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Abstract

In this paper, we present an approach to im-
prove the robustness of BERT language models
against word substitution-based adversarial at-
tacks by leveraging adversarial perturbations
for self-supervised contrastive learning. We cre-
ate a word-level adversarial attack generating
hard positives on-the-fly as adversarial exam-
ples during contrastive learning. In contrast to
previous works, our method improves model
robustness without using any labeled data. Ex-
perimental results show that our method im-
proves robustness of BERT against four differ-
ent word substitution-based adversarial attacks,
and combining our method with adversarial
training gives higher robustness than adversar-
ial training alone. As our method improves the
robustness of BERT purely with unlabeled data,
it opens up the possibility of using large text
datasets to train robust language models against
word substitution-based adversarial attacks.

1 Introduction

Pretrained language models such as BERT (De-
vlin et al., 2019, inter alia) have had a tremendous
impact on many NLP tasks. However, several re-
searchers have demonstrated that these models are
vulnerable to adversarial attacks, which fool the
model by adding small perturbations to the model
input (Jia and Liang, 2017).

A prevailing method to improve model robust-
ness against adversarial attacks is adversarial train-
ing (Madry et al., 2018). In NLP, adversarial train-
ing in the input space has been challenging, as
existing natural language adversarial attacks are
too slow to generate adversarial examples on the
fly during training (Alzantot et al., 2018; Ebrahimi
et al., 2018; Ren et al., 2019). While some recent
works (Wang et al., 2021c) have started exploring
efficient input space adversarial training (e.g., for
text classification), scaling adversarial training to
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pretrained language models like BERT has been
challenging.

In this work, we in particular focus on improving
the robustness of BERT against word substitution-
based adversarial attacks. We propose an approach
to adversarially finetune BERT-like models without
using any labeled data. In order to achieve this, we
rely on self-supervised contrastive learning (Chen
et al., 2020). Self-supervised contrastive learning
has recently gained attention in the community and
contrastive learning has been used to learn better
representations for text classification (Giorgi et al.,
2021; Kim et al., 2021; Gao et al., 2021). How-
ever, how to use these methods to improve model
robustness remains an open question.

We combine self-supervised contrastive learning
with adversarial perturbations by using adversarial
attacks to generate hard positive examples for con-
trastive learning. To efficiently create adversarial
examples, we leverage an adversarial attack, that
is capable of generating multiple adversarial exam-
ples in parallel. The attack adversarially creates
hard positive examples for contrastive learning by
iteratively replacing words to follow the direction
of the contrastive loss (see fig. 2).

Experiments show that our method can improve
the robustness of pretrained language models with-
out looking at the labels (in other words, be-
fore finetuning). Additionally, by combining our
method with adversarial training, we are able to
obtain better robustness than conducting adversar-
ial training alone (see section 4.4). Our study of
the vector representations of clean examples and
their corresponding adversarial examples indeed
explains that our method improves model robust-
ness by pulling clean examples and adversarial ex-
amples closer.

Our contributions1 in this paper are two-fold.
On the one hand, we improve the robustness of

1We will release our code at https://github.com/
LotusDYH/ssl_robust
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the pretrained language model BERT against word
substitution-based adversarial attacks by using self-
supervised contrastive learning with adversarial
perturbations (see section 3.2). On the other hand,
to facilitate adversarial self-supervised contrastive
learning, we create for BERT a word-level adver-
sarial attack to create hard positive examples. The
attack makes contrastive learning and adversarial
training with on-the-fly generated adversarial exam-
ples possible. Additionally, we also show that our
method is capable of using out-of-domain data to
improve model robustness (see table 2 and sec-
tion 4.4). This opens an opportunity for using
large-scale unlabeled data to train robust language
models against word substitution-based adversarial
attacks.

2 Related Work

2.1 Adversarial Training for NLP

Adversarial training improves model robustness by
augmenting clean examples with adversarial exam-
ples during training. Previous works on adversarial
training for natural language mainly focus on per-
turbations in the vector space, while actual adver-
sarial attacks create adversarial examples by chang-
ing natural language symbols. For example, Zhu
et al. (2020) and Liu et al. (2020) improve model
generalization ability by adversarial training on the
word embedding space, without mentioning model
robustness. However, they either ignore model ro-
bustness, or only test model robustness against the
adversarial dataset ANLI, without paying attention
to actual adversarial attacks. Other works conduct
adversarial training in the word space (Alzantot
et al., 2018; Ren et al., 2019). Still, they can only
do adversarial training on a limited number of pre-
generated adversarial examples due to the low effi-
ciency of the attacks. A recent work (Wang et al.,
2021c) conducts adversarial training efficiently in
the word space, but their method is limited to non-
contextualized models.

