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Abstract

Intelligent systems designed for play-based interactions should be contextually aware of the users and their surroundings.
Spoken Dialogue Systems (SDS) are critical for these interactive agents to carry out effective goal-oriented communication
with users in real-time. For the real-world (i.e., in-the-wild) deployment of such conversational agents, improving the Natural
Language Understanding (NLU) module of the goal-oriented SDS pipeline is crucial, especially with limited task-specific
datasets. This study explores the potential benefits of a recently proposed transformer-based multi-task NLU architecture,
mainly to perform Intent Recognition on small-size domain-specific educational game datasets. The evaluation datasets
were collected from children practicing basic math concepts via play-based interactions in game-based learning settings. We
investigate the NLU performances on the initial proof-of-concept game datasets versus the real-world deployment datasets
and observe anticipated performance drops in-the-wild. We have shown that compared to the more straightforward baseline
approaches, Dual Intent and Entity Transformer (DIET) architecture (Bunk et al., 2020) is robust enough to handle real-world
data to a large extent for the Intent Recognition task on these domain-specific in-the-wild game datasets.
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1. Introduction challenging. This study primarily explores the poten-

tial benefits of a recent transformer-based multi-task ar-

Investigating Artificial Intelligence (AI) systems that  chitecture proposed for joint Intent and Entity Recogni-
can help children in their learning process has been  tion tasks, especially with limited game datasets. Uti-

a challenging yet exciting area of research (Chassig-|  lizing that flexible architecture, we focus on increas-
nol et al., 2018 [Zhai et al., 2021). Utilizing Nat-  ing the performance of our NLU models trained on
ural Language Processing (NLP) for building educa-  small-size task-specific game datasets. The main NLU

tional games and applications has gained popularity  task we aim to improve is the Intent Recognition from
in the past decade (Lende and Raghuwanshi, 2016;  possible user/player utterances during gamified learn-
Cahill et al., 2020). Game-based learning systems  ing interactions. Given an input utterance, the goal of

can offer significant advantages in teaching fundamen-  an Intent Recognition model is to predict the user’s in-
tal math concepts interactively, especially for younger  tent (e.g., what the player wants to accomplish within a
students (Skene et al., 2022). These intelligent sys- game-based interaction).

tems are often reqmred to hapdle multnpodal' under-  This work investigates the Intent Recognition model
standing of the kids and their surroundings in real- performances on our early proof-of-concept (POC) ed-

time. Spoken Dialogue Systems (SDS) are vital build-  ¢ational game datasets created to bootstrap the SDS to
ing blocks for efficient task-oriented communication e deployed later in the real world. We have shown that
with children in game-based learning settings. In this adopting the recently proposed lightweight Dual Intent
study, the application domain is a multimodal dialogue and Entity Transformer (DIET) architecture (Bunk et
system for younger kids learning basic math concepts [ 2020} along with the Conversational Representa-
through gamified interactions. Such dialogue system  (jons from Transformers (ConveRT) embeddings (Hen-

technology needs to be constructed and modeled care-  [Jerson et al., 2020) is a promising approach for NLU.
fully to handle task-oriented game interactions between  Thjs method boosts the NLU performance results on
the children and a virtual character serving as a conver- our initial small-scale POC game datasets. After the ex-
sational agent. ploratory validation studies were conducted in-the-lab,
Building the Natural Language Understanding (NLU)  the final evaluation datasets were collected in-the-wild
module of a goal-oriented SDS for game-based interac-  from students working on fundamental math concepts

tions usually involves: (i) the definition of intents (and  in a game-based learning space at school. We exam-
entities if needed); (ii) creation of game-specific and  ine the Intent Recognition performances on these real-
task-relevant datasets; (iii) annotation of the game data ~ world deployment datasets and reveal highly expected
with domain-specific intents and entities; (iv) iterative ~ performance degradations in-the-wild. Compared to
training and evaluation of NLU models; (v) repeating  the baseline approaches, we have shown that adopting
this tedious process for every new or updated game  a DIET classifier with pre-trained ConveRT representa-
usages. Improving the NLU performances of task-  tions still achieves improved NLU results on our eval-
oriented SDS pipelines in low-data regimes is quite  uation datasets collected in-the-wild.
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2. Related Work

