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Abstract

Recent years have witnessed increasing interest
in code representation learning, which aims to
represent the semantics of source code into dis-
tributed vectors. Currently, various works have
been proposed to represent the complex seman-
tics of source code from different views, includ-
ing plain text, Abstract Syntax Tree (AST), and
several kinds of code graphs (e.g., Control/Data
Flow Graph). However, most of them only
consider a single view of source code indepen-
dently, ignoring the correspondences among
different views. In this paper, we propose
to integrate different views with the natural-
language description of source code into a uni-
fied framework with Multi-View contrastive
Pre-training, and name our model as CODE-
MVP. Specifically, we first extract multiple
code views using compiler tools, and learn the
complementary information among them under
a contrastive learning framework. Inspired by
the type checking in compilation, we also de-
sign a fine-grained type inference objective in
the pre-training. Experiments on three down-
stream tasks over five datasets demonstrate the
superiority of CODE-MVP when compared
with several state-of-the-art baselines. For ex-
ample, we achieve 2.4/2.3/1.1 gain in terms of
MRR/MAP/Accuracy metrics on natural lan-
guage code retrieval, code similarity, and code
defect detection tasks, respectively.

1 Introduction

Code intelligence that utilizes machine learning
techniques to promote the productivity of software
developers, has attracted increasing interest in both
communities of software engineering and artifi-
cial intelligence (Lu et al., 2021; Feng et al., 2020;
Wang et al., 2022; Wan et al., 2022a; Wu et al.,
2021). To achieve code intelligence, one funda-
mental task is code representation learning (also

⋄ Work conducted during an internship at Huawei Noah’s
Ark Lab.
� Corresponding author.

Models Tokens AST Graph PT

CodeBERT (Feng et al., 2020) ! % % %

GraphCodeBERT (Guo et al., 2021) ! % ! %

SynCoBERT (Wang et al., 2021) ! ! % %

CodeGPT (Lu et al., 2021) ! % % %

PLBART (Ahmad et al., 2021) ! % % %

TreeBERT (Jiang et al., 2021) ! ! % %

ContraCode (Phan et al., 2021) ! % % !

CoTexT (Phan et al., 2021) ! % % %

CodeT5 (Wang et al., 2021b) ! % % %

CODE-MVP (Our work) ! ! ! !

Table 1: Comparison with current pre-trained code mod-
els. PT: Program Transformation.

known as code embedding), which aims to pre-
serve the semantics of source code in distributed
vectors (Alon et al., 2019). It can support various
downstream tasks about code intelligence, includ-
ing code defect detection (Omri and Sinz, 2020;
Zhao et al., 2021b,a), code summarization (Wan
et al., 2018), code retrieval (Wan et al., 2019), and
code clone detection (White et al., 2016).

Current approaches to code representation bor-
row ideas from the successful deep learning meth-
ods in natural language processing, mainly at-
tributed to the naturalness hypothesis in source
code (Allamanis et al., 2018). From our investi-
gation, existing approaches mainly represent the
source code from different views of code, includ-
ing code token in plain text (Iyer et al., 2016),
Abstract Syntax Tree (AST) (Bui et al., 2021a),
and Control/Data Flow Graphs (CFGs/DFGs) of
code (Cummins et al., 2020; Wang and Su, 2020).
Recently, many attempts have been made to pre-
train a masked language model for source code,
such as CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), SynCoBERT (Wang et al.,
2021), CodeGPT (Lu et al., 2021), PLBART (Ah-
mad et al., 2021), CoTexT (Phan et al., 2021), and
CodeT5 (Wang et al., 2021b). Table 1 shows the
contribution of our work when compared with cur-
rent pre-trained language models for source code.
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Despite much progress in code representation
learning, most of them only consider a single view
of source code independently, ignoring the con-
sistency among different views (Feng et al., 2020;
Lu et al., 2021; Ahmad et al., 2021; Wang et al.,
2021b). Usually, a program, accompanied by a cor-
responding natural-language comment (NL), can
be parsed into multiple views, e.g., the source code
tokens, AST, and CFG. We argue that these dif-
ferent views contain complementary semantics of
the program. For example, the source code to-
kens (e.g., method name identifiers) and natural-
language comments always reveal the lexical se-
mantics of code, while the intermediate structures
of code (e.g., AST and CFG) always reveal the
syntactic and executive information of code. In
addition, a program can also be transformed (or
rewritten) into different variants that have equiva-
lent functionality. We think that different variants
of the same program reveal the functional infor-
mation of code. That is, those different program
variants with the same functionality are expected
to represent the same semantics.