Apart from adversarial training, other supervised
learning methods (Dong et al., 2021; Zhou et al.,
2021; Wang et al., 2021a; Li and Qiu, 2020) have
also been proposed to improve robustness. How-
ever, these methods are supervised and are not com-
parable to our work.

Our work also differs from previous works in
natural language adversarial training. On the one
hand, as opposed to previous works, which are
supervised, we propose a self-supervised learning

scheme to improve the robustness of pretrained
language models. On the other hand, while previ-
ous works mostly focus on adversarial training in
embedding space, we conduct efficient adversar-
ial training with pretrained language models at the
word level.

2.2 Contrastive Learning for NLP

Contrastive learning was first proposed in the im-
age domain to improve model performance in a
self-supervised fashion (He et al., 2020; Chen et al.,
2020). These methods bring representations of sim-
ilar examples closer and push representations of
dissimilar examples further apart. Additionally,
researchers also find that by adding adversarial
perturbations during contrastive learning, image
classification models become more robust against
adversarial attacks (Kim et al., 2020).

In NLP, previous works on contrastive learn-
ing mainly focus on improving model generaliza-
tion. Gunel et al. (2021) boost performance of
RoBERTa by adding supervised signals during fine-
tuning on downstream tasks. Lee et al. (2021)
tackle the “exposure bias" problem in text gen-
eration by adding adversarial signals during con-
trastive learning. Other similar works include Pan
et al. (2021), Giorgi et al. (2021), and Gao et al.
(2021). Although these works have demonstrated
the usefulness of contrastive learning in NLP appli-
cations, few have addressed the robustness of NLP
models, particularly pretrained language models,
against word substitution-based natural language
adversarial attacks.

Recently, Wang et al. (2021b) claimed that their
method improves model robustness against adver-
sarial sets. However, such sets are pre-generated
and are less challenging than adversarial exam-
ples generated on the fly by actual adversarial at-
tacks (Jin et al., 2020; Ren et al., 2019). In this
paper, we focus on improving the robustness of pre-
trained language models against word substitution-
based adversarial attacks. We present the details of
our method in section 3.

3 Methodology

In this section, we describe our method for self-
supervised contrastive learning with adversarial
perturbations. Specifically, section 3.1 gives the
background and motivation of our problem, and
section 3.2 describes the adversarial contrastive
learning framework. Finally, in section 3.3, we
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Figure 1: An illustration of our method. (a) For the original example X , we obtain the hard positive example X ′ by
Geometry Attack for contrastive loss (see section 3.3). (b) Before contrastive learning, in the vector space, the clean
example z, the hard positive example z′, and the adversarial example zadv are far from each other. Contrastive
learning pulls the clean example z, and the hard positive example z′ together. (c) After contrastive learning, the
clean example z, the hard positive example z′, and the adversarial example zadv are close. We omit MLP in this
figure for simplicity. We use a different color to show another example from the dataset. See section 3 for details.
Note that the adversarial example Xadv and its corresponding vector zadv are not used in contrastive learning. We
nevertheless show Xadv and zadv for illustration purposes.

describe the adversarial attack used in contrastive
learning.

3.1 Background and Motivation

In this work, we focus on text classification tasks2.
Let us assume that we have an example text Xi =
{w1, w2, . . . , wL} with L words and let yi be the
corresponding class label for Xi. Our text classifi-
cation model consists of a BERT encoder f(·) and
an MLP classification head c(·).

We obtain the vector representation hi ∈ Rd

of the example Xi by feeding Xi into the BERT
encoder f(·). Then the MLP classification head c(·)
takes hi as input to give us the prediction. Formally,
we have:

hi = f(Xi)

ŷi = c(hi)

where ŷi is the predicted label. We have ŷi = yi if
the model prediction is correct.

A word substitution-based adversarial attack a(·)
takes an original example Xi as input and generates
an adversarial example Xadv

i by substituting the k-
th original word wk in Xi with another word wadv

k .
To make the orignal example Xi and the adversarial
example Xadv

i close in semantics, existing works
often use synonyms as substitutions (Ren et al.,
2019; Morris et al., 2020).