The use of Al technologies to enhance students’ learn-
ing experiences has gained increasing popularity, es-
pecially in the last decade (Chassignol et al., 2018}
Aslan et al., 2019; Jia et al., 2020; [Baker, 2021} [Zhai et
al., 2021} Zhang and Aslan, 2021). Intelligent game-
based learning systems (Lester et al., 2013} |Richey
et al., 2021) present significant benefits for practicing
math concepts in smart spaces (Pires et al., 2019; |Sun
et al., 2021)), specifically for early childhood educa-
tion (Skene et al., 2022). Adapting NLP techniques to
build various educational applications has been an ap-
pealing area of research for quite some time (Meurers,
2012; Blanchard et al., 2015; [Lende and Raghuwan-
shi, 2016} [Taghipour and Ng, 2016, |Raamadhurai et
al., 2019; (Cahill et al., 2020; |Ghosh et al., 2020). To
slightly narrow down on these applications, building
conversational agents for the smart education has been
widely studied in the community (Graesser et al., 2004;
Litman and Silliman, 2004; |[Kerry et al., 2009; |Roos,
2018; Winkler and Sollner, 2018; [Palasundram et al.,
2019; [Winkler et al., 2020). Relatively few number
of studies also exist specifically on recognizing goals
or intents of players in educational games (Min et al.,
2016 Min et al., 2017 [Hooshyar et al., 2019).

Since our ultimate goal is to build dialogue systems
for interactive educational games, we have outlined
the previous studies with applications of Al and NLP
for education context until now (e.g., intelligent sys-
tems and conversational agents for play-based learn-
ing). Next, we will briefly summarize the dialogue
system technologies and NLU approaches in a more
generic context.

Dialogue systems are frequently categorized as either
task-oriented or open-ended. The task-oriented di-
alogue systems are designed to fulfill specific tasks
and handle goal-oriented conversations. The open-
ended systems or chatbots, on the other hand, allow
more generic conversations such as chit-chat (Jurafsky
and Martin, 2018)). With the advancements of deep
learning-based language technologies and increased
availability of large datasets with computing power in
the research community, the dialogue systems trained
end-to-end produce promising results for both goal-
oriented (Bordes et al., 2017)) and open-ended (Dodge
et al., 2016) applications. Dialogue Managers (DM)
of goal-oriented systems are often sequential decision-
making models. The optimal policies can be learned
via reinforcement learning from a high number of user
interactions (Shah et al., 2016} |Dhingra et al., 2017;
Liuet al., 2017;Su et al., 2017; (Cuayahuitl, 2017). Un-
fortunately, building such systems with limited user in-
teractions is extremely challenging. Therefore, super-
vised learning approaches with modular SDS pipelines
are still widely preferred when initial training data is
limited, basically to bootstrap the goal-oriented conver-
sational agents for further data collection (Sahay et al.,
2019). Statistical and neural network-based dialogue
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system toolkits and frameworks (Bocklisch et al., 2017
Ultes et al., 2017; |Burtsev et al., 2018)) are heavily used
in the academic and industrial research communities
for implicit dialogue context management.

The NLU module within SDS pipeline processes the
user utterances as input and often predicts the user
intents (along with entities of interest if necessary).
LSTM networks (Hochreiter and Schmidhuber, 1997)
and Bidirectional LSTMs (Schuster and Paliwal, 1997)
have been widely utilized for sequence learning tasks
such as Intent Classification and Slot Filling (Mesnil
et al., 2015; |[Hakkani-Tir et al., 2016). Joint train-
ing of Intent Recognition and Entity Extraction models
have been explored recently (Zhang and Wang, 2016;
Liu and Lane, 2016; |Goo et al., 2018}; |Varghese et
al., 2020). Several hierarchical multi-task architectures
are proposed for these joint NLU approaches (Zhou
et al., 2016; (Wen et al.,, 2018; [Okur et al., 2019;
Vanzo et al., 2019)), few of them in multimodal con-
text (Gu et al., 2017} |Okur et al., 2020). |Vaswani et
al. (2017) proposed the Transformer as a novel neural
network architecture based entirely on attention mech-
anisms (Bahdanau et al., 2015). Shortly after, Bidi-
rectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019) became one of the sig-
nificant breakthroughs in pre-trained language repre-
sentations, showing strong performance in numerous
NLP tasks, including the NLU. Recently, Bunk et al.
(2020) introduced the Dual Intent and Entity Trans-
former (DIET) as a lightweight multi-task architecture
that outperforms fine-tuning BERT for predicting in-
tents and entities on a complex multi-domain NLU-
Benchmark dataset (Liu et al., 2021). On the ef-
ficient representation learning side, Henderson et al.
(2020) lately proposed the Conversational Represen-
tations from Transformers (ConveRT), which is also a
lightweight approach to obtain pre-trained embeddings
as sentence representations to be successfully utilized
in numerous conversational Al tasks.

