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Abstract

In the context of personalized federated learn-
ing (FL), the critical challenge is to balance
local model improvement and global model
tuning when the personal and global objec-
tives may not be exactly aligned. Inspired by
Bayesian hierarchical models, we develop Act-
PerFL, a self-aware personalized FL. method
where each client can automatically balance
the training of its local personal model and
the global model that implicitly contributes to
other clients’ training. Such a balance is de-
rived from the inter-client and intra-client un-
certainty quantification. Consequently, Act-
PerFL can adapt to the underlying clients’ het-
erogeneity with uncertainty-driven local train-
ing and model aggregation. With experimental
studies on Sent140 and Amazon Alexa audio
data, we show that ActPerFL can achieve su-
perior personalization performance compared
with the existing counterparts.

1 Introduction

Federated learning (FL) (Konevcny et al., 2016;
McMahan et al., 2017) is transforming machine
learning (ML) ecosystems from “centralized in-the-
cloud” to “distributed across-clients,” to potentially
leverage the computation and data resources of bil-
lions of edge devices (Lim et al., 2020), without
raw data leaving the devices. As a distributed ML
framework, FL aims to train a global model that
aggregates gradients or model updates from the
participating edge devices. Recent research in FL
has significantly extended its original scope to ad-
dress the emerging concern of personalization, a
broad term that often refers to an FL system that
accommodates client-specific data distributions of
interest (Dinh et al., 2020a; Fallah et al., 2020a).
In particular, each client in a personalized FL
system holds data that can be potentially non-
IID. For example, smart edge devices at different
houses may collect audio data of heterogeneous
nature (Purington et al., 2017; Diao et al., 2020,

2021) due to, e.g., accents, background noises, and
house structures. Each device hopes to improve
its on-device model through personalized FL with-
out transmitting sensitive data. While the practical
benefits of personalization have been widely ac-
knowledged, its theoretical understanding remains
unclear. Existing works on personalized FL often
derive algorithms based on a pre-specified opti-
mization formulation or model aggregation rule.

In this work, we start with a toy example and
develop insights into the nature of personalization
from a statistical uncertainty perspective. In par-
ticular, we aim to answer the following critical
questions regarding personalized FL.

(Q1) The lower-bound baselines of personalized
FL can be obtained in two cases, i.e., each client
performs local training without FL, or all clients
participate in conventional FL training. However,
the upper-bound for the client is unclear.

(0Q2) Suppose that the goal of each client is to
improve its local model performance. How to de-
sign an FL training that interpret the global model,
suitably aggregate local models and fine-tune each
client’s local training automatically?

Both questions are challenging. The question
(Q1) demands a systematic way to characterize the
client-specific and globally-shared information. To
this end, we draw insights from a simplified and an-
alytically tractable setting: two-level Bayesian hier-
archical models, where the two levels respectively
describe inter-client and intra-client uncertainty.

We make the following technical contributions:

* Interpreting personalization from a hierarchi-
cal model-based perspective and providing
theoretical analyses for FL training.

* Proposing ActPerFL, an active personalized
FL solution that guides local training and
global aggregation via inter- and intra-client
uncertainty quantification.

* Presenting a novel implementation of Act-
PerFL for deep learning, consisting of auto-
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mated hyper-parameter tuning for clients and
an adaptive aggregation rule.

* Evaluating ActPerFL on Sent140 and Ama-
zon Alexa audio data. Empirical results show
promising personalization performance com-
pared with existing methods.

To our best knowledge, ActPerFL is the first
work that utilizes uncertainty quantification to drive
FL personalization.

2 Bayesian View of Personalized FL
We discuss how ActPerFL approaches personalized
FL with theoretical insights from the Bayesian per-
spective in this section. To develop insights, we
study a two-level Gaussian model. Similar argu-
ments can be derived for generic parametric models.
The notations are defined as follows. Let ' (y, 02)
denote Gaussian distribution with mean g and vari-
ance o2, For a positive integer M, let [M] denote
theset {1,..., M}. Let >, ; denote the summa-
tion over all m € [M] except for m = i. Suppose
that there are M clients.

