

Logical formalisms play a pivotal role in many ar-
eas of science. Hence, grasping the meaning of
these formalisms is crucial for many scholars and
researchers. However, this task is not straightfor-
ward, and sometimes even experienced logicians
might have trouble deciphering a complex formula.

Natural language generation (NLG) techniques
can be employed to ease this task. However, logic-
to-text generation is understudied, compared to
text generation from other inputs (Reiter and Dale,
2000; Gatt and Krahmer, 2018). One notable ex-
ception (see §2 for some other examples) is Ranta
(2011), a rule-based system that translates between
first-order logic (FOL) formulae and natural lan-
guage (NL). While providing a promising starting
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elzevanderwerf@gmail.com

point for logic-to-text generation, the system is not
evaluated. In our work, we first address this gap
via a human translation quality assessment (TQA).
Based on this, we propose LOLA, a novel logic-to-
text system extending Ranta (2011)’s architecture,
which searches for the most suitable formula for
translation among the pool of logically equivalent
formulae.

We also address one of the many issues that
make NLG evaluation challenging (Novikova et al.,
2017; Zhou et al., 2022), namely, defining the core
dimensions to evaluate (Howcroft et al., 2020),
especially issues of meaning vs. grammaticality.
These issues come to the fore in logic-to-text gener-
ation, where text should be faithful to the original
formula, comprehensible, and fluent. These are
the central requirements to look for, as text gen-
erated from logic can be extremely disfluent and
incomprehensible (e.g., a literal translation from a
formula), while still being faithful. Furthermore,
evaluating faithfulness cannot rely on checking fac-
tual accuracy (as in, e.g., WebNLG (Gardent et al.,
2017)), due to the problem of logical form equiv-
alence (Shieber, 1993), which implies that every
formula of FOL is equivalent with infinitely many
other FOL formulae, where the question of whether
two FOL formulae are logically equivalent is, in
general, undecidable. This complicates the prob-
lem of finding a formula that is most suitable for
being input to an NLG program.

There are also potential trade-offs between eval-
uation dimensions. For instance, more fluent real-
izations may sometimes be more ambiguous with
respect to a formula, compromising faithfulness
(Khan et al., 2012). To use a well-worn example,
Everyone loves someone can be seen as a correct
realization of Vz(Person(x) — Jy(Person(y) A
Love(z,y))), but the sentence is ambiguous, also
allowing for the more specific interpretation that
there exists someone who is loved by everyone
(i.e., with the scope of the quantifiers reversed).
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In our work, we use a deterministic procedure for
generating text from formulae, allowing us to hold
faithfulness constant in order to address issues of
comprehensibility and fluency.

Our work also addresses the question of which
human evaluation task is appropriate for a given
system (Gehrmann et al., 2022), proposing a novel
evaluation using natural language inference (NLI;
Storks et al., 2019; Poliak, 2020).

In outline, the main contributions of this paper
are the following:

i) We analyze the quality of the translations of
the FOL-to-text system presented in Ranta
(2011) via a human translation quality assess-
ment.

ii) We exploit the outcomes of the quality assess-
ment to develop the improved system LOLA.

iii) We present the results of a comprehensive
automatic and human evaluation of LOLA.

2 Related Work

Although receiving far less attention than other
tasks, generating NL text from (logically rich)
meaning representation (MR) formalisms has a rela-
tively long tradition in NLG, with approaches rang-
ing from rule-based (Wang, 1980; Appelt, 1987;
Shieber et al., 1990) to statistical (Lu and Ng, 2011;
Basile, 2015) and neural models (Wu et al., 2022).

Several MRs have been the focus of the task:
logic-based (e.g., description logic (Androutsopou-
los et al., 2013), FOL (Mpagouli and Hatzilyger-
oudis, 2007), and discourse representation struc-
tures (Liu et al.,, 2021; Wang et al., 2021)),
graph-based (e.g., Abstract Meaning Represen-
tation (AMR; Konstas et al., 2017; Bai et al.,
2022, i.a.)), and formal languages (e.g., SPARQL
(Ngonga Ngomo et al., 2013; Ell et al., 2015)).

Some of these MR formalisms are much simpler
than FOL. For example, AMR has less descriptive
power (Bos, 2016), whereas datasets such as GEO-
QUERY (Zelle and Mooney, 1996) and RoBOCUP
(Chen and Mooney, 2008), used in, e.g., Wong and
Mooney (2007), omit logical operators and vari-
able binding. For these reasons, we select FOL as
our formalism, incorporating different types of for-
mulae and defining a concept of well-behavedness
(see §4.2) to characterize those best suited for logic-
to-text translation.

Apart from Ranta (2011), closest to our work are
the following approaches. Phillips (1993) considers
the problem of logical form equivalence. Mpagouli

and Hatzilygeroudis (2009) present a rule-based
approach to generate text from FOL with some syn-
tactic optimizations. Coppock and Baxter (2010)
propose an algorithm based on dynamic semantics
for a specific class of formulae. Kutlak and van
Deemter (2015) use background axioms to simplify
a FOL formula. Flickinger (2016) generates multi-
ple paraphrases from an input formula. Manome
et al. (2018) is one of the few logic-to-text ap-
proaches using a sequence-to-sequence framework.
Kasenberg et al. (2019) generate explanations from
a well-defined logical formalism in the context of
human-robot dialogue.

A common thread in most of this work is the
absence of (proper) evaluations. In particular, as
in Ranta (2011), the proposals in Phillips (1993),
Mpagouli and Hatzilygeroudis (2009), Coppock
and Baxter (2010), and Kutlak and van Deemter
(2015) do not include any attempt at systematic
evaluations. In Flickinger (2016), there is a men-
tion of a very preliminary inspection of the para-
phrases generated, with pointers for improving the
evaluation left for future work. Manome et al.
(2018) make an effort to move beyond standard
metrics proposing an automatic evaluation based
on recognizing textual entailment and present an in-
formal analysis of some generated sentences. How-
ever, a proper human evaluation is missing. Kasen-
berg et al. (2019) do not evaluate their system using
automatic metrics. Yet, they perform a human eval-
uation based on three dimensions and statistically
analyze the results. We aim to build a system that,
given a logical formula, will produce effective texts
(i.e., optimally helpful to the needs of the user)
(Mayn and van Deemter, 2020), thus, carrying out
proper evaluations is one of the main focuses of
our work.

3 Model and Data

Ranta (2011) We consider the logic-to-text gen-
eration system presented in Ranta (2011)" as the
starting point for our experiments. The system
translates a string from one language into another
in two steps: (i) the string in the source language
is parsed into an abstract syntax tree (AST), and
(i1) the AST is linearized into a string in the target
language via language-specific concrete syntax.
The abstract syntax defines functions for several
logical constructs, while concrete syntaxes are for-

"https://github.com/GrammaticalFramework/
gf-contrib/tree/master/cade-2011
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mulated to generate FOL linearizations in six NLSs.
In addition to this, the system performs some core-
to-extended AST manipulations (e.g., flattening, ag-
gregation, in-situ quantification, verb negation, and
reflexivization) to improve fluency. Figure 3 in Ap-
pendix A shows a graphical visualization of Ranta
(2011)’s system. The system can parse all well-
formed FOL formulae without identity (Shapiro and
Kouri Kissel, 2021), containing unary and binary
predicates and bound variables.

Grade Grinder Corpus The Grade Grinder Cor-
pus (GGC; Barker-Plummer et al., 2011) is a corpus
of > 4.5m FOL translations (correct and incorrect)
of ca. 300 sentences made by 55k students answer-
ing exercises in Barwise et al. (2000). Each NL
sentence can have multiple (logically equivalent)
correct answers.

We select just the portion of answers that are
marked as correct and filter the formulae that are
not parsable by Ranta (2011)’s system (i.e., formu-
lae with time stamps, mathematical operators, 3—
and 4—ary predicates, the identity symbol, and
more than 100 characters). This yields around
5, 500 formulae.

Random Generator In GGC, formulae are un-
derstandable by humans and have corresponding
sentences that are semantically and pragmatically
acceptable. However, it might not be representative
of the space of all possible formulae. Therefore, we
additionally create a tool that generates a random
FOL formula in the space of all possible formulae
for a given domain lexicon.

4 Assessing Ranta (2011)

To judge the quality of Ranta (2011)’s translation
system, we set up a translation quality assessment
(TQA; Castilho et al., 2018; Han et al., 2021). A
group of human evaluators was asked to analyze
a list of English translations from FOL formulae,
generated by Ranta (2011)’s system. Specifically,
we were interested in receiving feedback on three
dimensions: (i) faithfulness (i.e., whether the gen-
erated text conveys all and only the information
of the input formula), (ii)) comprehensibility (i.e.,
whether the generated text is clearly understandable
by the evaluator), and (iii) fluency (i.e., whether
the generated text is grammatically accurate and
natural-sounding). The evaluation dimensions, es-
pecially faithfulness and comprehensibility, are not
entirely independent of each other. Nonetheless,

they possess their own traits that we wanted to as-
sess separately. A problematic point is establishing
faithfulness to an underlying formula in presence
of an ambiguous or incomprehensible sentence. To
mitigate this problem, in the NLI task introduced
for the human evaluation (see §6.2), we gave par-
ticipants the opportunity to signal text that is am-
biguous or incomprehensible.