3. NLU Models

This section describes the models we examine for the
NLU (i.e., Intent Recognition) module within a dia-
logue system pipeline. We have built our NLU models
on top of the Rasa open-source framework (Bocklisch
et al., 2017). The former baseline Intent Recognition
architecture available in Rasa is based on supervised
embeddings provided within the Rasa NLU (Bocklisch
et al., 2017), which is an embedding-based text classi-
fier that embeds user utterances and intent labels into
the same vector space. This former baseline architec-
ture is inspired by the StarSpace work (Wu et al., 2018)),
where the supervised embeddings are trained by max-
imizing the similarity between intents and utterances.
The algorithm learns to represent user inputs and in-
tents into a common embedding space and compares
them against each other in that vectorial space. It also
learns to rank a set of intents given a user utterance and
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Figure 1: Learning basic math via game play-based interactions.

provides similarity rankings of these labels. In[Sahay ef]
[al. (2019), the authors enriched this embedding-based
former baseline Rasa Intent Classifier by incorporat-
ing additional features and adapting alternative net-
work architectures. To be more precise, they adapted
the Transformer network (Vaswani et al., 2017) and
incorporated pre-trained BERT embeddings using the
bert-base-uncased model (Devlin et al., 2019)
to improve the Intent Recognition performance. In this
work, we employed this improved approach from
as our baseline NLU model, which

we would call TF+BERT in our experiments.

In this study, we explore the potential improvements in
Intent Classification performance by adapting the re-
cent DIET architecture (Bunk et al., 2020). DIET is a
transformer-based multi-task architecture for joint In-
tent Recognition and Entity Extraction. It employs a 2-
layer transformer shared for both of these NLU tasks.
To be more precise, a sequence of entity labels is pre-
dicted with a Conditional Random Field (CRF)
tagging layer, which is on top of the
transformer output sequence corresponding to the input
sentences treated as a sequence of tokens. For the intent
labels, the transformer output for the ___CLS___ token
(i.e., classification token at the end of each sentence)
and the intent labels are embedded into the same se-
mantic vector space. The dot-product loss is utilized to
maximize the similarity with the target label and min-
imize similarities with the negative samples. Note that
DIET can incorporate pre-trained word and sentence
embeddings from language models as dense features,
with the flexibility to combine these with token level
one-hot encodings and multi-hot encodings of charac-
ter n-grams as sparse features. These sparse features
are passed through a fully-connected layer with shared
weights across all sequence steps. The output of this
fully-connected layer is concatenated with the dense
features from the pre-trained models. This flexible ar-
chitecture allows us to use any pre-trained embeddings
as dense features in DIET, such as GloVe (Pennington

et al., 2014)), BERT (Devlin et al., 2019), and Con-
veRT (Henderson et al., 2020).
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Conversational Representations from Transformers
(ConveRT) is yet another recent and promising archi-
tecture to obtain pre-trained representations that are
well-suited for real-world Conversational Al applica-
tions, especially for the Intent Classification task. Con-
veRT is a unique transformer-based dual-encoder net-
work leveraging quantization and subword-level pa-
rameterization. In [Henderson et al. (2020), the authors
show that pre-trained representations from the Con-
veRT sentence encoder can be transferred to the Intent
Classification task with promising results. Both DIET
and ConveRT are lightweight architectures with faster
and memory/energy-efficient training capabilities than
their counterparts. When incorporating the ConveRT
embeddings with the DIET classifier, the initial embed-
ding for ___CLS___ token is set as the input sentence
encoding obtained from the ConveRT model. This
way, we can leverage extra contextual information from
the complete sentence on top of the word embeddings.
For all the above reasons, we adapted the DIET archi-
tecture and incorporated pre-trained ConveRT embed-
dings to potentially improve the Intent Classification
performances on our small domain-specific datasets.
We would call this approach DIET+ConveRT in our
experiment

To investigate the actual benefits of DIET architec-
ture versus the dense features, we also adapted DIET
with out-of-the-box pre-trained BERT embeddings us-
ing the bert-base-uncased model
2019), as in our baseline TF+BERT NLU model. When
combining these off-the-shelf BERT representations
with the DIET classifier, the initial embedding for
___CLS___token is set to the corresponding output em-
bedding of the BERT [CLS] token. We would call this
approach DIET+BERT in our experiments.

4. Experimental Results

4.1. Datasets

We conduct our experiments on the Kid Space Plant-
ing and Watering (PW) games NLU datasets having

"Please refer to Bunk et al. (2020) for hyper-parameters,

hardware specifications, and computational cost details.