2Although our formulation can also be extended to several
other problems.

By conducting the word substitution, the attack
a(·) aims to fool the model with Xadv

i . Formally,
we have:

Xadv
i = a(Xi)

hadv
i = f(Xadv

i )

ŷadvi = c(hadv
i )

where Xadv
i = {w1, w2, . . . , w

adv
k , . . . , wL}, 1 ≤

k ≤ L. Assuming the attack successfully fools the
model, we would have ŷi ̸= ŷadvi . The key assump-
tion in our approach is that although Xi and Xadv

i

are very similar to each other at the word level, it is
possible that the encoder f embeds them in such a
way that the distance between their representations
hi and hadv

i are large and the classification head
c(·) predicts Xi and Xadv

i to be of different classes.
Thus, the goal of our method is to obtain a robust

model, on which we have yi = ŷi and ŷi = yadvi .
In other words, the robust model defends an ad-
versarial example Xadv

i of the original example Xi

successfully, if the robust model gives the same cor-
rect prediction on the original example Xi and the
adversarial example Xadv

i . We use attack success
rate as the evaluation metric for model robustness.
The attack success rate is defined as the rate of an
attack successfully fooling the model on all test
examples.

To obtain a robust model, we optimize the en-
coder such that hi and hadv

i become similar to
each other. We achieve this goal by conducting
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self-supervised contrastive learning on the encoder
with adversarial perturbations, during which we use
an attack to create hard positive examples, maxi-
mizing the contrastive loss. The rest this section
gives the details of our method.

3.2 Self-Supervised Contrastive Learning
with Adversarial Perturbations

Following previous works on self-supervised con-
trastive learning (He et al., 2020; Chen et al., 2020),
we formulate our learning objectives as follows.
Consider we have a batch of n examples and Xi

is the i-th input, we first obtain X ′
i = t(Xi) as an

augmentation of Xi by transformation t(·). We call
Xi and X ′

i a pair of positive examples. All other
examples in the same batch are considered negative
examples of Xi and X ′

i.
To take advantage from using more negative ex-

amples, we use MoCo (He et al., 2020) as our
framework, in which we employ an encoder fq
for the positive examples, and another momentum
encoder fk for the negative examples. We then
have:

hi = fq(Xi)

h′
i = fk(X

′
i)

where hi,h
′
i ∈ Rd are representations of Xi and

X ′
i, respectively. During training, fq and fk are

initialized the same. We update fk momentarily:

θk ← m · θk + (1−m) · θq

where θk and θq denote the parameters of fk and
fq, respectively. We then have:

zi = gq(hi)

z′
i = gq(h

′
i)

where zi, z
′
i ∈ Rc, gq(·) and gk(·) are MLPs with

one hidden layer of sigmoid activation, respec-
tively. Following Chen et al. (2020), we conduct
contrastive learning on z instead of h to prevent
the contrastive learning objective from removing
information useful for downstream tasks. After
contrastive learning, we use h as the sentence rep-
resentation for downstream tasks.

Additionally, we also maintain a dynamic first-
in-first-out queue for the negative examples. Dur-
ing training, before computing contrastive loss at
the end of each batch, all encoded examples of the

current batch are enqueued into the queue, and the
oldest examples are dequeued simultaneously.

In our experiments, we use the attack described
in section 3.3 or back-translation (Zhu et al., 2015)
for augmentation t(·). Assume that we have an
encoded example zi and the encoded examples in
the queue are {z0, z1, · · · , zQ−1}, where Q is the
size of the queue. Among the encoded examples in
the queue, one of them is z′

i, which forms a pair of
positive examples with zi. We use contrastive loss
to maximize the similarity between positive exam-
ples, while minimizing the similarity of negative
examples. We then have:

ℓi = − log
exp(sim(zi, z

′
i)/τ)∑Q

k=0 exp(sim(zi, zk)/τ)
(1)

where τ is the temperature parameter, sim(·, ·) is
the similarity function, and Q is the size of the dy-
namic queue. In this paper, we compute similarity
by dot product as in MoCo.

By optimizing eq. (1), the goal is to maximize
the similarity of representations between similar
(positive) pairs of examples while minimizing the
similarity of representations between dissimilar
(negative) examples. We use the geometry-inspired
attack described in section 3.3 as the transforma-
tion t(·) to create pairs of examples that are similar
on the word level but at the same time are distant
from each other in the representation space.