A total of 10 participants (master students, 4
males and 6 females, with a median age of 24.0
years, SD = 1.2) with sufficient knowledge of logic
and proficiency in English? voluntarily participated
in the study.

Setup Evaluators were shown batches of 25
formula-translation pairs consisting of (i) a ran-
dom selection of 10 formulae extracted from the
parsable portion of the GGC corpus and their Ranta
(2011)’s translations, (ii) 10 randomly generated
formulae and their Ranta (2011)’s translations, and
(iii) 5 filler formulae with incorrect translations
created manually. All participants saw the same 5
filler items. The purpose of the fillers was to verify
the participants’ knowledge of FOL. Were at least
2 out of 5 filler items not identified as such by a
participant, their survey response would be ignored
entirely in the analysis. None of the participants
was omitted by this criterion. See Appendix G
for details on the construction of the fillers and
Table 13 for the complete list.

To ensure coverage, each participant was pre-
sented with a different batch of experimental
items.> They were required to judge formula-
translation pairs under the three dimensions men-
tioned above. In particular, for each pair, they had
to answer a polar question on the translation’s faith-
fulness with the original formula, and rate on a
5—point Likert scale the translation’s comprehensi-
bility and fluency. Moreover, the evaluators were
asked to perform full post-editing (Hu and Cad-
well, 2016) on the translations. The instructions
given, the questions asked, and one example batch
of experimental items can be found in Appendix G.

The participants involved were students of a MSC in arti-
ficial intelligence taught in English, which requires knowledge
of logic (in particular, propositional logic and FOL) and profi-
ciency in English for enrolling. Moreover, at the beginning of
the questionnaire, participants were required to rate their own
knowledge of FOL on a 5—point Likert scale.

3Presenting different batches to each subject prevented
us from computing some quantitative analyses, such as inter-
annotator agreement. However, the main goal of the TQA was
to perform a qualitative study of the system performance and
get a more thorough overview of the quality of the translations.
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4.1 TQA Results

Evaluators marked 91% of Ranta (2011)’s transla-
tions as faithful to the original formula. Most of
the translations marked as unfaithful consisted of
filler translations. The few non-filler translations
that were marked incorrectly were ambiguous and
misunderstood by the participants. Thus, we can
safely assume that Ranta (2011)’s system, due to
its deterministic nature, is robust enough in cor-
rectly parsing the structure of the input formula,
producing faithful translations.

The average rating of the translations was 3.99
(SD = 1.10) for comprehensibility and 3.26 (SD
= 1.32) for fluency. Interestingly, we found that
the average faithfulness, comprehensibility, and
fluency of the translations from randomly gener-
ated formulae are lower than those of the transla-
tions from the GGC formulae, as shown in Table 1.
We observed a moderate positive correlation (us-
ing Pearson’s r coefficient) between the compre-
hensibility and fluency of the (non-filler) transla-
tions (r(198) = 0.60, p < .01). Furthermore, we
found a weak negative correlation between formula
complexity (in number of connectives, i.e., a for-
mula with more connectives is more complex) and
comprehensibility of the corresponding translations
(r(198) = —0.18, p < .01) and a weak negative
correlation between formula complexity and flu-
ency of the corresponding translations (r(198) =
—0.24, p < .01). We also observed weak negative
correlations between translation length (in number
of words) and comprehensibility (r(198) = —0.23,
p < .01), as well as between translation length and
fluency (r(198) = —0.34, p < .01).

Type #  Faithfulness Comprehensibility Fluency
I o I o
GGC 100 93% 4.10 1.02 3.37 1.34
RG 100 88% 3.87 1.15 3.15 1.29

Table 1: The percentage of translations marked as faith-
ful, and the mean (1) and standard deviation (o) of the
comprehensibility and fluency of translations on a scale
of 1 to 5, reported for corpus formulae (GGC) vs. ran-
domly generated formulae (RG).

Post-Edits Post-edits were suggested for 51% of
Ranta (2011)’s translations and are often shorter
(in word count) than the original translations. The
edits can be roughly divided into three categories:
(i) syntactic optimizations similar to the core-to-
extended AST manipulations introduced in Ranta
(2011) (see §3), (ii) conversions based on logical
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equivalences, and (iii) paraphrases using a variety
of linguistic constructions. Table 2, Table 3, and Ta-
ble 9 respectively show some examples for each of
the three categories. See Appendix D for a detailed
description of these categories.

4.2 Well-Behavedness

Ranta (2011)’s system accepts as input all well-
formed FOL formulae (see §3). However, the TQA
results suggest that it might be practical to narrow
down the definition of formulae suitable for trans-
lation to a more restricted subset. The set of well-
formed formulae also includes formulae which
the participants in the TQA had difficulties with
or provided post-edit suggestions for, i.e., formu-
lae with vacuous quantification (e.g., (V) Even(2)
or (Vx)(Vx) Even(x)), formulae with double nega-
tion (e.g., "~ Fven(2)), formulae with nested im-
plication (e.g., (Odd(1) — (Odd(3)) — Odd(5)),
and formulae with 8 or more connectives. Translat-
ing literally such formulae could result in incom-
prehensible and disfluent sentences.

Therefore, we operationalize well-behavedness
as ‘the property that a formula should have to be
structurally suitable as input for translation into
NL’. Well-behavedness is achieved by applying
a number of rules to avoid formulae with certain
properties, such as double negation and vacuous
quantification. The formal definition is present in
Appendix B. Formulae that are not well-behaved
will be referred to as ill-behaved.

S LoLa

Based on the post-edits we received in the TQA
described in §4, we developed LOLA (system for
translating between Logic and Language), a new
logic-to-text system that keeps Ranta (2011)’s orig-
inal system as its backbone but improves it by ex-
tending its algorithm. In particular, LOLA imple-
ments the first two categories of post-edits derived
from the results of the TQA, i.e., core-to-extended
AST-like manipulations and logic-based simplifica-
tion, leaving out the third one (stylistic paraphrases)
for future work.

The first class of improvements extends the list
of Ranta (2011)’s core-to-extended AST conver-
sions with some additional optimizations. See Ap-
pendix C for details on their implementation. The
second class of improvements manipulates an in-
put FOL formula through the application of logi-
cal equivalence laws, based on Partee et al. (1993),



Optimization Original Formula

Ranta (2011) Translation

Post-Edit

Moving the negation inward
In-situ quantification

~(@) FrontOf (x, a)
(3z)Small(x)

It is not the case that there is an element x such that x is in front of a.
There is an element x such that x is small.

There is no element in front of a.
Something is small.

Predicate-sharing aggregation  Larger(d,b) A Larger(e,b) A FrontOf(b,e) A FrontOf(b,d) d is larger than', e is larger than b, b is in front of € and b is in front of d.  Both d and e are larger than b, and b is in front of both e and d.

Reflexivization ~SameShape(a, a)

a is not of the same shape as a.

a does not have the same shape as itself.

Table 2: Optimizations similar to Ranta (2011) core-fo-extended AST manipulations suggested in the post-edits of
the TQA, with the original formulae and Ranta (2011) translations.

Equivalence Law Original Formula Ranta (2011) Translation

Post-Edit

Double negation
Redundant i
De Morgan’s laws

V FrontOf (a, b))
A —SameCol(e, c) A ~SameCol(e, d)

It is not the case that it is not the case that a is medium or in front of b.

@ is medium or in front o b.

c and e is not in the same column as d.

Table 3: Optimizations based on logical equivalence laws suggested in the post-edits of the TQA, with the original

formulae and Ranta (2011) translations.

with two additional laws to deal with vacuous quan-
tification. See Table 8 for the list of laws.

The search for the optimal translation is per-
formed as follows. A tree of possible formula
manipulations is constructed, with as root node
the input formula’s AST, and where each node’s
children are manipulations of the AST that result
in a different AST. This tree has a maximum depth
because in many cases there are infinitely many ma-
nipulations. The maximum depth was experimen-
tally set to 5. After the construction of the search
tree, all ASTs in the tree are optimized with the
full list of core-to-extended AST conversions and
linearized, after which the shortest linearization in
the tree is returned. The results of the TQA (see
§4.1) show that there is a weak negative correla-
tion (r(198) = —0.23) between translation length
and its assessed comprehensibility but a somewhat
stronger negative correlation (r(198) = —0.34) be-
tween translation length and its assessed fluency.
Therefore, we decided to pick the length of the
translation (in number of words) as the selection
criterion.* Figure 4 in Appendix C shows an ex-
ample of a search tree of formula manipulation
sequences.

6 Evaluation

To assess the quality of FOL to NL translations of
LoLA, we set up a thorough comparative evalu-
ation experiment. We compared the translation
quality of three different systems: (i) a BASE-
LINE generating near-literal translations of for-
mulae, which is Ranta (2011)’s system without
its core-to-extended AST optimizations, (ii) Ranta
(2011), and (iii) LOLA. We run standard auto-
matic NLG metrics based on n—gram overlap and
semantic similarity, conduct a human evaluation,
and compute correlations between the results. The

*If there are multiple shortest linearizations, the first oc-
currence encountered in a depth-first traversal is chosen.

dimensions on which the translation quality of the
systems was evaluated are comprehensibility and
fluency.’ The evaluation also partly focused on
well-behaved vs. ill-behaved formulae (see §4.2),
investigating how different types of formulae im-
pact the quality of the translations.