Planting Watering Planting Watering

Statistics/Dataset Game Game Statistics/Dataset Game Game
# distinct intents 14 13 # distinct intents 12 11
total # samples (utterances) 1927 2115 total # samples (utterances) 2173 2122
min # samples per intent 22 25 min # samples per intent 4 6
max # samples per intent 555 601 max # samples per intent 1005 1005
avg # samples per intent 137.6 162.7 avg # samples per intent 181.1 192.9

# unique words (vocab) 1314 1267 # unique words (vocab) 772 743
total # words 10141 10469 total # words 10433 9508

min # words per sample 1 1
max # words per sample 74 65
avg # words per sample 5.26 4.95

min # words per sample 1 1
max # words per sample 45 44
avg # words per sample 4.80 4.48

Table 1: KidSpace-PW-POC Dataset Statistics

utterances from play-based math learning experiences
designed for early school-age children (i.e., 5-to-8
years old) (Anderson et al., 2018 |Aslan et al., 2022).
The use-cases aim to create an interactive smart space
for children with traditional gaming motivations such
as level achievements and virtually collecting objects.
The smart space allows multiple children to interact,
which can encourage social development. The intelli-
gent agent should accurately comprehend inputs from
children and provide feedback. The Al system needs
to be physically grounded to allow children to bring
meaningful objects into the play experience, such as
physical toys and manipulatives as learning materials.
Therefore, the multimodal system would combine vari-
ous sensing technologies that should interact with chil-
dren, track each child, and monitor their progress.

The use-cases include a specific flow of interactive
games facilitating elementary math learning. The
FlowerPot game (i.e., Planting Game in Tables[T|and 2]
builds on the math concepts of tens and ones, with the
larger flower pots representing ‘tens’ and smaller pots
‘ones’. The virtual character provides the number of
flowers the children should plant, and when the chil-
dren have placed the correct number of large and small
pots against the wall, digital flowers appear. In the
NumberGrid game (i.e., Watering Game in Tables [I]
and [, math clues (or questions) are presented to chil-
dren. When the correct number is touched on the num-
ber grid (i.e., on the wall), water is virtually poured to
water the flowers. The visual, audio, and LiDAR-based
recognition technologies enable physically situated in-
teractions. The dialogue system is expected to take
multimodal information to incorporate user identity,
actions, gestures, audio context, and the objects (i.e.,
physical manipulatives) in space. For instance, dur-
ing the FlowerPot game experience, the virtual char-
acter asks the children if they are done placing pots,
to which they respond ‘yes’ (or ‘no’). The dialogue
system needs to use the visual input to have the vir-
tual character respond appropriately to the correct (or
incorrect) number of pots being detected.

Figure 1| demonstrates the virtual character (i.e., Oscar
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Table 2: KidSpace-PW-Deployment Dataset Statistics

the teddy bear) helping the kids with learning ‘tens’ and
‘ones’ concepts along with practicing simple count-
ing, addition, and subtraction operations. The game
datasets have a limited number of player utterances,
which are manually annotated for intent types defined
for each learning game or activity. For the FlowerPot
game, we use the Planting Flowers game dataset, and
for the NumberGrid game, we use a separate Watering
Flowers game dataset. Some of the intents are quite
generic across usages and games/activities (e.g., af-
firm, deny, next-step, out-of-scope, goodbye), whereas
others are highly domain-dependent and game/task-
specific (e.g., intro-meadow, answer-flowers, answer-
water, ask-number, answer-valid, answer-invalid).
The current learning game activities are designed for
two children collaboratively playing with the virtual
agent. In addition to kids, an adult user (i.e., the Fa-
cilitator) is also present in the space to interact with the
agent for game progress and help out the children when
needed. Thus, we are dealing with a multiparty con-
versational system interacting with multiple users (i.e.,
two kids and one adult) while they progress through
several learning games. In this goal-oriented dialogue
system, the agent should provide the game instructions
(with the Facilitator’s help), guide the kids, and under-
stand both the kids’ and the Facilitator’s utterances and
actions to respond to them appropriately.

The NLU models are trained and validated on the ini-
tial POC datasets (Sahay et al., 2021) to bootstrap the
agents for in-the-wild deployments. These POC game
datasets were manually created based on the User Ex-
perience (UX) design studies to train the SDS models
and then validated with the UX sessions in-the-lab with
5 kids (and one adult) going through play-based learn-
ing interactions. Table |I| shows the statistics of these
KidSpace-PW-POC NLU datasets. Planting game and
Watering game POC datasets have 1927 and 2115 ut-
terances, respectively.