Inspired by the aforementioned insights, this pa-
per proposes a novel CODE-MVP for code repre-
sentation, which aims to integrate multiple views of
the code into a unified framework with multi-view
contrastive pre-training. Concretely, we first ex-
tract multiple views of code using several compiler
tools, and learn the complementary information
among them under a multi-view contrastive learn-
ing framework. Meanwhile, inspired by the type
checking in compilation process, we also introduce
fine-grained type inference as an auxiliary task in
the pre-training process to encourage the model to
learn more fine-grained type information.

To summarize, the contributions of this paper are
two-fold: (1) We are the first to represent source
code from multiple views, including the code to-
kens, AST, CFG, and various program equivalents,
under a unified multi-view contrastive pre-training
framework. Meanwhile, we also introduce an aux-
iliary task of inferring type annotations for vari-
ables. (2) We extensively evaluate CODE-MVP on
three program comprehension tasks. Experimen-
tal results demonstrate the superiority of CODE-
MVP when compared with several state-of-the-
art baselines. Specifically, CODE-MVP achieves
2.4/2.3/1.1 gain on MRR/MAP/Accuracy metrics
in natural language code retrieval, code similarity,
and code defect detection tasks, respectively.

Scanner Translator
Machine 

Code

IR

Static Analysis

ASTTokens

Parser

Decorated
AST

CFG, DFG, ...

Code 
Generator

Source 
Code

Type 
Checker

Syntax 
Analysis

Lexical 
Analysis

Semantic 
Analysis

Figure 1: An example of converting a program from
source code into machine code in compilation process.

2 Multiple Views of Code

We borrow ideas from the way that computers pro-
cess the source code in compilation, where a pro-
gram would be converted into multiple views. Fig-
ure 1 shows the process of converting a program
from source code to machine code. During this
process, the compiler would automatically utilize
some program analysis techniques to verify the
correctness of source code, including lexical, syn-
tax, and semantic analyses. In the lexical analysis,
a program is treated as a sequence of tokens and
checked for spelling problems. In the syntax analy-
sis, syntactic rules of programs are defined by the
context-free grammar (Javed et al., 2004). Then
the program could be parsed as an AST, based on
which many program transformation heuristics can
be applied to rewrite the program while maintain-
ing the same desired functionality. In the semantic
analysis, semantic rules of the program are defined
by the attribute grammar (Paakki, 1995). Then the
compiler could check the types of code tokens, and
a decorated AST could be obtained. After the three
stages above, a translator will convert the source
code to its Intermediate Representation (IR), which
is then considered as the basis for building Con-
trol/Data Flow Graphs (CFGs/DFGs) for further
optimizations in the static analysis. Finally, the IR
of the source code should be converted into ma-
chine code to execute through a code generator.
Next, we introduce how we extract different views
of the source code. Figure 2 illustrates multiple
views of source code with an example.

Abstract Syntax Tree (AST). An AST, which is
composed of leaf nodes, non-leaf nodes and edges
between them, contains rich syntactic structural
information of source code. In the AST, an assign-
ment statement y = 0 can be represented by a
non-leaf node assignment that points to three

1067



PL

def Sum(x):
    y = 0
    for i in x:
        y += i
    return y

Sum all numbers in the set
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= 0y
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AST

Loop Exchange

x

def Sum(x):
    y = 0
    count_num = 0
    while count_num < len(x):
        y += x[count_num]
        count_num += 1
    return y

y = 0

for i in x:

y += i

x

return y

CFG

Function and Variable Renaming

def Func(Var_1):
    Var_2 = 0
    for Var_3 in Var_1:
        Var_2 += Var_3
    return Var_2

Dead Code Insertion

def Sum(x):
    y = 0
    for i in x:
        y += i
    if True:
        pass
    return y

Multi-Views

Figure 2: Multiple views of source code.

leaf nodes (0, y, and =). In this paper, we parse a
snippet of source code into an AST using a stan-
dard compiler tool tree-sitter.1. To feed an
AST into our model, we apply depth-first traversal
to convert it into a sequence of AST tokens (Kim
et al., 2021).