From the server’s perspective, it is postulated

that data z1, . . . , 27 are generated from the follow-
ing two-layer Bayesian hierarchical model:

O | 00 ™ N (00,00), zm | Om ~ N (O, 00),

for all clients with m = 1,..., M. Here, 08 is
a constant, and 6y ~ m(-) is a hyperparameter
with a non-informative flat prior. The above model
represents both the connections and heterogeneity
across clients. In particular, each client’s data are
distributed according to a client-specific parame-
ter (6,,), which follows a distribution decided by
a parent parameter (fy). The parent parameter is
interpreted as the root of shared information. With-
out loss of generality, we study client 1’s local
model as parameterized by ;. Under the above
model assumption, the parent parameter 6y that rep-
resents the global model has a posterior distribution

p(0o | z1:01) ~ N(0(9),0(9)), where:
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From the perspective of client m, we suppose
that the postulated model is the same as above for

m = 2,...,M, and 8y = 6y. It can be verified
that the posterior distributions of #; without and

with global Bayesian learning are p(6; | z1) ~
N (017, 01)) and p(6 | z1.a) ~ N0, 0]™),
respectively, which can be computed as:
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The first distribution above describes the learned re-
sult of client 1 from its local data, while the second
one represents the knowledge from all the clients’
data in hindsight. Using the mean square error as

risk, the Bayes estimate of 6 or  is the mean of

the posterior distribution, namely 9§L) and 0§FL).

The flat prior on 6y can be replaced with any
other distribution to bake prior knowledge into the
calculation. We consider the flat prior because
the knowledge of the shared model 1s often vague

. . . FL
in practice. The above posterior mean 95 ) can

be regarded as the optimal point estimation of 6
given all the clients’ data, thus is referred to as

“FL-optimal”. #(%) can be regarded as the “global-
optimal.” The posterior variance quantifies the re-
duced uncertainty conditional on other clients’ data.
Specifically, we define the following Personalized
FL gain for client 1 as:

A vg” 2 2 2 \—1
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Remark 1 (Posterior quantity interpretations)

Each client, say client 1, aims to learn 01 in the
personalized FL context. Its learned information
regarding 01 is represented by the Bayesian
posterior of 01 conditional on either its local data
z1 (without communications with others), or the
data zy.p; in hindsight (with communications).
For the former case, the posterior uncertainty
described by ng) depends only on the local data
quality a%. For the latter case, the posterior mean
GEFL) is a weighted sum of clients’ local posterior
means, and the uncertainty will be reduced by a
factor of GAINy. Since a point estimation of 01 is
of particular interest in practical implementations,
we treat 9§FL) as the theoretical limit in the FL

context (recall question Q1).
Remark 2 (Local training steps to achieve 9§FL))

Suppose that client 1 performs { training steps
using its local data and negative log-likelihood
loss. We show that with a suitable number of steps
and initial value, client 1 can obtain the intended
9§FL). The local objective is:

0 (0—21)"/(207) = (0-61")*/(207), ¥
which coincides with the quadratic loss. Let ) €

(0,1) denote the learning rate. By running the
gradient descent:
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for € steps with initial value 07", client 1 obtains:

0 =(1-1—on)")0" + (1 — o). (5)

It can be verified that Eqn. (5) becomes 0§FL) in
Eqgn. (2) if and only if:
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In other words, with a suitably chosen initial value
ON", learning rate m, and the number of (early-

stop) steps £, client 1 can obtain the desired HgFL).