The deployment game datasets were later collected
from 12 kids (and two adults), where the Kid Space
setup was deployed in a classroom at school (Aslan et
al., 2022). Table |2 shows the statistics of KidSpace-



Planting Game Datasets # Utterances

Watering Game Datasets # Utterances

Type Intent POC Deployment Type Intent POC Deployment
Domain intro-meadow 23 7 Domain answer-water 69 9
Specific  answer-flowers 110 13 Specific  answer-valid 201 6
answer-valid 176 17 answer-invalid 91 0
answer-invalid 95 0 intro-game 102 30
intro-game 134 78 everyone-understand 44 11
help-affirm 41 4 oscar-understand 25 15
everyone-understand 22 11 ask-number 73 21
oscar-understand 25 15 counting 476 581
ask-number 34 18 G .
. eneric  affirm 165 370
counting 418 581 deny 157 54
Generic affirm 144 370 next-step 34 0
deny 125 54 out-of-scope 601 1005
next-step 25 0 goodbye 77 20
out-of-scope 555 1005 Total 2115 2122
Total 1927 2173

Table 3: Intent Class Distributions for Planting Game

PW-Deployment NLU datasets, where Planting game
and Watering game deployment datasets have 2173 and
2122 utterances, respectively. Note that these deploy-
ment datasets are used only for the testing purposes in
this study, where we train our NLU models on the POC
datasets. For both in-the-lab and in-the-wild datasets,
the spoken user utterances are transcribed manually at
first. These transcriptions are then manually annotated
for the intent types we defined for each game activity.
These transcribed and annotated final utterances are an-
alyzed and used in our experiments in this study.

When we compare the POC versus deployment game
datasets (in Tables [I}to- @), we observe above 2.1k
sample utterances for each game activity in both cases,
except for the Planting POC data with around 1.9k sam-
ples. The number of possible user intents we envi-
sioned for the POC was 14 and 13, respectively, for
the Planting and Watering games. However, we have
not observed any samples for two of the possible in-
tent types for each game in the real-world deployment
sessions. These intent types are next-step and answer-
invalid, which were part of our backup intents in case
we have technical issues and the users need to skip
certain sub-activities (i.e., next-step), or in case the
users provide highly irrelevant or unexpected answers
to our specific questions in the game flow (i.e., answer-
invalid). The minimum and the maximum number
of samples per intent also differ significantly for the
POC versus in-the-wild game datasets, which creates
a huge difference in class distributions for our test
samples (see Tables 3] and [). Although we expect
certain intent types to occur very infrequently in real
game-plays (e.g., help-affirm), we still have to manu-
ally create enough samples (>20) for each intent type
for the model training and validation purposes during
the POC. The dominant intent class in both POC and
in-the-wild datasets is out-of-scope (OOS). That was
more or less anticipated as we are dealing with a multi-
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Table 4: Intent Class Distributions for Watering Game

party conversational game setting here. In these games,
the kids are encouraged to talk to each other while col-
laboratively solving the math puzzles. They can also
discuss with or ask for help from the Facilitator. As the
agent is in always-listening mode, if the users are not
directly addressing Oscar, the system can detect those
utterances as OOS (or counting, which is the second
most frequent intent class, depending on the context).
Notice that POC datasets were created with around
one-fourth of the utterances as OOS, whereas the de-
ployment datasets have almost half of the utterances
tagged as OOS. That was mainly due to a relatively
talkative Facilitator at school and some kids’ prefer-
ences to talk to the Facilitator more often than Oscar
in real deployment sessions. We have observed this be-
havior less often in our in-the-lab UX sessions, as the
adult in the room was one of the researchers guiding
kids to talk to Oscar instead. Those out-of-distribution
and unseen OOS samples create additional challenges
for the NLU models when tested on in-the-wild game
datasets. We have also observed the vocabulary sizes
shrink in-the-wild as we tried to manually curate more
variations in the POC datasets to make the NLU models
more robust. The average number of tokens per sample
(i.e., utterance length) is around 5 in the POC data, yet,
we observe slightly shorter utterances in-the-wild that
might affect the available contextual information.

4.2

To evaluate the Intent Recognition performances, the
baseline NLU model that we previously explored,
TF+BERT, is compared with the DIET+BERT and
DIET+ConveRT models that we adapted recently (see
section 3). We conduct our evaluations on both the
Planting and Watering game datasets. The models are
trained and validated on the bootstrap POC datasets
and then tested on the school deployment datasets.
Table [5] summarizes the Intent Classification perfor-
mance results on the POC datasets in micro-average

Intent Recognition Results



Planting Watering Planting Watering
Model/Dataset Game Game Model/Dataset Game Game
TF+BERT (Baseline) 90.504+0.25 92.43+0.32 TF+BERT (Baseline) 85.084+0.49 90.06£0.56
DIET+BERT 94.00+0.38 96.39+0.14 DIET+BERT 87.03+0.30 89.63+0.62
DIET+ConveRT 95.88+0.42 97.69+0.11 DIET+ConveRT 89.00+0.29 90.57+0.86