6.1 Automatic Evaluation

For the automatic evaluation, we considered all
the formulae included in the parsable portion of
the GGC (see §3) with their associated ground
truth NL references. Each formula was given as
input to the three systems to be translated into En-
glish.® We then compared the realizations of the
three systems with the ground truth references. We
used seven automatic metrics, three of which are
based on n—gram overlap, namely, BLEU (Papineni
etal., 2002),7 METEOR (Banerjee and Lavie, 2005),
and ROUGE-L (Lin, 2004), two on ELMo embed-
dings (Peters et al., 2018), namely, Word Mover’s
Distance (WMD; Kusner et al., 2015)® and Sen-
tence Mover’s Similarity (SMS; Clark et al., 2019),°
and two on BERT (Devlin et al., 2019), namely,
BERTScore (Zhang et al., 2020),'° and SBERT
(Reimers and Gurevych, 2019).'"! For BERTScore,
METEOR, ROUGE-L, and SacreBLEU, we used the
implementations provided by Hugging Face (Wolf

°In contrast to the TQA (see §4), faithfulness was not con-
sidered one of the evaluation dimensions because the results
of the TQA show that the translations of Ranta (2011) are
always faithful. This also holds for BASELINE (since the
extended syntax constructs are inherently equivalent to their
core syntax counterparts), and remains true for LOLA (since
the formula simplifications are based precisely on the laws of
logical equivalence).

6See Table 10 in Appendix E for some examples.

"We used the sacreBLEU (Post, 2018) implementation for
improved reproducibility.

8https: //github.com/src-d/wmd-relax

9https: //github.com/eaclarkd7/sms

OWe used the model roberta-large_L17_no-idf.

""We computed cosine similarity after obtaining sentence
embeddings with the model all-distilroberta-v1.
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et al., 2020).'% Table 4 summarizes the results ob-
tained.

System n—gram-based Metrics Semantics-based Metrics

METEOR ROUGE-L SacreBLEU BERTScore SBERT  SMS  WMD
BASELINE 46.66 31.46 9.69 88.10 72.18  6.30 1.19
Ranta (2011)  50.10 36.54 11.70 89.00 72.93  23.68 14.69
LoLa 53.87 45.01 17.27 90.77 77.89 5411 3892

Table 4: Performance of the three systems against the
GGC ground truth references according to the automatic
metrics. All scores are reported on the same scale to
improve readability.

LoLA outperforms the other two systems on all
metrics. However, in the context of logic-to-text
generation, the results of metrics based on n—gram
overlap vs. metrics based on semantic similarity
should be interpreted differently. The texts that we
are comparing (i.e., GGC ground truth references
and texts generated by the three systems) differ
considerably in their structural realization, while
keeping the same underlying meaning (i.e., they
are paraphrases). This is due to the fact that the
GGC ground truth references explain the logical
formulae, which, in turn, are given as input to the
three systems that operate in deterministic ways,
ensuring faithfulness of the output texts. Therefore,
we expect the results of metrics based on seman-
tic similarity to be comparable across the three
systems. On the contrary, we should notice more
variance with metrics based on n—gram overlap,
since they are more reliant on the surface structure
of the texts.

Nevertheless, BERTScore is the only semantics-
based metric that is close to following the expected
behavior. This might be an additional indication
that neural language models are not capable yet
to capture deep semantics of NLs, but are still bi-
ased towards morphosyntactic realizations (Bender
and Koller, 2020). On the other hand, we can ob-
serve substantial variance in the results involving
n—gram-based metrics. All these metrics favor
LoLA, which apparently creates texts structurally
closer to the original GGC ground truth references.

6.2 Human Evaluation

The human evaluation consisted of two tasks: (i) a
natural language inference (NLI) task to assess the
comprehensibility of the translations and (ii) a flu-
ency ranking (FR) task (Bojar et al., 2014) to assess
the fluency of the translations. The instructions
given and the questions asked to the participants

12https ://huggingface.co/evaluate-metric

can be found in Appendix H.

Half of the formulae used in the experimental
items were extracted from the GGC, while the other
half were randomly generated. This resulted in a set
of formulae that contained both well-behaved and
ill-behaved formulae and was representative of the
entire space of FOL formulae. Each formula was
given as input to the three systems to be translated
into English.

A total of 21 participants (researchers and stu-
dents, 9 males and 12 females, with a median age
of 25.0 years, SD = 12.2) with sufficient knowl-
edge of logic and proficiency in English!® were
recruited for the task.

Setup The rationale for using NLI is that it taps
comprehension, allowing us to gauge the extent
to which FOL translations by different systems fa-
cilitate inference. In this case, the fact that the
underlying meaning is captured by a logical for-
mula ensures that the task is highly controlled. Ad-
ditionally, NLI allows checking more objectively
how well participants understand text, removing
the factor of subjectivity that characterizes other
evaluation methods such as Likert scales.

The NLI task was framed in such a way that the
three system translations (one per system) of the
same formula were considered as premises associ-
ated with the same hypothesis (manually crafted)
each time. An illustration of this is presented in
Table 5. The third answer option Other was added
for cases in which the premise was ambiguous or
unclear for the participant.'#

Participants were randomly assigned to one of
three groups. Items for the experiment (where an
item consists of a formula translation by only one
of the three systems and the associated hypothe-
sis) and participant groups were counterbalanced
by rotating through a 3 (system) x 3 (participant
group) Latin square (Fisher, 1925). This ensured
that the experimental items were counterbalanced,
so that every item was shown to approximately the
same number of participants and every participant
was shown the same number of items (42), while
participants only saw one system translation per

13 All participants had taken at least one course on FOL. Fur-
thermore, at the beginning of the questionnaire, participants
were asked to rate their knowledge of logic on a 4—point Lik-
ert scale and their proficiency in English on a 5—point Likert
scale.

'“In the analysis, the Other option was always marked
incorrect because ambiguous and unclear translations are less
understandable.
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formula.

BASELINE Does the hypothesis automatically follow from the premise?
Premise: “b is a cube or it is not the case that b is a cube
and c is a cube.”
Hypothesis:  “only c is a cube.”
‘ Yes ‘ No ‘ Other ‘
Ranta (2011) | Does the hypothesis automatically follow from the premise?
Premise: “All these hold:
- b is a cube or b is not a cube;
- cisacube”
Hypothesis: ~ “only c is a cube.”
‘ Yes ‘ No ‘ Other ‘
LoLa Does the hypothesis automatically follow from the premise?
Premise: “cis acube.”
Hypothesis:  “only c is a cube.”
‘ Yes ‘ No ‘ Other ‘

Table 5: Example of three NLI experimental items
derived from translating the formula (Cube(b) V
—Cube(b)) A Cube(c) with the three systems.

The motivation behind using FR is that evaluat-
ing fluency in an absolute manner can be tricky.
Comparing different outputs can aid evaluators to
make more informed judgments. In this task, par-
ticipants were asked to rank the translations of the
three different systems of the same source formula
according to the criterion of fluency. Ties were
allowed. An illustration of this is presented in Fig-
ure 1. The FR task did not require a Latin square
design because all three translations per formula
were presented together in the same experimental
item. Therefore, each group of participants was
shown the same set of 20 FR questions.

Given the following formula and candidate translations, rank the translations
from most fluent to least fluent.
Formula: (Cube(b) V =Cube(b)) A Cube(c)
System 1:  “b is a cube or it is not the case that b is a cube and c is a cube.”
System 2:  “All these hold:

- bis a cube or b is not a cube;

- cis acube.”
System 3:  “cis a cube.”

Figure 1: An illustration of a FR question in the experi-
ment.

NLI Results The comprehensibility of a trans-
lation was calculated as the proportion of correct
answers (i.e., correctly spotted presence or absence
of entailment) to its corresponding NLI question.
The mean of the percentage of correct NLI answers
per participant was 70.4% (SD = 8.9%) and the
mean of the percentage of correct answers per
question was 70.2% (sD = 28.7%). The inter-
annotator agreement was very low (Krippendorff’s
a = 0.181), highlighting the difficulty of this task.
Two outlier NLI questions, on which the partici-

pants performed significantly worse than on other
questions, with the percentage of correct answers
being more than two standard deviations below the
mean, were removed from the analysis.

The translations from LOLA had the highest
mean of the percentage of correct answers. Fig-
ure 2 shows the distribution of the percentages
of correct participant responses for the different
types of formulae.!> A two-way system x well-
behavedness ANOVA revealed that there was a sig-
nificant interaction between the effects of transla-
tion system and formula type on the percentage
of correct answers (F(2,114) = 3.11, p = .048).
Simple main effects analysis showed that transla-
tions from well-behaved formulae received a signif-
icantly higher percentage of correct answers than
translations from ill-behaved formulae (F'(1) =
8.87, p = .004), and that there was a significant
effect of translation system on the percentage of
correct answers (F'(2) = 5.50, p = .005).

| |

Figure 2: The distribution of the percentage of cor-
rect answers to the NLI questions (outliers excluded),
grouped by formula type and translation system, as a
boxplot showing the medians, lower quartiles, and up-
per quartiles, along with extreme values. Diamonds are
outlier values.