We illustrate our method in fig. 1. In fig. 1 (b)
and (c), by conducting contrastive learning and
using the Geometry Attack generated adversarial
examples as hard positives, the vector representa-
tions obtained from the model become invariant to
the adversarial attacks.

𝒛𝒊

𝒛𝒊𝟏

𝒛𝒊𝟐

𝒗𝒛𝒊

||𝒑𝒊𝟏||

||𝒑𝒊𝟐||

Figure 2: An illustration of one iteration in Geometry
Attack for contrastive loss. See section 3.3 for details.

3.3 Creating Hard Positive Examples by
Geometry Attack

As mentioned in section 3.2, we use an attack as
the transformation t(·) during contrastive learning.
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We describe how this attack creates adversarial ex-
amples for contrastive loss during self-supervised
contrastive learning (see fig. 1 (b)) in this subsec-
tion.

Inspired by Meng and Wattenhofer (2020), who
leverage geometry of representations to generate
natural language adversarial examples for text clas-
sification tasks, we also use the geometry of pre-
trained representations to create adversarial exam-
ples for contrastive loss. The created adversarial
examples are used as positive examples of the origi-
nal examples in our contrastive learning framework,
and at the same time are created to maximize the
contrastive loss. Hence, we refer to adversarial
examples created by the attack as hard positive
examples.

The intuition of our attack is that we repeat-
edly replace words in the original texts such that
in each iteration, the replaced word increases the
contrastive loss as much as possible. To be specific,
consider an example Xi, we then have:

1. Determine Direction for Sentence Vector Com-
pute the gradients of ℓi with respect to zi. In this
step, we find the direction we should move from
zi to increase the contrastive loss ℓi. We have the
gradient vector vzi = ∇ziℓi.

2. Choose Original Word to be Replaced Com-
pute the gradients of ℓi with respect to input word
embeddings of Xi. For words tokenized into mul-
tiple tokens, we take the average of the gradients
of the tokens. In this step, we find the word wt

which has the most influence in computing ℓi.
Specifically, assuming we have L words, then we
choose t = argmaxt{||g1||, ||g2||, . . . , ||gL||},
where gk is the gradients of li with respect to the
embeddings of word wk, 1 ≤ k ≤ L.

3. Generate Candidate Set Suppose we choose
the word wt in step 2. In this step, we use a pre-
trained BERT to choose the most probable can-
didates wt to replace it in the original text. We
have the candidates set = {wt1 , wt2 , · · · , wtT }.
Following Jin et al. (2020), we filter out seman-
tically different words from the candidate set by
discarding candidate words of which the cosine
similarity of their embeddings between the em-
beddings of wt is below a threshold ϵ. We set
the threshold ϵ = 0.5 and use counter-fitted word
embeddings (Mrkšić et al., 2016) to compute the
cosine similarity.

4. Choose Replacement Word Replace wt with
words in the candidates set, resulting in text vec-

tors {zi1 , zi2 , · · · , ziT }. We compute delta vec-
tor rij ← zij−zi. The projection of rij onto vzi
is: pij ←

rij ·vzi

||vzi ||
. We select word wtm , where

m ← argmaxj ||pij ||. In other words, wtm re-
sults in the largest projection pim onto vzi .

5. Repetition Replace wt with wtm in Xi, then we
have zi ← zim . Repeat step 1-4 for N iterations,
where N is a hyperparameter of our method. We
expect ℓi to increase in each iteration.
Figure 2 illustrates an iteration of our attack, in

which we have two options to choose from the can-
didate set. This attack can be easily implemented in
a batched fashion, making it possible for us to gen-
erate adversarial examples on the fly during training.
Furthermore, our efficient implementation makes it
possible to conduct contrastive learning with adver-
sarial perturbations as well as adversarial training
with adversarial examples generated on the fly. We
give a speed comparison of our attack and other
attacks in appendix D. We also give pseudocode
of the attack in algorithm 1 of appendix A.

4 Experiments

4.1 Datasets and Evaluation Metrics
We test how our method improves model robust-
ness on four text classification datasets: AG’s
News, Yelp, IMDB, and DBpedia (See appendix B
for details).