Performance Gain +5.38 +5.26

Performance Gain +3.92 +0.51

Table 5: NLU/Intent Recognition micro-avg F1-scores
(%): TF+BERT, DIET+BERT, and DIET+ConveRT
models trained and validated on KidSpace-PW-POC
datasets (3 runs of 10-fold CV)

Fl-scores. To test our model extensively on these
limited-size POC datasets, we perform a 10-fold cross-
validation (CV) by automatically creating multiple
train/test splits. We report the average performance
results with standard deviations obtained from the 3
runs, where we perform a 10-fold CV over the POC
datasets for each run. As one can observe from Table[5]
adapting the lightweight DIET architecture (Bunk et
al., 2020) with pre-trained ConveRT embeddings (Hen-
derson et al., 2020) significantly improved the Intent
Classification performances for the NLU datasets man-
ually created for POC. Specifically, the overall NLU
performance gains are higher than 5% F1-scores for
both Planting and Watering game datasets. Note that
when we keep the dense features (i.e., pre-trained em-
beddings from BERT language models) constant, we
can observe the clear benefits of switching from stan-
dard Transformer (TF) architecture to DIET classifier.
We gain 3-to-4% Fl1-scores with DIET architecture,
and we improve the Intent Recognition performance
by another 1-t0-2% with ConveRT embeddings com-
pared to BERT. With these observations, which are
consistent across different use-cases (i.e., Planting and
Watering games), we updated the NLU component in
our multimodal SDS pipeline by replacing the previous
TF+BERT model with this promising DIET+ConveRT
architecture.

Next, we investigate the NLU model performances on
our real-world deployment datasets. The anticipated
performance drops occurred when we tested these In-
tent Recognition models on in-the-wild data, which re-
flect more realistic game settings from a school de-
ployment. Table [6] summarizes the Intent Classifica-
tion performance results obtained on the deployment
game datasets in micro-average Fl-scores. Although
the DIET+ConveRT models trained on POC datasets
performed very well during the cross-validation (i.e.,
achieved around 96% and 98% F1-scores for Plant-
ing and Watering games, respectively), the perfor-
mance loss is significantly high (i.e., around 7% F1-
score) when tested on in-the-wild datasets. As a result,
the same models achieved around 89% and 91% F1-
scores when tested on the Planting and Watering de-
ployment sets, respectively. That finding is quite com-
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Table 6: NLU/Intent Recognition micro-avg F1-scores
(%): TF+BERT, DIET+BERT, and DIET+ConveRT
models trained on KidSpace-PW-POC (3 runs) and
tested on KidSpace-PW-Deployment datasets (3 runs)

mon and probably not very surprising as the players
in-the-wild can often largely deviate from the manual
or synthetic data generation inside the labs or data col-
lection through crowd-sourcing for interactive games.
We have summarized the game dataset statistics and
our preliminary observations regarding the main differ-
ences between the POC and deployment sets in sec-
tion We believe such deviations have played a sig-
nificant role in the observed performance shifts for real-
world play-based interactions. More specifically, the
sample-class distributions, vocabulary sizes, slightly
shorter utterance lengths, frequency of the OOS con-
versations due to multiparty setup, technical issues dur-
ing the sessions causing unexpected interactions, etc.,
would all contribute to these shifts. One should also
keep in mind the unprecedented group dynamics for
that age group in play-based interactions and the unpre-
dictable nature of kids in game-based learning settings.
These factors also play some role in the robustness is-
sues of NLU models developed for such challenging
real-world deployments.

Besides the inevitable NLU performance degradations
on real-world deployment datasets, Table [6] also com-
pares the baseline TF+BERT models with more re-
cent DIET+BERT and DIET+ConveRT architectures,
all trained on POC data and tested on in-the-wild game
data. The DIET+ConveRT models still reach the high-
est Intent Recognition F1-scores on these test sets, but
the gap between the baseline and the best-performing
models has been narrowed, especially for the Water-
ing game. Compared to the TF+BERT baseline, the
performance gain with the DIET+ConveRT approach
is 43.92% in Planting and only +0.51% in Watering
games when tested in-the-wild. For Planting, the in-
creasing performance trends going from TF+BERT to
DIET+BERT and DIET+ConveRT are also distinguish-
able on the deployment set. However, for Watering,
the baseline TF+BERT model performs relatively well
when tested on the deployment set, achieving only
slightly lower F1-scores than the DIET+ConveRT. No-
tice that the variances are also relatively high in this
case, so we may not observe the significant perfor-
mance benefits when switching to DIET architecture
from baseline TF for Watering game deployment. The