3 Proposed Solution for Personalized FL

Our proposed ActPerFL framework has three key
components as detailed in this section: (i) proper
initialization for local clients at each round, (ii) au-
tomatic determination of the local training steps,
(iii) discrepancy-aware aggregation rule for the
global model. These components are intercon-
nected and contribute together to ActPerFL’s ef-
fectiveness. Note that points (i) and (iii) direct
ActPerFL to the regions that benefit personaliza-
tion in the optimization space during local training,
which is not considered in prior works such as
DITTO (Li et al., 2021) and pFedMe (Dinh et al.,
2020b). Therefore, ActPerFL is more than impos-
ing implicit regularization via early stopping.

In this section, we show how the posterior quan-

tities of interest in Section 2 can be connected with
FL. Recall that each client m can obtain the FL-

optimal solution o) with the initial value Ot
in Eqn. (6) and tuning parameters 7, ¢ in Eqn. (7).
Also, it can be shown that 6T is connected with
the global-optimal (%) in Eqn. (1) through
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The initial value in Eqn. (8) is unknown dur-
ing training since HS{), 6(9) are both unknown. A
natural solution is to update 6)\'", 6%, and 0(®
iteratively, leading to the following personalized
FL rule of our ActPerFL framework.

Generic ActPerFL. At the ¢-th (¢ > 1) round:
e Client m receives the latest global model #/~1
from the server (initialized as #°), and calculates:
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where 021 is client m’s latest personal parame-
ter at round ¢ — 1, initialized to be #°. Starting

from the above 05", client m performs gradient
descent-based local updates with optimization pa-
rameters following Eqn. (7) or its approximations,
and obtains a personal parameter 6.

e Server collects 6%, and calculates:

ot A > me M](US +om) 0,
Pomep (08 +0%) 1

10)

In general, the above O'%, o2 represent “inter-client
uncertainty” and “intra-client uncertainty,” respec-
tively. When 03 and ¢2,’s are unknown, they can
be approximated asymptotically or using practical
finite-sample approximations.

SGD-based practical algorithm for DL. For the
above training method, the quantities o3 and o2,
are crucial as they affect the choice of learning rate
nm and the early-stop rule. However, these two

values are unknown in complex learning models.
To approximate the uncertainty quantities, we gen-

erally treat o2, as “uncertainty of the local optimal

solution 6% of client m”, and 02 as “uncertainty

of clients’ underlying parameters.” Assume that for
each client m, we had v independent samples of its
data and the corresponding local optima parame—

ter 0,1, - . ., Om . We could then estimate am by
their sample variance. In particular, at round ¢, we
approx1mate o2, with:

am = empirical variance of {Hm, 15 S ¢ §))

Likewise, at round ¢, we estimate 0(2) by:

% = empirical variance of {0{, e, 6’31}. (12)

For multi-dimensional parameters, we introduce
the following counterpart uncertainty measures.
For vectors z1, . .., xys, their empirical variance is
defined as the trace of Eme[M} (X —2) (xm—T)7,
which is the sum of entry-wise empirical variances.

2 and o} are defined from such empirical vari-
ances similar to Eqn. (11) and (12). The above
quantities can be calculated recursively online with
constant memory (Han et al., 2017). Alg. 1 outlines
the workflow of ActPerFL.

4 Experimental Studies

Experimental setup. We evaluate ActPerFL’s per-
formance on two NLP datasets: Sentiment140 (Go
et al., 2009) and private Amazon Alexa audio data.
Sent140 is a text sentiment analysis dataset with
two output classes and 772 clients. We generate
non-i.i.d. data following FedProx (Li, 2020). The
audio dataset is collected for wake-word detection
task (i.e., binary classification). This dataset con-
tains 39 thousand hours of training data and 14
thousand hours of test data. We use a two-layer



Algorithm 1 Active Personal FL (ActPerFL)
Input: A server and M clients. Communication
rounds 7', client activity rate C, client m’s
local data D,,, and learning rate 7,,.
for each communication round ¢t = 1,...7 do
Sample clients: M; <— max(|C - M|, 1)
for each client m € M, in parallel do
Distribute server model 6'—1 to client m
Estimate o2, using Eqn. (11)
Compute local step I,,, from Eqn. (7) and
local initialization 6)5'" via Eqn. (6)
0t Localﬂain(ﬁ%”, Ny b Dim)