We report the attack success rate and the replace-
ment rate of the attacks as the evaluation metrics.
Following Alzantot et al. (2018); Ebrahimi et al.
(2018), to prevent the model accuracy on clean ex-
amples from confounding the results, we define the
success rate of an attack on all correctly classified
examples in the test set. Lower success rates indi-
cate higher robustness. The replacement rate refers
to the percent of original words replaced in the
clean example. Higher replacement rates indicate
that the attack needs to replace more words to fool
the model, and thus mean that the model is more
robust.

4.2 Attacks for Evaluating Robustness
We use four word substitution-based adversarial
attacks to evaluate the model robustness.
Geometry Attack We use the same attack de-
scribed in section 3.3 to generate adversarial exam-
ples for sentence classification tasks by replacing
contrastive loss with cross-entropy classification
loss. We set the maximum number of replaced
words to 20.
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TextFooler, PWWS, and BAE-R We use the de-
fault implementations from TextAttack (Morris
et al., 2020).

All these attacks will give up and terminate once
the maximum number of replaced words (some-
times also called perturbation budget) is reached.

4.3 Experimental Design

We have the following hypotheses for our method:
H1: Self-supervised contrastive learning improves
model robustness against adversarial attacks. More-
over, using adversarial perturbations during con-
trastive learning further improves robustness.

To validate this hypothesis, we set three different
pretraining schemes:
BTCL: Pretraining with back-translation as the
transformation t(·) for self-supervised contrastive
learning.
ADCL: Pretraining with Geometry Attack for con-
trastive loss (see section 3.3) as transformation t(·)
for self-supervised contrastive learning.
NP: Apart from the above two settings, we also add
a No Pretraining baseline to understand the general
effectiveness of contrastive learning.
H2: Combining self-supervised contrastive learn-
ing with adversarial training gives higher robust-
ness than conducting adversarial training alone.

We use different finetune strategies to understand
how adding adversarial training to our method af-
fects model robustness. We have two settings:
FTC: We finetune the pretrained model on the clean
examples of the corresponding downstream dataset.
ADV: We conduct adversarial training by leverag-
ing supervisedly generated adversarial examples.
Note that our adversarial training is different from
previous works (Ren et al., 2019; Alzantot et al.,
2018), which merely finetune the model on a fixed
number of pre-generated adversarial examples. In-
stead, our adversarial training scheme is similar
to Madry et al. (2018), where the model is fine-
tuned on clean examples and adversarial examples
generated on the fly during each batch of training.

We use Geometry Attack for adversarial train-
ing as the remaining three attacks are not efficient
enough to generate adversarial examples on the fly
(see appendix D for details).
H3: Our contrastive learning method is capable
of using out-of-domain data to improve the model
robustness.

While in H1 and H2, we use the same dataset for
pretraining and finetuning, we want to test how our

method can leverage out-of-domain data. Hence,
we have two additional experimental settings:
In-Domain: We use the same dataset during con-
trastive learning and finetuning.
Out-of-Domain: We use different datasets for
contrastive learning and finetuning.
H4: By optimizing eq. (1), our method pulls the
representations of the clean samples and their cor-
responding hard positive examples closer in the
vector space while pushing other different exam-
ples further. In this way, the representations of
clean examples and their adversarial examples are
also closer in the vector space.

We validate this hypothesis by conducting a vector
space study. See section 4.4 for details.

Note that to avoid confusing adversarial exam-
ples generated during contrastive learning and ad-
versarial examples generated during finetuning,
we refer to the former as hard positive examples
(see section 3.3).

4.4 Results

Table 1 shows the experimental results for validat-
ing H1 and H2. For each dataset, when evaluating
the model robustness, we use the same perturbation
budget across different settings. Note that although
the replacement rates vary across different settings
of the same dataset, the perturbation budget for the
same attack is the same in these settings. By using
the same perturbation budget, we ensure that the
success rates of the attacks provide us with a fair
evaluation of the robustness of the model (Wang
et al., 2021c; Ren et al., 2019).
H1: To validate H1, we focus on rows with the
FTC setting during finetuning. We can observe that
models without any contrastive pretraining (NP)
are the most vulnerable to adversarial attacks. For
example, the success rate of the Geometry Attack
for AG’s News dataset is 86.2% for the NP model.
In contrast, for BTCL and ADCL, the success rate of
the Geometry Attack is at least 5.6% lower than this
setting. This shows that self-supervised contrastive
learning does improve model robustness.