Control Flow Graph (CFG). CFG, which repre-
sents the execution semantics of the program in the
form of a graph, is one intermediate representation
of programs. A CFG consists of basic blocks and
directed edges between them, where each directed
edge reflects the execution order of the two basic
blocks in the program. We can easily traverse the
CFG along directed edges to parse it into a token
sequence, which reveals the execution semantics of
the program. In this paper, we use a static analyzer
Scalpel2 (Li et al., 2022) to construct the CFGs
for Python code snippets.

Program Transformation (PT). The program
transformation operations aim to produce multiple
variants for a given program that satisfy the same
desired functionality (Rabin et al., 2020). These
different variants of a program can help the model
capture functional semantics. In this work, we em-
ploy the following program transformation heuris-
tics on ASTs and rewrite one program into another
equivalent variant.

• Function and Variable Renaming. We ran-
domly take new names from a set of candidates,
such as VAR_i, FUNC_i, to rename the names
of variables and functions in a program. This
heuristic will not change the AST structure of
the program, except for the textual appearance of
variable and function names in the AST.

1https://github.com/tree-sitter/tree-sitter
2https://github.com/SMAT-Lab/Scalpel

• Loop Exchange. The for and while loops
represent the same functionality in a program.
We traverse the AST to identify the for and
while loop nodes, and replace for loops with
while loops or vice versa. We also modify the
initialization, condition and afterthought simulta-
neously.

• Dead Code Insertion. We first traverse the AST
to identify several basic blocks (Mendis et al.,
2019), and then randomly select a basic block and
insert dead code snippets into it. Note that the
dead code snippets are predefined and selected
from a set of candidates.

3 CODE-MVP

3.1 Tasks and Notations
We define the set of program samples in multi-
ple views (i.e. NL, PL, AST, CFG, PT) as S =
{S1, . . . , Sm}, where m represents the number of
views, sai ∈ Sa represents a program in the view
of a. Given a program, the PL view denotes its
textual appearance, the NL view denotes its corre-
sponding natural-language comment, and the PT
denotes the variants of this program based on pro-
gram transformation. The AST and CFG are ex-
tracted from a program using several compiler tools.
CODE-MVP adopts two forms of input, i.e., single-
view input xai = {<CLS>, sai } and dual-view input
xabi = {<CLS>, sai ,<SEP>, sbi}, where a and b de-
note two different views of the program. Follow-
ing (Devlin et al., 2019), a special token <CLS> is
appended at the beginning of each input sequence,
and <SEP> is used to concatenate two sequences.
Subsequently, the representation of <CLS> is used
to represent the entire sequence, and <SEP> is
used to split two views of sub-sequences. Given a
set of programs with their corresponding multiple
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Figure 3: An illustration of our proposed multi-view
contrastive pre-training framework.

views, we aim to learn the code representation by
utilizing the mutual information existing in differ-
ent views. Our intuition is to learn complementary
information from multiple views of code by pulling
the code under different views together and pushing
the dissimilar ones apart.

3.2 Framework Overview

Figure 3 shows a simple example of our multi-view
contrastive pre-training framework. Given a pro-
gram si, we use the same program to construct a
pair of positive samples (xai = {<CLS>, sai } vs
xbi = {<CLS>, sbi}) in the form of views a and
b, as described above. We take xai and xbi as the
input of CODE-MVP respectively. The last hidden
representations of <CLS> tokens in the two inputs
can be formulated as ha

i = CODE-MVP(xai ) and
hb
i = CODE-MVP(xbi). We utilize a projection

head (a two-layer MLP) to map hidden represen-
tations to a space, i.e., va

i = f(ha
i ), v

b
i = f(hb

i).
Then the multi-view contrastive objective can be
performed. During the pre-training process, we
also design other two pre-training tasks, i.e., fined-
grained type inference (FGTI) task and multi-view
masked language modeling (MMLM).

3.3 Multi-View Contrastive Learning

We train CODE-MVP with paired data and un-
paired data. Paired data refers to those program
samples with paired NL, while unpaired data stands
for those isolated program samples without paired
NL. Next, we explain how we construct positive

and negative samples for these two cases.