Data Sample Utterance Intent Prediction
Planting  oh so like green and blue colors? answer-valid  answer-flowers
Game thirteen flowers! counting answer-flowers
so if we had to start at a number what number do you think we should start at? counting ask-number
or twenty less okay so we’re going down counting out-of-scope
let’s add let’s add a flower pot what do you think? counting intro-game
yeah totally! do you wanna plant some next to him? affirm intro-game
yeah I think that’s ninety affirm counting
no I think it was forty five deny counting
okay so what do we need to start with? out-of-scope help-affirm
Watering next one? ask-number next-step
Game okay so how many more do you think we need? counting ask-number
we need ten more to water counting answer-water
to give to have enough water to plant our flowers and make them grow intro-game answer-water
so when we look at these numbers all of the ones with the two in front, have two tens intro-game counting
if we get four correct answer intro-game counting
all right he’s gotta go get his watering can that he must have put it away out-of-scope intro-game

the ground
timber what

out-of-scope answer-valid

out-of-scope answer-valid

Table 7: NLU/Intent prediction error samples from Planting and Watering games deployed in-the-wild:
DIET+ConveRT model trained on KidSpace-PW-POC datasets and tested on KidSpace-PW-Deployment datasets

possible reason for the baseline model in Watering be-
ing already quite robust on real-world data could be the
size differences in POC datasets on which the models
are trained. To be more precise, the Planting baseline
model is trained on 1927 samples and tested on 2173
in-the-wild utterances (see Table[3). Unlikely, the Wa-
tering baseline model is trained on 2115 samples and
tested on 2122 utterances (see Table . In addition,
we have one less intent class to predict in total (e.g.,
14 vs. 13) and two fewer domain-specific intent types
(e.g., 10 vs. 8) in the Watering game compared to the
Planting. Having around 10% more data for training,
plus having slightly less number of total and domain-
specific intents, can explain the relatively higher ro-
bustness of the baseline model on Watering deployment
data (compared to Planting). On the other hand, due to
the consistently significant improvements obtained in
all other cases (i.e., Planting-POC, Watering-POC, and
Planting-Deployment), DIET+ConverRT still seems a
promisingly more robust NLU model for our future
use-cases.

4.3. Error Analysis and Discussion

In this subsection, we aim to investigate further the
differences between the POC and the real-world de-
ployment datasets for NLU in our game-based learn-
ing activities. When best-performing DIET+ConveRT
models were tested in-the-wild, we discovered overall
Fl-score performance drops of around 7% for Intent
Recognition, consistently for both game activities (i.e.,
Planting and Watering). When we analyze the intent-
wise results, we identify some generalization issues be-
tween the POC to in-the-wild datasets, especially with
the highly domain-specific intents.

For the Planting Flowers game, the top 5 intent classes
with highest performance drops (>20%) are answer-
valid, help-affirm, ask-number, answer-flowers, and
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intro-game. Among these, help-affirm had quite low
test samples (only 4 utterances observed during de-
ployments), which could explain the high variance in
the detection performance. Regarding these top 5 erro-
neous intent classes, we realize that these are highly
domain-dependent and activity-specific intent types,
where we expect vastly specific answers from the kids
based on the game flow design. To illustrate, during
this Planting game, kids are helping Oscar to make the
meadow look nicer. At the beginning of their inter-
actions, the virtual character is asking “Let’s see, what
could we add to the meadow... What kind of plants have
pretty colors and smell nice?” (or something along
those lines as we use variations in response templates).
We expect the kids to answer with “flowers” or its
variations at this point in the game, where these short
utterances should be classified as answer-flowers in-
tent. However, kids can also answer with other plants
(or animals, etc.) that belong to the meadow, like
“trees”, “bushes”, “butterflies”, “birds”, etc. These vi-
able but incorrect answers would ideally be classified
as answer-valid intent. As you can see, these are ex-
tremely task-specific intents, and numerous things can
go wrong in-the-wild for these, which may be beyond
our assumptions. The intro-game intent is also highly
game-specific as it is designed to cover the possible ut-
terances from the Facilitator while s/he is introducing
the game and explaining the rules (e.g., how to use the
big and small pots for ‘tens’ and ‘ones’ for this Plant-
ing Flowers game). For more generic intent types that
can be shared across other activities (e.g., affirm, deny,
out-of-scope), we observed relatively less performance
degradation in-the-wild using DIET+ConveRT.