Tukey’s HSD test for multiple pairwise compar-
isons showed that the effect of translation system is
mainly due to a difference between BASELINE and
LoLA (p = .005, 416.59 under LOLA). There
were no significant differences between BASELINE
and Ranta (2011) (p = .657) and LOLA and Ranta
(2011) (p = .053). Tukey’s HSD test revealed also
that the interaction effect found is mainly due to

SNote that this figure shows some outliers other than the
ones removed from the analysis. The outliers removed from
the analysis were the questions with a mean of the percentage
of correct answers more than two standard deviations below
the mean over all the questions, while the outliers in this
figure are the outlier questions per formula type per translation
system.
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the extremely low percentage of correct answers
for BASELINE translations from ill-behaved for-
mulae. All three translation systems had a higher
percentage of correct answers for well-behaved
formulae: BASELINE (p = .021, +23.75 under
BASELINE’s translations from well-behaved formu-
lae), Ranta (2011) (p = .013, +24.97 under Ranta
(2011)’s translations from well-behaved formulae),
and LoLA (p = .002, +29.52 under LOLA’s trans-
lations from well-behaved formulae). Furthermore,
LoLA’s translations from ill-behaved formulae
were higher than BASELINE’s translations from ill-
behaved formulae (p = .002, +8.19 under LOLA).

FR Results To calculate the ranking of the three
systems based on the individual rankings the par-
ticipants gave in each of the FR questions, we
used the TRUESKILL adaptation of Sakaguchi et al.
(2014).'® TRUESKILL was run 200 times on 1260
pairwise rankings derived from the 420 collected
system rankings (20 per participant; Krippendorft’s
a = 0.475). The results of the clustering of sys-
tems with overlapping rank ranges are presented
in Table 6. There were significant differences be-
tween the ranked fluency of the three systems, such
that they were all in a different cluster. The final
ranking was LOLA > Ranta (2011) > BASELINE.

# I Rank Range System

1 3.539 1-1 LoLA

2 —0.643 2—2 Ranta (2011)
3 —2.873 3—3 BASELINE

Table 6: The final ranking of the three systems according
to TRUESKILL (significance cluster number at p—level
p < .02 (#), the final estimate of the system’s ability (u;
inferred mean), the range of ranks in which the system
falls, and system name).

To test whether there was an interaction effect
on ranked fluency between the type of formulae
(well-behaved or ill-behaved) and translation sys-
tem, TRUESKILL was run for well-behaved and
ill-behaved formulae separately. For well-behaved
formulae, the model was run 200 times on 693 pair-
wise collected rankings derived from the 231 sys-
tem rankings (11 per participant). For ill-behaved
formulae, the model was run 200 times on 567
pairwise collected rankings derived from the 189
system rankings (9 per participant). The results
of the clustering of systems with overlapping rank

www. github. com/keisks/wmt-trueskill. See Ap-

pendix F for a high-level description of TRUESKILL.

ranges for well-behaved formulae vs. ill-behaved
formulae are presented in Table 7. We found a dif-
ference between the fluency of translations from
well-behaved formulae by Ranta (2011) vs. LOLA,
in addition to a difference in fluency between the
two systems for translations from ill-behaved for-
mulae (in both cases, LOLA had a higher rank than
Ranta (2011)).

Well-Behaved Formulae 111-Behaved Formulae
# 1 Rank Range System # 1 Rank Range System
1 2.256 1-1 LoLa 1 3.826 1-1 LoLa
2 0325 2-2 Ranta (2011) 2 —1.423 2-2 Ranta (2011)
3 —2.594 3-3 BASELINE 3 —2.355 3-3 BASELINE

Table 7: The final rankings of the three systems for well-
behaved formulae vs. ill-behaved formulae according
to TRUESKILL (significance cluster number at p—level
p < .02 (#), the final estimate of the system’s ability (u;
inferred mean), the range of ranks in which the system
falls, and system name).

6.3 Correlations between Automatic Metrics
and Human Judgments

In order to have a more comprehensive picture of
our experiments, we calculated correlations (using
Pearson’s r coefficient) between the results of the
automatic evaluation and the judgments obtained
during the human evaluation. We considered only
the experimental items derived from the formulae
extracted from the GGC used for the NLI and FR
tasks, as they have ground truth NL references and
thus were scored using the automatic metrics. As
for the metrics, we considered BERTScore, ROUGE-
L, and SBERT.

For computing the correlation on the NLI task,
we calculated a normalized score on [0, 1] per trans-
lation, based on the answers given by the partic-
ipants, such that the closer the score is to 1, the
more comprehensible the translation. Similarly,
the higher the score given by the automatic metrics
to the translation, the more similar (structurally or
semantically) to the ground truth reference it is. We
observed no correlation between human judgments
and any of the metrics (r(55) = 0.05, p = .737
with BERTScore; 7(55) = —0.08, p = .540 with
ROUGE-L; r(55) = 0.009, p = .947 with SBERT).
For reference, Figure 5 in Appendix E shows the
scatterplots.

For computing the correlation on the FR task,
we scored each translation based on the average
ranking received in the FR task. Each translation
was scored from 1 (most fluent) to 3 (least fluent)
by the participants, so we obtained translations
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scored on [1,3]. In this case, the higher the av-
erage FR score, the more the translation is likely
to be disfluent. Conversely, the higher the score
of the automatic metrics, the more similar to the
ground truth reference the translation is. Allegedly,
a more fluent translation for humans should receive
a higher score from the automatic metrics, so we
expect a negative correlation between the average
FR scores and the metric scores. This is supported
by the results, where we observe weak to moder-
ate negative correlations (r(25) = —0.48, p = .01
with BERTScore; 7(25) = —0.51, p < .01 with
ROUGE-L; 7(25) = —0.35, p = .08 with SBERT),
statistically significant for two out of three met-
rics (BERTScore and ROUGE-L). Figure 6 in Ap-
pendix E shows the scatterplots representing the
negative correlations.

We proceeded with a manual analysis to fur-
ther inspect the misalignments between automatic
scores and human judgments in the two evalua-
tion tasks. Specifically, we wanted to study two
extreme cases, namely, when a high score from
the automatic metrics corresponded to poor human
judgments, and vice versa. See Appendix E for a
detailed report.

Our results highlight an apparent lack of appro-
priate metrics to automatically evaluate the task
of logic-to-text generation, as the metrics that we
considered measure different properties than the di-
mensions we are interested in assessing. Semantics-
based metrics focus exclusively on computing se-
mantic similarity between texts. Moreover, they
should theoretically be solid enough to capture nu-
ances in meaning, yet we saw that this is mostly not
the case (with BERTScore being the only exception).
Consequently, the nature of these metrics does not
allow them to tackle the core issue of comprehen-
sibility, i.e., whether a text is more understandable
than another. Our results also suggest that these
metrics are of limited use for assessing fluency.
Similarly, metrics relying only on n—gram overlap
are unsuitable for any task involving comprehen-
sion, as they simply compare surface realizations
of texts. On the other hand, they might be slightly
more appropriate to evaluate fluency, as overlap-
ping tokens can be an indication of fluency.

7 Future Work

We see two main areas for further investigation.
First, we will examine to what extent our approach
can be scaled up to include FOL with identity by en-

hancing the generator, the logical equivalence laws,
and crucially, the optimization operations that were
applied to the sentences generated. Second, we
will try to implement the list of linguistic improve-
ments that emerged from the TQA (see Table 9)
by investigating methods to programmatically ex-
ploit paraphrasing techniques (rule-based, neural,
or hybrid), and adequately scoring the resulting
translations.

8 Conclusion

We conducted a human TQA on the faithfulness,
comprehensibility, and fluency of Ranta (2011)’s
translations. We implemented part of the results to
build LOLA, an enhanced version of Ranta (2011)’s
FOL-to-text system, which optimizes the input for-
mula when generating text. We evaluated LOLA
against a baseline and Ranta (2011)’s original sys-
tem, performing both automatic and human eval-
uations. Our results suggest that Ranta (2011)’s
framework, once adequately enhanced with logical
equivalence laws, lends itself well to generating
NL translations of FOL formulae. Furthermore, the
results indicate the inappropriateness of current
standard automatic metrics to evaluate logic-to-text
generation, as they focus on assessing different
properties than the dimensions relevant for this
task.

The present work on logic-to-text generation can
be potentially beneficial for a variety of applica-
tions. Paraphrasing systems could profit from the
constraints given by logical equivalence laws to
generate faithful paraphrases. Logic teaching can
benefit by incorporating LOLA in an intelligent tu-
toring system supporting students and educators.
LoLA could also be the base for a system help-
ing engineers comprehend the convoluted outputs
of theorem provers, as literally translating those
formulae might result in quite cumbersome text.

We hope that this paper will motivate researchers
in the broader NLG community to focus more on
the issue of generating faithful, comprehensible,
and fluent text from logically rich inputs.

Limitations

At present, both Ranta (2011) and LOoLA do not
cover identity (=). When identity is added to FOL,
the expressive power of FOL increases very signifi-
cantly, allowing it to express things like “there are
more/fewer than n A’s”, “exactly n A’s are B’s”,
and so on, often using formulae whose structure
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is very distant from those of normal English sen-
tences.

The current experimental design of the NLI task
does not allow us to get fine-grained insights on am-
biguity (i.e., the different readings that a translation
may induce), which is crucial to avoid misunder-
standings about the original meaning of a formula.
In particular, the choice of the Other option re-
vealed that the participants did spot the existence
of ambiguities in the premises, or did not detect
them at all, resulting in different interpretations of
the premise.