Multi-View Positive Sampling. We design
Single-View (for paired and unpaired data) and
Dual-View (for paired data only, which needs the
NL) methods to construct multi-view positive sam-
ples for the MVCL objective:

• Single-View. To bridge the gap between different
views of a same program, we consider the view
of a program xai as a positive sample w.r.t another
view xbi . That is, (xai = {<CLS>, sai } vs xbi =
{<CLS>, sbi}) forms an inter-view positive pair,
since xai and xbi are two different views of a same
program xi.

• Dual-View. There are a total of C2
m com-

binations for two views of a same program.
For efficiency, we focus on the features
of the program itself, and propose the NL-
conditional dual-view contrastive pre-training
strategy, freezing the position of NL. Con-
cretely, we construct a NL-conditional inter-
view positive pair by replacing the second view
in the input {<CLS>, sNL

i ,<SEP>, sai } to be
{<CLS>, sNL

i ,<SEP>, sbi}, where ∀a, b ̸= NL.

It is worth mentioning that there are many com-
binations to construct positive pairs. Some com-
binations are not considered in this work, such as
the AST vs PT of the same program, and the CFG
vs PT of the same program. Simultaneously, for
training efficiency and downstream applications,
we comprehensively consider eight combinations.
They are (1) single-view: (NL vs PL), (NL vs PT),
(PL vs AST), (PL vs CFG), and (PL vs PT); and
(2) dual-view: (NL-PL vs NL-AST), (NL-PL vs
NL-CFG), and (NL-PL vs NL-PT).

Multi-View Negative Sampling. Since the pro-
cesses of unpaired data and paired data are sim-
ilar, here we take the unpaired data as an exam-
ple. We leverage in mini-batch and cross mini-
batch sampling strategies (Chen et al., 2020) to
construct intra-view and inter-view negative sam-
ples, respectively. Given a mini-batch of training
data b1 = [xa1, . . . , x

a
n] in the view of a with size n,

we can easily get another positive mini-batch data
b2 = [xb1, . . . , x

b
n] in the view of b, where (xai vs

xbi ) denotes an inter-view positive pair. For xai , the
intra-view negative samples are {xaj}, ∀i ̸= j, and
the inter-view negative samples are {xbj}, ∀i ̸= j.
Finally, for each xi, we can get a set of 2n − 2
negative samples.
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Figure 4: Pre-training with fine-grained type inference
and multi-view masked language modeling.

For an input xai with representation vai under
the view of a, it has one positive sample xbi with
representation vbi under the view of b. It also has a
negative sample set V− = {v−

1 , . . . ,v
−
2n−2} with

size 2n−2, which consists of two types of negative
sample subsets, e.g., intra-view negative sample set
V−

1 with size n− 1, where va
j ∈ V−

1 , ∀j ̸= i, and
the inter-view negative sample set V−

2 with size
n − 1, where vb

j ∈ V−
2 , ∀j ̸= i. We define the

similarity of a pair of samples as the dot product of
their representations. Then the loss function for a
positive pair (xai , x

b
i) can be defined as:

l(xa
i , x

b
i )=−ln

exp(va
i · vb

i )

exp(va
i · vb

i )+
∑2n−2

k=1 exp(va
i · v−

k )
. (1)

We calculate the loss for the same pair twice with
order switched, i.e., (xai , x

b
i) is changed to (xbi , x

a
i )

as the dot product with negative samples for xai and
xbi are different. Overall, the MVCL loss function
is defined as follows:

LMVCL=− 1

|N |

|N |∑

i

[
l(xai , x

b
i)+l(xbi , x

a
i )
]
, (2)

where N denotes the set of all program samples
covering all different views.

3.4 Pre-Training with Type Inference
Figure 4 shows the other two pre-training tasks,
including fine-grained type inference and multi-
view masked language modeling.