For the Watering game activity, the top 4 intents with
highest performance degradations (>20%) are answer-
valid, ask-number, intro-game, and answer-water. This
time, answer-valid had very few test samples (only



6 utterances observed during the Watering game at
school sessions), which might again explain the high
variance in its performance. All these four intent
types are also highly task-specific, and we anticipate
more vulnerability for deviations in-the-wild for them,
in contrast to the generic intent classes (e.g., affirm,
deny, out-of-scope, goodbye). During the Watering
game, this time, Oscar is asking “What do you think
we need to help the flowers bloom?”. We expect the
kids to answer with “water” or its variations, where
such utterances should be recognized as answer-water
intent. Once again, kids can say other viable answers
that could help the flowers grow/bloom, such as “sun-
light”, “soil”, “bees”, etc., which should be classified as
answer-valid intent. Similarly, the intro-game intent is
extremely domain/game-specific and aims to detect Fa-
cilitator utterances while s/he is introducing/explaining
the game rules (e.g., how to use the number grid pro-
jected on the wall for touch-based interactions in this
Watering game). Note that these valid answers or
game introductions differ substantially based on which
game we are playing, and we need to train separate
NLU models for each game using these game domain-
specific samples.

Table [/| depicts some of the user utterances collected
in-the-wild as concrete examples from both deploy-
ment datasets. The ground truth intent labels and the
predicted intent classes are compared, emphasizing the
errors made on some of the most problematic game-
specific intents. Here we use our best-performing
DIET+ConveRT models for the Intent Classification
task. These prediction errors are expected to occur in
real-world deployments for various reasons. Some of
these user utterances could have multiple intents (e.g.,
“yeah totally! do you wanna plant some next to him?”
starts with affirm, then the Facilitator continues guid-
ing the kids during intro-game). Others could fail due
to subtle semantic differences between these classes
(e.g., “if we get four correct answer” is used by the Fa-
cilitator while explaining the NumberGrid game rules
but can easily be mixed with counting too). There ex-
ist some utterances where we see “flowers” or “water”
while counting with numbers (e.g., “thirteen flowers!”,
“we need ten more to water’), which are confusing for
the models trained on much cleaner datasets. Note that
the majority of these classification errors occur for the
user utterances during multiparty conversations, i.e.,
the users are talking to each other instead of Oscar,
the virtual game character, but the SDS fails to rec-
ognize that (e.g., “okay so what do we need to start
with?”). These sample utterances also depict several
cases where our highly vocal adult Facilitator at school
is talking to the kids to introduce the games, explain
the rules, guide them to count loudly, and help them
find the correct answers in the game flow. It is highly
challenging to predict those nearly open-ended conver-
sations and include all possibilities in the POC train-
ing datasets to make the NLU models more robust for
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real-world deployments. However, we are working to-
wards clustering-based semi-supervised intent discov-
ery and human-in-the-loop (HITL) bulk labeling ap-
proaches (Sahay et al., 2021; |Shen et al., 2021) for
cleaner design and separation of intent classes on in-
the-wild datasets. We also plan to continue our data
augmentation with paraphrase generation efforts to in-
crease the limited POC samples and add more varia-
tions during training to make the NLU models more
robust in future deployments (Okur et al., 2022).

5. Conclusion

Dialogue systems are vital building blocks to carry out
efficient task-oriented communication with children for
game play-based learning settings. This study inves-
tigates a small step towards improving contextually
aware multimodal agents that need to understand and
track children’s activities and interactions during edu-
cational games, support them in performing learning
tasks and provide insights to teachers and parents to
help personalize the learning experiences. We focus
on building task-specific dialogue systems for younger
kids learning basic math concepts via gamified inter-
actions. We aim to improve the NLU module of the
goal-oriented SDS pipeline with domain-specific game
datasets having limited user/player utterances.

In this exploration, we experimented with a flexible
and lightweight transformer-based multi-task architec-
ture called DIET (Bunk et al., 2020) to improve the
NLU performances on our task-specific game datasets
with limited sizes. These domain-specific datasets are
manually created for the POC first and then tested on
in-the-wild deployment data. Based on the results ob-
tained on POC game datasets, using the DIET classi-
fier with pre-trained ConveRT embeddings has shown
to be a promising approach yielding remarkably higher
F1-scores for Intent Classification. The NLU results on
the real-world deployment game datasets also support
these preliminary findings but to a lesser extent.

Using the best performing DIET+ConveRT approach,
we observed significant performance drops when the
NLU models were tested on in-the-wild game datasets
compared to the initial POC datasets. That finding
was foreseeable as the player utterances in real-world
deployments may usually diverge from the samples
within the POC data manually generated for bootstrap-
ping purposes. We investigated these game datasets
and shared our exploratory insights for the devia-
tions between POC and in-the-wild datasets. Our pre-
liminary observations suggest that the highest perfor-
mance shifts occur for the more domain-specific in-
tents in each educational game set. We are working
towards making the NLU models and eventually the
SDS pipeline more robust for such deviations in-the-
wild by empowering the interactive intent labeling with
HITL learning techniques and the data augmentation
with paraphrasing.
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