The vocabulary of entities and relations from
the GGC is limited in nature, given its pedagogical
origin. Enlarging and diversifying the language
domain would raise complications such as dealing
with logical properties of the predicates, both in iso-
lation and compositionally, implicatures, and world
knowledge. Consequently, ensuring the creation of
a fair and proper evaluation, especially for the NLI
task, would be significantly more challenging.

Our evaluation focused exclusively on English.
However, studying this subject from the perspec-
tives of (typologically) different languages would
bring up an incredibly wide range of research
questions, e.g., is the concept of well-behavedness
language-independent? Do the modifications per-
formed to Ranta (2011)’s system scale up to other
languages?
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A Details on Ranta (2011)

Figure 3 shows a graphical schematization of Ranta
(2011)’s translation system.

Input formula:
Vz(Number(z) — (Even(z) vV Odd(x)))

Parsing
PUniv
/\
VString PImpl
/\
“.1‘7” PAtom PConj
7 T
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Optimization
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COr BasePredl Nat
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Linearization

Output text:
every number is even or odd

Figure 3: A model of Ranta (2011)’s translation sys-
tem, with an example translation of a FOL formula into
English. Each AST node is named after the syntactic
function used to construct the constituent.

B Formal Definition of Well-Behavedness

The following is the formal definition of well-
behavedness, stating all the conditions that a for-
mula should have to be suitable for translation into
NL:
1. All atomic propositions are well-behaved for-
mulae.
2. Negation: if ¢ is a well-behaved formula and
it does not contain subformulae of the form
- for any formula v, then —¢ is a well-
behaved formula.

3. Conjunction: if ¢ and 1) are well-behaved for-
mulae, then (¢ A1) is a well-behaved formula.

4. Disjunction: if ¢ and 1) are well-behaved for-
mulae, then (¢ V1)) is a well-behaved formula.

5. Implication: if ¢ and v are well-behaved for-
mulae and neither of them has any subformu-
lae of the form o« — 3 for any set of formulae
{a, B}, then (¢ — 1) is a well-behaved for-
mula.

6. Universal quantification: if ¢ is a well-
behaved formula, x is a variable, and ¢ con-
tains at least one free occurrence of x, then
(V)¢ is a well-behaved formula.

7. Existential quantification: if ¢ is a well-
behaved formula, x is a variable, and ¢ con-
tains at least one free occurrence of x, then
(3z)¢ is a well-behaved formula.

8. Bounded quantification: if ¢ is a proposition,
x is a variable, K is a kind predicate, and ¢
contains at least one free occurrence of z, then
(Vz : K)¢ and (3z : K)¢ are well-behaved
formulae.

9. Conjunction and disjunction of proposition
lists: if ¢1,...,¢, are propositions, then
Ad1, ..., pn] and V[e1, ..., ¢,] are proposi-
tions.

10. Nothing else is a well-behaved formula.

In addition to this definition, the well-
behavedness of a formula also depends on its com-
plexity, calculated in the number of connectives.
Only if a formula contains < 8 connectives, it is
considered well-behaved.

C Additional Details on LOLA

The list of core-to-extended AST conversions was
expanded with the following optimization rules.

The rule of existential negation turns a negated
existential quantifier into a negative existential,
which asserts the non-existence of an element in
the domain of quantification. This optimization
should improve translations such as it is not the
case that there exists an element x such that |[...]
to there exists no element x such that [...], pushing
the negation inward.

The rule of in-situ quantification without a kind
predicate applies to the special case of kind pred-
icates such as natural number that, according to
Ranta (2011), serve to restrict the domain of quan-
tification. This rule replaces an occurrence of a
bound variable in the quantified proposition (¥, 3,
or L) with simpler expressions (everything, some-
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Propositional Logic

First-Order Logic

Idempotence
PVP&sP
PAP& P

Associativity
(PVQ)VR<< PV (QVR)
(PANQ)ANR< PA(QAR)

Commutativity
PVvQ&sQVP
PANQe QAP

Distributivity
(PVQ)N(PVR)< PV(QAR)
(PANQ)V(PAR)< PA(QVR)

Identity

PVlisP
PVT&eT
PANL S 1
PANT<&P

Complement
PV-P& T
-—P & P
PAN-P& 1

(double negation)

De Morgan
-(PVQ)<E -PA-Q
—|(P/\Q)<=>—\P\/—|Q

Conditional
P—-Q&s-PVQ

P— Q< —-Q — —P (contraposition)

Quantifier Negation

~(Vz)é(z) < (Jz)-
(Vz)o(z) < —(Iz)~
~(Vz)-¢(z) < (Fz)
(Vz)=¢(z) < =(3z)

¢(x)
o(x)
¢(x)
¢(x)

Quantifier Distribution

(V) (¢(x) A ip(x)) & (Yo)p() A (Va)y(x)
(Bx)(o(z) Vv o (2)) & (Br)o(x) V (Fz)¢(z)

Quantifier Independence
(V) (Vy)¢(x,y) & (Vy)(Va)o(x,y)
(Bx)(Fy)¢(x,y) & (By)Br)e(x,y)

Quantifier Movement

¢ = (Vo)y(z) & (Vo)(¢ — ¥(z))
(if x is not free in ¢)

¢ = (Fr)y(z) & (3)(¢ — ¥(z))
(if x is not free in ¢)

(Va)ip(z) = ¢ & (3z)(¥(x) = ¢)
(if x is not free in ¢)

(Fz)p(z) = ¢ & (Va)(¥(x) = ¢)

(if « is not free in ¢)

Vacuous Quantification
(Vx)p < ¢ (if x is not free in ¢)
(Fx)p < ¢ (if  is not free in ¢)

Table 8: List of logical equivalence laws used as formula conversions in LOLA, where P, @), or R stand for any
arbitrarily chosen well-formed formula, and ¢(x) or ¢)(x) for any formula in which z is free.
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thing, or nothing). As an example, for all x, x is
even would be optimized to everything is even.

The rules for 2—place predicate-sharing aggre-
gation are of two kinds: in subject-sharing, differ-
ent occurrences of the same predicate in a formula
share the first argument; in object-sharing, different
occurrences of the same predicate share the second
argument. In these cases, the formula is flattened
to merge the occurrences of the predicate. For ex-
ample, Parallel(a,b) A Parallel(c,b) would be
translated as a and c are parallel to b.

Finally, the optimization rule to perform reflex-
ivization on negated predicates improves transla-
tions such as x is not bigger than x to x is not bigger
than itself.

Given the optimization rules presented in this
section and in §3 and the equivalence laws in Ta-
ble 8, the selection of the optimal translation is
performed as described in §5. Figure 4 shows an
example of a search tree.

D Details on the TQA’s Post-Edits

The post-edits suggested by the participants in the
TQA (see §4.1) can be divided into three categories.
The first category is in the spirit of Ranta (2011)’s
core-to-extended AST manipulations. The opti-
mizations that the evaluators suggested are: mov-
ing the negation inward if an existential quantifier
is negated, in-situ quantification without a kind
predicate present, two-place predicate-sharing ag-
gregation, and reflexivization of negated predicates.
Table 2 shows one example for each suggested op-
timization.

The second category includes conversions based
on the structural manipulation of the form of the
input using logical equivalence laws. This way,
logically equivalent but arguably more comprehen-
sible and fluent translations can be obtained. Exam-
ples of this are the elimination of double negation,
the use of De Morgan’s laws (Barwise, 1977), and
the simplification of —(3x)¢ to (Va)—¢. Table 3
presents some examples of conversions suggested
in this category.

The third category consists of linguistic and
stylistic optimizations of the translations, introduc-
ing a greater variety of terms, expressions, and syn-
tactic constructions than those employed by Ranta
(2011). Examples of some linguistic constructions
introduced are relative clauses, anaphoric expres-
sions, periphrastic expressions, and the rephrasing
of connectives. Table 9 presents the complete list

of linguistic constructions, together with the logical
constructs they can convey.

E Details on the Evaluation

Table 10 presents some outputs generated by the
three systems we compared for evaluation. The
table highlights the different operations to trans-
late formulae into text used by the three systems.
Note, in particular, the convoluted nature of the
quasi-literal translations of BASELINE, and the
techniques employed by Ranta (2011) and LoLA
to improve them. Specifically, Ranta (2011) im-
plements some common techniques in NLG (e.g.,
aggregation in (3)), while LOLA additionally em-
ploys logical equivalence laws (e.g., double nega-
tion in (1)) to further refine the translations.

Figure 5 presents the scatterplots showing
the relationships (not statistically significant) be-
tween the average NLI score and the scores as-
signed by the automatic metrics to the translations
(BERTScore in Figure 5a, ROUGE-L in Figure 5b,
and SBERT in Figure 5c). Figure 6 presents the
scatterplots showing the weak to moderate negative
correlations (statistically significant for BERTScore
and ROUGE-L) between the average FR ranking and
the scores assigned by the automatic metrics to the
translations (BERTScore in Figure 6a, ROUGE-L in
Figure 6b, and SBERT in Figure 6¢). Note, however,
that the FR rank alone (1, 2, or 3) of a translation
might not be ideal to measure its fluency. Given
that ties were allowed in the FR task, it might be
the case that all the translations of an input for-
mula receive a 1. However, this might mean that
the translations are all equally disfluent. Therefore,
two translations of different formulae receiving a
1 cannot be viewed as equally fluent. Nonetheless,
the correlations we found might be due to the fact
that few FR rankings resulted in ties.