Fine-Grained Type Inference. Several previous
works (Wang et al., 2021; Wang et al., 2021b)
have proven the importance of symbolic prop-
erties in programming languages. Two concur-
rent works, SynCoBERT (Wang et al., 2021) and
CodeT5 (Wang et al., 2021b) let the model di-
vide the code token types into identifier or

non-identifier. Inspired by the type check-
ing in compilation process, we propose a fine-
grained type inference (FGTI) objective to capture
the fine-grained type information of variables (Li
et al., 2022; An et al., 2011). First, we parse all
source codes into ASTs. Then, we traverse the AST
and use the type checker to obtain fine-grained iden-
tifier types. We employ BPE tokenizer (Sennrich
et al., 2016) to tokenize tokens and let sub-tokens
inherit the type information of the token. Finally,
we define the loss function as follows:

LFGTI = − 1

|Z|

|Z|∑

i

|T |∑

j

Yij log Pij , (3)

where Z denotes the set of all tokens that need to
inference types, T represents the set of all types
contained in the pre-training corpus, Yij denotes
the label of token i in type j, and Pij denotes the
predicted probability of token i in type j.

Multi-View Masked Language Modeling. In
addition to the multi-view contrastive learning ob-
jective and fine-grained type inference objective,
we also extend the Masked Language Modeling
(MLM) to the multi-view program corpus, named
MMLM. Given a data point x, we randomly select
15% of tokens in x and replace them with a special
token <MASK>, following the same settings in (De-
vlin et al., 2019). The MMLM objective aims to
predict original tokens which are masked out. We
calculate the MMLM loss as follows:

LMMLM = − 1

|M|

|M|∑

i

|V|∑

j

Yij log Pij , (4)

where M denotes the set of masked tokens, V rep-
resents the vocabulary, Yij denotes the label of the
masked token i in class j, and Pij denotes the pre-
dicted probability of token i in class j.

3.5 Overall Training Objective

The overall loss function in CODE-MVP is the
integration of several components we have defined
before.

L = LMVCL +LFGTI +LMMLM + λ∥Θ∥2 , (5)

where Θ contains all trainable parameters of the
model, and λ is the coefficient of L2 regularizer.
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Tasks Datasets Train Valid Test

Natural Language
Code Retrieval

AdvTest 251K 9.6K 19.2K
CosQA 19.6K 0.5K 0.5K
CoNaLa 2.4K - 0.5K

Code-to-Code Retrieval Python800 72K 4K 4K
Code Clone Detection Python800 144K 8K 8K

Code Defect Detection GREAT 100K 5K 5K

Table 2: Statistics of datasets for downstream tasks.

4 Experimental Setup

We conduct experiments to answer the following re-
search questions: (1) How effective is CODE-MVP
compared with the state-of-the-art baselines? (2)
How do different components and different views
affect our CODE-MVP?

4.1 Pre-Training Dataset and Settings

Different programming languages often require
different program analyzers. Existing program
analysis tools rarely support multiple program-
ming languages and multi-view program transfor-
mations. For convenience, we choose Python for
our experiments, as it is very popular and used
in many projects. We pre-train CODE-MVP on
the Python corpus of CodeSearchNet dataset (Hu-
sain et al., 2019), which consists of 0.5M bimodal
Python functions with their corresponding natural-
language comments, as well as 1.1M unimodal
Python functions.

CODE-MVP is built on the top of Trans-
former (Vaswani et al., 2017), and consists of a
12-layer encoder with 768 hidden sizes and 12 at-
tention heads. The pre-training procedure is con-
ducted on 8 NVIDIA V100 GPUs for 600K steps,
with each mini-batch containing 128 sequences up
to 512 tokens including special tokens. According
to the length distribution of samples in the training
corpus, we set the lengths of PL/AST/CFG/PT in
unpaired data to 512, and set the lengths of NL
and PL/AST/CFG/PT in paired data to 96 and 416
respectively. The learning rate of CODE-MVP is
set to 1e-4 with a linear warm up over the first 30K
steps and a linear decay. CODE-MVP is trained
with a dropout rate of 0.1 on all layers and attention
weights. We initialize the parameters of CODE-
MVP by GraphCodeBERT (Guo et al., 2021) and
utilize a BPE tokenizer (Sennrich et al., 2016).

4.2 Evaluation Tasks, Datasets and Metrics

We select several program comprehension tasks to
evaluate CODE-MVP, including natural language
code retrieval, code similarity, and code defect de-
tection. We pre-train CODE-MVP on Python cor-
pus, and choose several public Python datasets to
evaluate it, as shown in Table 2.