Server estimates 0(2] using Eqn. (12)
Server updates global model #° via Eqn. (10)

LSTM model and an 11-layer CNN model for
these two datasets, respectively. For comparison,
we also evaluate the personalization performance
of FedAvg (McMahan et al., 2017), DITTO (Li
et al., 2021), PerFedAvg (Fallah et al., 2020b), and
pFedMe (Dinh et al., 2020b).

4.1 Results on Alexa Audio Data

For Alexa audio data, we use a CNN that is pre-
trained on the training data of different device types
(i.e., heterogeneous data) as the initial global model
to warm-start FL training. The personalization task
aims to improve the wake-word detection perfor-
mance at the device type level. We assume there
are five clients in the FL system and all of them par-
ticipate in each round. Each client has the training
data for a specific device type.

Evaluation metric. We evaluate the performance
using the pre-trained model (for warm-start) as
the baseline. To compare different FL algorithms,
we use the relative false accept (FA) value of the
resulting model when the associated relative false
reject (FR) is close to one as the metric. So a
smaller relative FA is preferred. Here, the relative
FA and FR are computed using the baseline.

For comparison, we implement FedAvg and
DITTO with both equal-weighted and sample size-
based model averaging (denoted by the suffix ‘-e’
and ‘-w’, respectively) during aggregation. For
PerFedAvg (Fallah et al., 2020b), we use its first-
order approximation and the equal-weighted ag-
gregation. We did not report pFedMe (Dinh et al.,
2020b) due to its divergence with various hyper-
parameters. Table 1 summarizes the performance
of the updated global model. The results show that
ActPerFL achieves the lowest relative FA, thus ob-
taining the best global model. We further compare

Table 1: Detection performance (relative FA) of the
global model on the test dataset.

Device Types
B C D E

FL methods

ActPerFL 092 094 091 091 1.01

FedAvg-w 839 4.00 12.80 8.61 10.62
FedAvg-e 097 096 1.00 092 1.00
DITTO-w 838 4.00 1275 8.61 1023
DITTO-e 097 095 1.00 093 0.99
PerFedAvg 1.06 098 1.08 0.93 1.01

Table 2: Detection performance (relative FA) of the
personalized models on a test dataset.

Device Type
B C D E

FL methods

ActPerFL 093 091 0.90 0.90 0.99
FedAvg-e 095 095 093 091 0.98
DITTO-e 097 096 093 091 0.96
PerFedAvg 1.02 1.11 1.08 1.00 0.93

the personalization performance of local models
obtained by different FL algorithms in Table 2.

4.2 Results on Sent140 Text Data

In this experiment, we also use warm-start by train-
ing a global model from scratch with FedAvg for
200 rounds for initializing other FL algorithms.
Then, we continue FL training with various FL
methods for another 400 rounds. Figure 1 com-
pares the training and test accuracy of the person-
alized models obtained by different FL algorithms
where the accuracy is aggregated across clients. We
can see that both ActPerFL and FedAvg demon-
strate better convergence performance compared
to DITTO (Li et al., 2021), pFedMe (Dinh et al.,
2020b), and PerFedAvg (Fallah et al., 2020b).

200 300 400
# Rounds # Rounds

(a) Training accuracy. (b) Test accuracy.

Figure 1: Performance of FL methods on Sent140 data.

S5 Concluding Remarks

We proposed ActPerFL to address the challenge
of balancing local model training and global
model aggregation in personalized FL. Our so-
lution adaptively adjusts local training with au-
tomated hyper-parameter selection and performs
uncertainty-weighted global aggregation. Empiri-
cal studies show that ActPerFL can achieve promis-
ing performance on NLP applications.
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