In order to shed some light on the evaluation
methods, we inspected cases in which the auto-
matic scores and the human judgments of a re-
alization are misaligned. Table 11 and Table 12
(concerning NLI and FR, respectively) show some
samples. In Table 11, a particularly interesting ex-
ample is (7): the text is extremely comprehensible
for humans, however, since none of the tokens of
the generated text overlaps with those of the ref-
erence, the score assigned by ROUGE-L is 0. A
similar thing happens in (8) but for different rea-
sons: SBERT is unable to get the semantic similarity
between the generated text and the more natural-
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(Va)=—FEven(2)

(Vz)Even(2) —(3x)~——Even(2) —(3x)-~Even(2) ——FEven(2)
vcl ,’/;' ‘ QN 2 QN4 ~ycl Comp 2
Even(2) " (Va)Buven(2)  (Vo)-—Even(2)  ——FEven(2) Even(2)

A A
1\ 1\

AR} Iy Iy

\ 1 \
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Figure 4: A part of the search tree of possible manipulations for the formula (Vx)——FEven(2), where the names of
the logic laws are abbreviated (e.g., QN 1 = the first law of quantifier negation, see Table 8). In the system, this tree
has ASTs as nodes, but for readability, the formula linearizations are displayed instead.

Linguistic Construction

Logical Construct

Example

Relative clause
Adverbial clause
Adverbial clause

Correlative conjunction
Correlative conjunction
Correlative conjunction
Deixis

Referring expression

Conditional mood
Modality

Present participle
Adverbial clause
Modifier

Collective predicate

Conjunction
Conjunction
Implication

Conjunction
Exclusive or
Negated disjunction
Identity

Identity

Implication
Implication
Implication
Reverse relation
Inequality

There exists something that is not prime.
Something is in the same row as a, while a is even.
Everything is small as long as it is a dodecahedron.

a is smaller than b if a is a cube.

Both a is in the same row as b and b is a dodecahedron.
Everything is either a cube or a tetrahedron.

Neither b nor d is a tetrahedron.

If b is small, it is a tetrahedron.

Ifw and y are tetrahedrons, they are in the same column.
If something is in front of a cube, then the cube is large.
At least one of d and b is left of the other.

If a had the same shape as b, then ¢ would be in the same row as c.
If a is even, then there must be something that is even.

a being left of b implies that b is a dodecahedron.

a is to the left of d or the other way around.

Nothing is smaller than something else.

Distributive predication Ifw andy are tetrahedrons, they are in the same column.

Table 9: Linguistic and stylistic constructions suggested in the post-edits of the TQA, with the logical constructs
they can express or emphasize, illustrated with (slightly revised) examples.
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sounding reference, thus assigning a low score to
a comprehensible translation. In the opposite case
(i.e., incomprehensible translations receiving high
automatic scores), a noteworthy example is (9):
the realization is quite convoluted (containing two
negations, an implication, and the repetition of a
constant), yet surprisingly, BERTScore catches the
semantic similarity with the reference, even though
equivalence laws are involved. Example (11) is
obscure: in this case, in contrast to (8), SBERT is
able to capture the semantic similarity with the ref-
erence, albeit the convoluted realization received a
rather poor human judgment.

In Table 12, the realization in (12), (13), and
(14) turns out to be particularly problematic. Al-
though receiving a high score in the FR task, it
is scored poorly by all the metrics, for the same
reasons as above: as for ROUGE-L, the n—gram
overlap between the realization and the reference
is weak, while SBERT does not capture the seman-
tic similarity. BERTScore is seemingly the only
metric that handles semantics satisfactorily, as its
score is anyhow relatively high. In the opposite
case (i.e., disfluent translations receiving high au-
tomatic scores), (15) is particularly remarkable as
BERTScore is capable of detecting the semantic
similarity of logically equivalent constructions in-
volving antonyms (x is smaller thany =y is larger
than x). The realization in (16) is a nearly-literal
translation of the original formula that is consid-
ered very disfluent by humans. Regardless, the
n—gram overlap with the reference is prominent,
so ROUGE-L gives it a relatively high score. (17)
shows similar behavior to (11): SBERT surprisingly
catches the semantic similarity between the realiza-
tion and the reference, despite the involvement of
equivalence laws.

F TRUESKILL Description

TRUESKILL was originally developed in Herbrich
et al. (2006) for modeling the relative skills of play-
ers in online gaming communities, echoing Elo
(1978). In higher-level terms, TRUESKILL assumes
that the skill level (score) of each player (system)
S; is defined by its estimated mean performance
ps; and the uncertainty of this estimate a?gj . Before
any match is played, pg; is initialized to 0. These
Bayesian estimates are continually updated with
each match.!” The size of the updates depends on
the amount of surprisal and confidence. A player

"Note that ls; can take negative values.

with a relatively low mean performance beating a
player with a relatively high mean performance is
more surprising than the opposite outcome. Thus,
more surprising outcomes result in bigger updates
than less surprising ones.

G TQA Questionnaire

Figure 7 presents the instruction text shown to the
participants at the beginning of the survey, and
Figure 8 the set of questions provided to the par-
ticipants. Table 13 shows an example batch of for-
mulae and translations used as experimental items.
The filler formulae and translations present in the
table were designed in such a way that the transla-
tions resembled those of Ranta (2011), they were
incorrect, and their incorrectness would be easily
detectable for people with a moderate amount of
experience in logic.

H Human Evaluation Questionnaire

Figure 9 presents the instructions and questions
shown to the participants.
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Figure 5: Scatterplots with the relationship between the average NLI score
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Figure 6: Scatterplots highlighting the negative correlations between the average FR rank and the score assigned by
the automatic metrics to the translations.

Formula and Reference BASELINE Ranta (2011) LoLa

[¢)] ;;LIZ:::(@ It is not the case that it is not the case that d is large. It is not the case that d is not large. d is large.
Vavy((Cube(xz) A FrontO f(y,x)) — Small(x))  Forall x, for all y, if x is a cube For all x, for all y, if x is a cube - ) . . .

@ If a cube has something in front of it, then it’s small. — and y is in front of x, then x is small. and y is in front of x, then x is small. Forall y, for all cubes x, y is not in front of x or x is small
Smaller(f,a) V BackOf(f.a) . . . . . .

3) s cither in back of or smaller than a. [is smaller than a or f is in back of a. [fis smaller than a or in back of a. [fis smaller than a or in back of a.
Ju(Dodec(u) A —(Large(uw) V Small(u))) There is an element u such that u is a dodecahedron  There is a dodecahedron u such that . .

“) L . . N L. N It is not the case that every dodecahedron is small or large.
Some dodecahedron is neither large nor small. and it is not the case that u is large or u is small. it is not the case that u is large or small.
—Jw(Person(w) A Pet(w)) It is not the case that there is an element w such that . . .

5) It is not the case that some person is a pet. ~ For all persons w, w is not a pet.

People are not pets.

w is a person and w is a pet.

Table 10: Examples of text generated by the three systems compared in the evaluation, together with the input
formula and the ground truth reference.

Formula and Reference Realization System NLI Score (1) Metric Score (1) Metric
(6) va—3zCube(x) For all x, it is not the case that there is an element x such that x is a cube. Ranta (2011) 1.000 0.843 BERTScore
There are no cubes.
@ Ya~3eCube(x) Nothing is a cube. LoLA 1.000 0.000 ROUGE-L
There are no cubes.
® r3y(Cube(x) A Cube(y) A Large(x) A Small(y) A FrontOf (.y))  There is an element x such that there is an element y such that BASELINE oo 0,509 SBERT
A large cube is in front of a small cube. X is a cube and y is a cube and x is large and y is small and x is in front of y.
~(Larger(b,a) — —Larger(b, ) . L . ) A . .
[©)] bis larger than both a and . It is not the case that if b is larger than a, then b is not larger than e. Ranta (2011) 0.333 ).9 BERTScore
—(Larger(b,a) — —~Larger(b, ) . L . .
(10) bis larger than both a and . It is not the case that if b is larger than a, then b is not larger than e. Ranta (2011) 0.333 ) ROUGE-L
an Ja(Larger(a, z) A Cube(x)) — —3y(Tet(y) A ~Smaller(a,y)) If there is an element x such that a is larger than x and x is a cube, Ranta 201) 0333 - SBERT

Ifa is larger than some cube then it is smaller than every tetrahedron.

then it is not the case that there is a tetrahedron y such that a is not smaller than y.

Table 11: Selected cases of misalignment between the normalized score retrieved from the NLI task vs. the score
assigned to the realizations by some automatic metrics against the ground truth reference.

Formula and Reference Realization System ¥R Score (1) Metric Score (1) Metric

(1z) Vo((Cube(w) A Small(x)) — F(Large(t) A Cube(t) N BackOF @) g it amall cubes x, there is an element ¢ such that ¢ is large, t is  cube and x is in back oft. LoLa 0.859 BERTScore
Every small cube is in back of a large cube.