Natural Language Code Retrieval. This task
aims to find the most relevant code snippet from
a collection of candidates, given a natural lan-
guage query. We choose three datasets to evalu-
ate this task, including AdvTest (Lu et al., 2021),
CoNaLa (Yin et al., 2018), and CoSQA (Huang
et al., 2021). We adopt the Mean Reciprocal Rank
(MRR) metric to evaluate the performance of code
retrieval. In AdvTest dataset, we set the learning
rate as 5e-5, the batch size as 32, the maximum
fine-tuning epoch as 20, the maximum length of
both query and code sequence as 256. In CoNaLa
and CoSQA datasets, we set the learning rate as
5e-5, the batch size as 32, the maximum fine-tuning
epoch as 30, the maximum length of query and
code sequence as 128. In AdvTest and CoSQA
datasets, we save the optimal checkpoint on the val-
idation set, and test it on the testing set. In CoNaLa
dataset, we report the best results on the testing set.

Code Similarity. This task is always categorized
into two groups: code-to-code retrieval and code
clone detection. We conduct experiments on the
Python800 dataset (Puri et al., 2021), which is com-
posed of 800 problems with each problem hav-
ing 300 unique Python solution files. We remove
those files not in UTF-8 encoding formats and ran-
domly select 100 solutions for each problem. In
code-to-code retrieval, the filtered dataset is split
to 720/40/40 problems for training, validation, and
testing. Given a program, this task aims to retrieve
other programs that solve the same problem; we
evaluate using Mean Average Precision (MAP). Re-
garding the task of code clone detection, we treat
it as binary classification and evaluate it using the
Accuracy score, following (Puri et al., 2021).

To train these two tasks, we set the learning rate
as 2e-5, the batch size as 32, the epoch number as
20. In code-to-code retrieval, we set the maximum
length of both query and code sequence as 256. In
code clone detection, we set the maximum concate-
nation sequence length of the two code snippets
to 512. We save the optimal checkpoint on the
validation set, and test it on the testing set.
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Models AdvTest CoNaLa CoSQA Average

RoBERTa 18.3 30.7 57.6 35.5
CodeBERT 27.2 38.9 64.2 43.4
GraphCodeBERT 35.2 47.3 68.2 50.2
PLBART 34.3 45.5 65.3 48.4
CodeT5 36.5 47.7 67.7 50.6
SynCoBERT 38.1 48.4 69.6 52.0
CODE-MVP 40.4 50.6 72.1 54.4

Table 3: Results on the natural language code retrieval
task evaluating with MRR, using the AdvTest, CoNaLa,
and CoSQA datasets.

Code Defect Detection. This task aims to iden-
tify whether a given piece of code snippet is vul-
nerable or not, which is usually treated as a binary
classification task. We evaluate all models on the
GREAT dataset (Hellendoorn et al., 2020), which is
originally built from the ETH Py150 dataset (Ray-
chev et al., 2016). We evaluate the performance
of code defect detection using the Accuracy score.
We randomly select 100K samples for training, 5K
samples for validation and 5K samples for testing,
respectively. We set the learning rate as 5e-5, the
batch size as 32, the maximum fine-tuning epoch
as 50, the maximum length of both query and code
sequence as 256. We save the optimal checkpoint
on the validation set, and test it on the testing set.

4.3 Baselines

We compare CODE-MVP with various state-of-the-
art models. RoBERTa (Liu et al., 2019) is a ro-
bustly optimized BERT (Devlin et al., 2019), which
is originally pre-trained on a large-scale natural-
language corpus. We fine-tune it on source code
datasets of downstream tasks. CodeBERT (Feng
et al., 2020) is pre-trained on NL-PL pairs using
both masked language modeling (Devlin et al.,
2019) and replaced token detection (Clark et al.,
2020) objectives. GraphCodeBERT (Guo et al.,
2021) is a pre-trained language model of source
code which incorporates the data flow information
of source code. PLBART (Ahmad et al., 2021) is
based on the BART (Lewis et al., 2020) architecture
and pre-trained on Python and Java functions us-
ing denoising autoencoding. CodeT5 (Wang et al.,
2021b) is based on the T5 (Raffel et al., 2020)
architecture and employs denoising sequence-to-
sequence pre-training on seven programming lan-
guages. SynCoBERT (Wang et al., 2021) incor-
porates AST by edge prediction and uses con-
trastive learning to maximize the mutual informa-
tion among programs, documents, and ASTs.

Models MAP@R Accuracy

RoBERTa 82.9 94.4
CodeBERT 86.1 95.2
GraphCodeBERT 88.8 95.9
PLBART 86.7 95.5
CodeT5 88.1 95.7
SynCoBERT 89.2 96.1
CODE-MVP 91.5 97.4

Table 4: Results on the code-to-code retrieval and code
clone detection tasks evaluating with MAP and Accu-
racy score, using the Python800 dataset.

5 Results and Analysis

5.1 Performance on Downstream Tasks (RQ1)

Natural Language Code Retrieval. Table 3
shows the results of natural language code retrieval
on three datasets. We can observe that CODE-MVP
outperforms all baseline models on all datasets.
Specifically, it outperforms CodeT5 by 3.8 points
on average. Compared to the previous state-of-the-
art SynCoBERT, CODE-MVP also performs better
with an average improvement of 2.4 points. This
significant performance improvement indicates that
the code representation learned by CODE-MVP
preserves more code semantics. We attribute this
improvement to our introduced multi-view con-
trastive pre-training strategy.

Code Similarity. Table 4 presents the results for
code similarity calculation, including code-to-code
retrieval and code clone detection. We can see that
CODE-MVP significantly outperforms all baseline
models on these two tasks. In the task of code-to-
code retrieval, CODE-MVP outperforms CodeT5
and SynCoBERT by 3.4 points and 2.3 points, re-
spectively. In the task of code clone detection,
CODE-MVP achieves 1.5 and 1.3 points higher
compared to GraphCodeBERT and SynCoBERT,
respectively. These results show that CODE-MVP
can better identify those programs with the same
semantics and distinguish those programs with dif-
ferent semantics.

Code Defect Detection. Table 5 shows the ex-
perimental results of code defect detection. CODE-
MVP consistently outperforms all models. Specif-
ically, it outperforms GraphCodeBERT and Syn-
CoBERT by 1.8 and 1.1 points, respectively. These
results indicate that CODE-MVP can effectively
preserve the semantics of programs, which is bene-
ficial for code defect detection.
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Models Accuracy

RoBERTa 81.9
CodeBERT 85.5
GraphCodeBERT 87.5
PLBART 86.8
CodeT5 87.4
SynCoBERT 88.2
CODE-MVP 89.3

Table 5: Results on the code defect detection task evalu-
ating with Accuracy score, using the GREAT dataset.

Models AdvTest CoNaLa CoSQA Average
CODE-MVP 40.4 50.6 72.1 54.4

w/o MVCL 36.2 47.7 69.2 51.0
w/o FGTI 38.0 48.9 70.8 52.6
w/o AST 39.1 48.5 71.3 53.0
w/o PT 38.2 48.6 70.8 52.5
w/o CFG 37.8 47.9 70.5 52.1

Table 6: Ablation study on the task of natural language
code retrieval, evaluated using MRR.

5.2 Ablation Study (RQ2)

We empirically study several simplified variants
of CODE-MVP to understand the contributions of
each component, including the Multi-View Con-
trastive Learning (MVCL), Fine-Grained Type
Inference (FGTI), Abstract Syntax Tree (AST),
Program Transformation (PT), and Control Flow
Graph (CFG). Taking the natural language code
retrieval task as an example, Table 6 shows the ex-
perimental results of each variant on that task. The
setting of w/o (MVCL, FGTI) indicates that these
pre-training objectives are removed from CODE-
MVP respectively. The setting of w/o (AST, PT,
CFG) indicates that different views of programs
are removed from CODE-MVP respectively. From
Table 6, several meaningful observations can be
drawn. (1) Both MVCL and FGTI effectively in-
crease the performance, which confirms that the
two proposed pre-training objectives can indeed
improve the ability of the model for program com-
prehension. (2) Exploiting different views of pro-
grams can bring performance improvements to the
model as arbitrarily discarding any view of pro-
grams degrades the performance. Additionally, the
introduction of CFG brings more performance im-
provements, indicating the importance of execution
information for program understanding.