(3 V(Cubelx) A Small(x)) — I(Large(t) A Cube(t) N BackOF@0)) gt wall cubes x, there is an element ¢ such thar ¢ is large, ¢ is  cube and x is in back of LoLa o 0333 ROUGE-L
Every small cube is in back of a large cube.

4y To((Cube(x) A Smali(x)) - H(Large(t) A Cube(t) N BackOF @) g it call cubes x, there is an element ¢ such that tis large, tis  cube and  is in back of t. LoLa 0653 SBERT
Every small cube is in back of a large cube. ?

(15) Smatler(a,b) A Smaller(e,b) a is smaller than b and e is smaller than b. BASELINE 2,048 ).927 BERTScore
b is larger than both a and e.
~3u(LeftOf(x,a) A Ix(Smaller(z, ) A LeftOf(2,))) Itis not the case that there is an element x such that x i to the left of a - .

) Nothing to the left of a is smaller than anything to the left of b and there is an element 7 such that x is smaller than z and z is to the left of b. BASBLINERanta 2011)  1.905 ! ROUGE-L

a7 Large(a) V Large(c) V ~(Tet(a) A Tet(c)) a is large or ¢ is large or it is not the case that a is a tetrahedron and ¢ is a tetrahedron. BASELINE 2.190 SBERT

aand ¢ are both tetrahedra only if at least one of them is large.

Table 12: Selected cases of misalignment between the score (averaged) assigned to the realizations by humans in
the FR task vs. the score assigned by some automatic metrics against the ground truth reference.
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EVALUATING ENGLISH TRANSLATIONS FROM FIRST-ORDER LOGIC FORMULAE

Thank you very much for participating in this experiment. It will take approximately 15 to 3@ minutes to fill in this survey. If at
any point you would like to stop, you can close this form and your response will be deleted. If you do wish to participate, your
response will be handled anonymously: The information in this study will only be used in ways that will not reveal who you are. You
will not be identified in any publication from this study or in any data files shared with other researchers. Your participation in
this study is confidential.

The purpose of this experiment is to evaluate the strengths and weaknesses of a system that translates first-order logic formulas
into English. We will present to you, one by one, 25 formulas with their translations, such as the one below:

Formula: — 3 x ( Cube ( x ) A Leftof (b, x) )
English translation: It is not the case that b is to the left of some cube

Please answer the following questions for each of them:

1. Is the translation correct, yes or no? By a correct translation, we mean that the sentence conveys the same information as the
input logical formula (there is no possible world in which the formula is true while the English translation is false, or vice
versa).

2. Is the translation clear? By a clear translation, we mean that the sentence is understandable and does not have multiple
readings.

3. Is the translation fluent? By a fluent translation, we mean that the sentence sounds like a natural English sentence.

4. Do you have a suggestion for a better translation? Think, for example, about how the translation can be improved given the above
three criteria (correctness, clarity, and fluency). However, you can be very free in your ideas here, write whatever you like!

Your answer to question 4 is most important for us. Especially if you think the given translation is unclear and/or not fluent,
write down a translation that you think is more understandable and/or sounds better. A translation should always be one or more
whole sentences.

In answering all questions, please note that it is very important that you evaluate the quality of the translations and base your
opinion only on the semantic content (the meaning) of the formula, not on its specific syntactic form (such as the order of the
conjuncts). In other words, think about whether the translation is suitable given the formula's meaning, no matter what the formula
looks like.

The survey will start off with a few personal questions and a practice example. After you have answered all of the questions for
each formula and translation pair, you will be asked to give a general structured review of the strengths and weaknesses of the

translation system. With which types of sentences does the system have difficulties? For which types of sentences do you believe
the system performs sufficiently well? Please keep this final question in mind while evaluating the translations.

For your information, these are the interpretations of the predicates used:

Larger ( x , y )
SameRow ( x , y )
SameShape ( x , y )
)

is larger than y

is in the same row as y
is of the same shape as y
is of the same size as y
is in back of y

SameSize ( x ,
BackOf ( x , vy

Dodec ( x ) x is a dodecahedron
Small ( x ) X is small
Student ( x ) X is a student
Medium ( x ) X is medium
Cube ( x ) X is a cube
Prime ( x ) x is a prime
Person ( x ) X is a person
Tet ( x ) x is a tetrahedron
Pet ( x ) x is a pet
Large ( x ) x is large
Even ( x ) x is even
Adjoins ( x , y ) x is adjacent to y
SameCol ( x , y ) x is in the same column as y
Leftof ( x , y ) x is to the left of y
RightOf ( x , y ) x is to the right of y
Smaller ( x , y ) x is smaller than y
FrontOf ( x , y ) x is in front of y

X

X

X

X

X

y
)

Here are two example formula-translation pairs with potential answers (but many more can be correct!) that would be helpful for us
in thinking about how to improve the translation system:

Example 1
Formula: Vx 3y ((LeftoOf (x ,y) ) A - Dodec (y))
Translation: for all x , there is an element y such that x is to the left of y and y is not a dodecahedron

1. Is the translation correct, yes or no?
“Yes”

2. Is the translation clear, on a scale of 1 to 5?
agn

3. Is the translation fluent, on a scale of 1 to 5?
wpn

4. Do you have a suggestion for a better translation?
“everything has something to the right of it that is not a dodecahedron”
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Example 2

Formula: Pet (a ) — 3 x Adjoins (b, b))
Translation: if a is a pet , then there is an element x such that x is adjacent to b

1. Is the translation correct, yes or no?
“No”

2. Is the translation clear, on a scale of 1 to 5?
agn

3. Is the translation fluent, on a scale of 1 to 5?
wr

4. Do you have a suggestion for a better translation?
“if a is a pet, then b is adjacent to itself”

Now it is your turn!

Figure 7: The instruction text shown to the participants at the beginning of the TQA.

0. Informed consent
I have read the above information and understand the purpose of the research and that data will be collected from me. I also
understand that participating in this study is completely voluntary. I agree that data gathered for the study may be published
or made available provided my name or other identifying information is not used.
Q I confirm this
QI do not confirm this and want to withdraw from participation

1. Personal questions
What is your gender?
QO Male
Q Female
Q Prefer not to say

How old are you?

How would you rate your knowledge of and familiarity with first-order logic? Where 1 stands for “I have been introduced to
logic but it is long ago and I am a bit rusty”, and 5 stands for “I use logic on a daily basis”.
1 2 3 4 5

2. Questions for each of the formula-translation pairs in the experimental items of the batch:
Formula: <formula>
Translation: <translation>

1. Is the translation correct? Correct means that the sentence conveys exactly the same information as the input logical
formula.

Q Yes
QO No

2. Is the translation clear? Clear means that the sentence is understandable and does not have multiple readings.
(Very unclear) 1 2 3 4 5 (Very clear)

3. Is the translation fluent? Fluent means that the sentence sounds as a natural English sentence.
(Not fluent) 1 2 3 4 5 (Very fluent)

4. Do you have a suggestion for a better translation? If so, then write it down here.

3. Final questions
Give a general structured review of the strengths and weaknesses of the translation system. With which types of formulas does
the system have difficulties? For which types of formulas do you believe the system performs sufficiently well?

Do you have any final comments?

Figure 8: The set of questions provided to the participants in the TQA.
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Ttem Type FOL Formula English Translation
T GGC  Vz((Cube(z) A JuFrontOf(u, 2)) — Small(z)) Jorall 2, if < is a cube and there is an element u such that 1 is in front of 2, then 2 is small
2 Goc  Vou((Dodec(v) A =FwRightO f(w,v)) — Small(v)) forall v, if v is a dodecahedron and it is not the case that there i an element w such that w is 1o the right of v, then v is small
3 G6e  =Cube(a) — (Cube(c) V (~Cube(c) — Cube(e))) ifais not a cube , then at least one of these holds :
*cisacube
«ifcisnotacube, then e is a cube
4 G6c  Va(Vy(Dodec(z) A =RightOf(y,x)) — Small(x)) forall x, if for all y , x is a dodecahedron and y is not to the right of x , then x is small
5 GGC —3y(~Tet(y) A =3zFrontO f(z,y)) it is not the case that there is an element y such that y is not a tetrahedron and it is not the case that there is an element x such
that x is in front of y
6 GGC —=3z(~3yFrontOf(y,z) A ~Tet(z)) it is not the case that there is an element x such that it is not the case that there is an element y such that y is in front of x and
x is not a tetrahedron
7 Goc  Va((Dodec(z) A ~IyRightOf(z,y)) — 3zLeftOf(z, z)) forall x, if x is a dodecahedron and it is not the case that there is an element y such that x is to the right of y , then there is an
element z such that x is to the left of =
8 G6c  VyVa((Dodec(y) A Tet(z)) — FrontOf(z,y)) forally, forall x, if y is a dodecahedron and x is a tetrahedron , then x is in front of y
9 Goc  Vy¥z((Cube(y) A Dodec(z) A BackOf(y, z)) — Smaller(y, z)) forally, forall z, if y is a cube , z is a dodecahedron and y is in back of z , then'y is smaller than =
10 G6c  —(Cube(a) A Cube(d)) V LeftOf(a,d) V LeftOf(d, a) it is not the case that a is a cube and d is a cube , a is 1o the left of d or d is to the left of a
11 RG Student(a) v (Medium(b) V Vo SameSize(z, x)) ais a student , b is medium or for all x , x is of the size as itself
12 RG Vo (LeftOf(x,x) — LeftOf(a,b)) for all x, it is not the case that if x is to the left of itself , then a is to the left of b
13 RG Adjoins(a,b) A ((SameRow(a,b) A Person(b)) — (Dodec(c) A RightOf(c,a))) all these hold :
«ais adjacent to b
« if ais in the same row as b and b is a person , then c is a dodecahedron and c is to the right of a
14 RG VaRightOf(a,a) forall x, ais o the right of itself
15 RG VaVe3zSameSize(x, a) forall x, for all x, there is an element x such that x is of the same size as a
16 RG JzVaz-Larger(x, x there is an element x such that for all x , x is not larger than x
17 RG —(Adjoins(a, b) — Adjoins(a,c)) V =(Student(c) A Medium(a)) it is not the case that if a is adjacent 10 b , then a is adjacent o ¢ or it is not the case that ¢ is a student and a is medium
18 RG Medium(a) vV ((Small(b) — Tet(b)) — —~Person(c)) at least one of these holds :
* a is medium
«ifif b is small, then b is a tetrahedron , then c is not a person
19 RG Vz3zSameSize(z, a) for all x , there is an element x such that x is of the same size as a
20 RG (3zFrontOf(a,z) — (Large(a) A SameSize(a, b)) V Smaller(c, c) at least one of these holds :
« if there is an element x such that a is in front of x , then a is large and of the same size as b
« ¢ is smaller than itself
21 Filler  —3x(SameShape(a,b) — SameRow(c, c)) it is not the case that there is an element x such that a is in the same shape as b and c is in the same row as itself
22 Filler ~ Va(Tet(z) V Prime(a)) V 3z(Person(x) — Student(a)) forall x, x is a tetrahedron or a is a prime or there is an element x such that a is a student
23 Filler ~ JaVyLarger(z,a) A Vy—Pet(b) there is an element x such that for all y , x is larger than a and there is an element x such that for all y , b is not a pet
24 Filler  3a(((SameShape(z, a) A Tet(z)) — Adjoins(z, a)) forall x , if x is of the same shape as a, then x is adjacent to a
25 Filler JzCube(z)(Person(a) — Adjoins(z, a)) there is a cube such that a is a person or x is adjacent to a