6 Related Work

Pre-Trained Models for Source Code. Benefit-
ing from the strong power of pre-trained models

in natural language processing (Liu et al., 2019;
Devlin et al., 2019; Wang et al., 2021a, 2020a,b),
several recent works attempt to use the pre-training
techniques on programs (Svyatkovskiy et al., 2020).
Kanade et al. (2020) proposed CuBERT which fol-
lows the architecture of BERT (Devlin et al., 2019),
and is pre-trained with a masked language model-
ing objective on a large-scale Python corpus. Feng
et al. (2020) proposed CodeBERT, which is pre-
trained on NL-PL pairs in six programming lan-
guages, introducing the replaced token detection
objective (Clark et al., 2020). Furthermore, Guo
et al. (2021) proposed GraphCodeBERT, which in-
corporates the data flow of programs into the model
pre-training process. Wang et al. (2021) proposed
SynCoBERT, which incorporates ASTs via edge
prediction to enhance the structural information
of programs. They also used contrastive learning
to maximize the mutual information among pro-
grams, documents, and ASTs. Lu et al. (2021)
proposed CodeGPT for code completion, which is
pre-trained using a unidirectional language mod-
eling objective. Ahmad et al. (2021) proposed
PLBART based on BART (Lewis et al., 2020),
which is pre-trained on a large-scale corpus of Java
and Python programs paired with their correspond-
ing comments via denoising autoencoding. Wang
et al. (2021b) proposed CodeT5 following the ar-
chitecture of T5 (Raffel et al., 2020). It employs
denoising sequence-to-sequence pre-training on
seven programming languages. Recently, Wan et al.
(2022b) conducted a thorough structural analysis
aiming to provide an interpretation of pre-trained
language models for source code (e.g., CodeBERT
and GraphCodeBERT).

Program Analysis for Code Intelligence. In ad-
dition to the lexical information of programs, many
recent works attempt to leverage program analysis
techniques to capture the structural and syntactic
representations of programs (Cummins et al., 2020).
Kim et al. (2021) designed several strategies to feed
the ASTs of programs into Transformer (Vaswani
et al., 2017). Li et al. (2019) proposed a graph
matching network, which utilizes the CFG of the
program to deal with the challenge of binary func-
tion similarity search. Ling et al. (2021) proposed
a deep graph matching and searching model based
on graph neural networks (Kipf and Welling, 2017;
Wang et al., 2021b,a; Yu et al., 2022; Zhao et al.,
2022) for code retrieval. They represented both nat-
ural language queries and code snippets based on
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the unified graph-structured data. Iyer et al. (2020)
presented the program-derived semantic graph to
capture the semantics of programs at multiple lev-
els of abstraction. Ben-Nun et al. (2018) presented
inst2vec, which locally embeds individual state-
ment in LLVM intermediate representations by pro-
cessing a contextual flow graph with a context pre-
diction objective (Mikolov et al., 2013).

Contrastive Learning on Programs. Recently,
several attempts have been made to leverage con-
trastive learning for better code semantics. Con-
traCode (Jain et al., 2021) and Corder (Bui et al.,
2021b) first utilized semantic-preserving program
transformations such as identifier renaming, dead
code insertion, to build positive instances. Then a
contrastive learning objective is designed to max-
imize the mutual information among the posi-
tive and negative instances. Ding et al. (2021)
presented a self-supervised pre-training technique
called BOOST based on contrastive learning. They
inject real-world bugs to build hard negative pairs.
In CODE-MVP, we construct the positive pairs
throughout the compilation process of programs,
including lexical analysis, syntax analysis, seman-
tic analysis, and static analysis. It is the first pre-
trained model that integrates multi-views of pro-
grams for program comprehension.

7 Conclusion

In this paper, we have proposed CODE-MVP, a
novel approach to represent the source code with
multi-view contrastive pre-training learning. We
extract multiple code views with compiler tools
and learn the complement among them under a
contrastive learning framework. We also propose a
fine-grained type inference task in the pre-training
process. Comprehensive experiments on three
downstream tasks over five datasets verify the ef-
fectiveness of CODE-MVP when compared with
several state-of-the-art baselines.
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