Table 13: One example batch of formulae and translations of the experimental items used in the TQA (GGC =
formulae taken from the Grade Grinder Corpus with Ranta (2011)’s translation, RG = randomly generated formulae
with Ranta (2011)’s translation, Filler = randomly generated formulae with manually crafted incorrect translation).

NATURAL LANGUAGE INFERENCE & FLUENCY RANKING

Thank you very much for participating in this experiment! In this experiment, you will be performing 2 separate tasks, which will
be explained to you beforehand. It will take approximately 3@ minutes to complete the tasks. If at any point you would like to
stop, you can close this form and your response will be deleted. If you do want to participate, your response will be handled
anonymously: The information in this study will only be used in ways that will not reveal who you are. You will not be identified
in any publication from this study or in any data files shared with other researchers. Your participation in this study is
confidential. If you wish to participate, please confirm your consent in the following question. For any questions about the
survey, you can contact us.

Informed consent
I have read the above information and understand the purpose of the research and that data will be collected from me. I also
understand that participating in this study is completely voluntary. I agree that data gathered for the study may be published
or made available provided my name or other identifying information is not used.

QO I confirm this

QO I do not confirm this and want to withdraw from participation

Personal questions
What is your gender?

QO Male
QO Female
Q Prefer not to say

How old are you?

How would you rate your proficiency in English?

1 2 3 4 5

How would you rate your knowledge of and familiarity with first-order logic?

1 Lower level than the ones below

2 Level of a bachelor/master student who has followed 1 or 2 classes of logic.
3 Level of a bachelor/master student who has followed more than 2 classes of logic.
4 Higher level than the ones above

From which perspective have you mainly studied logic?
QO Computational/mathematical perspective
Q Linguistic/philosophical perspective
QO Another perspective

Did you participate in our previous experiment in March 2022? This experiment was called “Evaluating English translations from
First-Order Logic formulae”. The participants were asked to judge the quality of English translations from First-Order Logic

formulae, and provide suggestions for better translations.
O VYes
O No
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2. Natural Language Inference

As we explained before, you will be performing 2 separate tasks in this experiment. The first one is called Natural Language
Inference task, which works as follows: In each question, you are shown two sentences, which are called the premise and the
hypothesis. You will be asked to think about whether the hypothesis follows from the premise or not.

For your information, the premises and hypotheses always make claims about a domain consisting of objects called A, B, C, D, E and
F. There are no other objects in this domain. Some premises and hypotheses might describe weird or impossible situations. This is
because the domain is part of an extraordinary world, where it can happen that something is smaller than itself, or next to itself;
where something can be smaller and larger than something else at the same time; where cubes can be even and odd; where objects are
not always of the same size as itself. The only thing you have to worry about, however, is whether the hypothesis is automatically
true if the premise is true, no matter how odd their interpretations.

Here are two example questions to give you an idea of what the task looks like:

Example 1. Does the hypothesis automatically follow from the premise?

Premise: It is not the case that B is to the left of some cube.
Hypothesis: There is no cube.

Yes

No

O Other (pick this option if is unclear whether the hypothesis follows from the premise, and explain why)

In this example, the correct answer is No, because the premise only states that B is not to the left of some cube, but does not
state anything about the existence of cubes in general. So it does not follow from the premise that there is no cube.

Example 2. Does the hypothesis automatically follow from the premise?

Premise: For all x, x is a cube.
Hypothesis: B is a cube.

Yes

No

QO Other (pick this option if is unclear whether the hypothesis follows from the premise, and explain why)

The premise is a translation from a first-order logic formula. It quantifies over the entire domain, stating that for all objects x
in the domain, x is a cube. In other words: Everything is a cube. So the correct answer is Yes, because if everything in the domain
is a cube, then B, an object in the domain, is a cube.

In answering the following questions, choose the third answer option Other if it is debatable whether the hypothesis follows from
the premise (e.g., if the premise is open to multiple interpretations, or if you do not understand the premise or hypothesis).
Explain there shortly what is unclear. Please do not think too long about each question. If you have much trouble understanding the
premise or hypothesis, choose the Other option and move on.

(Now 42 NLI questions of the following form are shown:)
Does the hypothesis automatically follow from the premise? Pick the third answer option if it is unclear whether the hypothesis
follows from the premise (e.g., if the premise is open to multiple interpretations, or if you do not understand the premise or
hypothesis), and explain why.

Premise: <premise>
Hypothesis: <hypothesis>
O VYes
O No
O Other

3. Fluency Ranking

The purpose of this second (and final) task, which is called Fluency Ranking task, is to evaluate the fluency of English
translations from first-order logic formulas. We will present to you, one by one, 20 formulas with 3 candidate translations, like
in the example below:

Formula: = 3 x ( Cube ( x ) A Leftof (B, x ) )

Translation 1: There is no element x such that x is a cube and B is to the left of x.

Translation 2: It is not the case that there is an element x such that x is a cube and B is to the left of x.
Translation 3: For all cubes x, B is not to the left of x or x is not even.

Please rank the translations by the criterion of fluency, where rank 1 stands for the most fluent, and 3 for the least fluent
translation. By a fluent translation, we mean a translation that sounds as a natural English sentence. In ranking, ties are
allowed. So, for example, if you think Translation 1 is best and Translation 2 and 3 are equally bad, give Translation 1 the
highest rank (1), and Translation 2 and 3 the next highest rank (2), assigning nothing to the third rank.

In ranking the translations, please note that it is very important that you evaluate the fluency of the translations based only on
the form of the translations (not on their adequacy given the formula). It can happen that two candidate translations are exactly
the same. Please assign them the same rank always.

For your information, these are the interpretations of the predicates used in the formulas:

Dodec ( x ) x is a dodecahedron
Small ( x ) X is small

Student ( x ) x is a student

Medium ( x ) x is medium

Cube ( x ) x is a cube

Prime ( x ) x is a prime

Person ( x ) X is a person

Tet ( x ) x is a tetrahedron

Pet ( x ) x is a pet

Large ( x ) x is large

Even ( x ) x is even

Adjoins ( x , y ) x is adjacent to y
SameCol ( x , y ) x is in the same column as y
Leftof ( x , y) x is to the left of y
RightOf ( x , y ) x is to the right of y
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[

smaller than 'y

is in front of y

is larger than y

is in the same row as y
is of the same shape as y
is of the same size as y
is in back of y

Smaller ( x , y )
FrontOf ( x , y )
Larger ( x , y )
SameRow ( x , y )
SameShape ( x , y )
SameSize ( x , y )
BackOf ( x , y )

X X X X X X X
» »

»

(Now 20 FR questions of the following form are shown:)
Given the following formula and candidate translations, rank the translations from most fluent (1) to least fluent (3). Base
your ranking only on the criterion of fluency (how natural the sentence sounds in English). Ties are allowed.

Formula: <formula>

Translation 1: <translation 1>
Translation 2: <translation 2>
Translation 3: <translation 3>

(Most fluent)
Translation

1 2 3 (Least fluent)
000
Translation 2 000
000

Translation 3

4. Final question
Do you have any final comments on the survey?

Figure 9: The instructions and questions shown to the participants in the human evaluation.
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