Additionally, we can also see from table 1 that
ADCL improves the model robustness more than
BTCL. For example, in the IMDB dataset, the
model pretrained with ADCL is 9.1% more robust
than the model pretrained with BTCL (93.3% →
84.2%), showing that using adversarial pertur-
bations during contrastive learning further im-
proves model robustness against adversarial at-
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Dataset Pretrain Finetune Acc. (%) Success Rate (%) ↓ Replaced (%) ↑
Geometry TextFooler PWWS BAE-R Geometry TextFooler PWWS BAE-R

AG

NP
FTC 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4
ADV 94.4 20.7 25.1 26.1 10.7 20.5 29.3 22.3 7.7

BTCL FTC 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5

ADCL
FTC 94.3 76.5 80.7 55.9 14.1 19.1 26.7 22.6 7.5
ADV 94.4 18.7 23.5 24.7 9.7 20.6 29.3 22.2 7.2

Yelp

NP
FTC 97.1 94.6 94.3 97.0 42.1 10.6 10.4 7.1 6.7
ADV 96.2 38.8 52.4 62.7 22.2 12.8 17.3 11.3 8.8

BTCL FTC 97.1 92.3 91.6 94.8 39.2 11.0 10.1 7.7 6.9

ADCL
FTC 97.0 88.6 88.2 91.1 37.8 10.4 10.5 7.4 6.9
ADV 96.1 35.6 50.1 61.0 21.0 13.4 17.1 11.2 8.3

IMDB

NP
FTC 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0
ADV 92.0 51.4 75.3 79.1 35.1 7.4 12.7 9.3 3.6

BTCL FTC 92.5 93.3 96.6 95.1 52.0 4.5 7.4 4.4 3.3

ADCL
FTC 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3
ADV 91.9 48.7 74.4 77.6 31.8 8.1 12.4 9.1 3.5

DBpedia

NP
FTC 99.2 79.6 79.3 46.7 14.3 17.8 23.2 16.2 13.3
ADV 99.0 13.9 16.5 17.7 10.9 21.6 28.2 18.9 14.1

BTCL FTC 99.2 77.4 76.8 45.1 13.0 18.9 22.8 18.1 13.1

ADCL
FTC 99.1 73.6 74.5 42.6 11.6 18.2 22.9 17.6 12.8
ADV 99.0 12.4 14.8 16.2 10.1 20.1 28.6 18.2 13.8

Table 1: Experimental results for H1 and H2. In-Domain setting is used. We bold the best results, while the
second best is in italic.

tacks. Hence, we do not combine BTCL with ADV
in later experiments for simplicity.

To further understand how contrastive learning
improves the model robustness, we study the trans-
ferability of the adversarial examples between mod-
els without any contrastive pretraining (NP) and the
models pretrained with ADCL. To be specific, the
models are first pretrained using either NP or ADCL,
and then finetuned on clean examples (FTC). Then,
we use a NP model to generate adversarial exam-
ples on the test set of each dataset, and then test
the corresponding model pretrained with ADCL on
these adversarial examples. And vice versa.

Table 3 shows the results. We can see that adver-
sarial examples generated by models pretrained
with ADCL have much higher success rates on
models without any contrastive pretraining (NP).
For example, for the AG’s News dataset, the suc-
cess rates increase by 32.1%, 35.3%, 33.8%, and
22.1% for Geometry Attack, TextFooler, BAE-R,
and PWWS, respectively. This demonstrates that
by self-supervised contrastive learning with adver-
sarial perturbations, the models become more ro-
bust against attacks.

H2: To validate H2, we compare two settings of
NP + ADV and ADCL + ADV. We note that when
compared with conducting adversarial training

alone (NP+ ADV), combining our self-supervised
contrastive learning method with adversarial train-
ing (ADCL+ ADV) constantly results in higher ro-
bustness. In other words, the adversarial attacks
have lower success rates and higher replacement
rate in ADCL + ADV models than in NP + ADV
models. For instance, for the IMDB dataset, the
ADCL+ ADV model is 2.7% more robust than the
NP + ADV model, when both models are tested
against the Geometry Attack (Success rates of Ge-
ometry attack: ADCL + ADV: 48.7%, NP + ADV:
51.4%; Replacement rates: ADCL + ADV: 8.1%,
NP+ ADV: 7.4%).

Note that when test NP + ADV models and
ADCL + ADV models against the other three ad-
versarial attacks, ADCL+ADV models do not show
an advantage over NP+ADV models in terms of re-
placement rates, despite that ADCL+ ADV models
still constantly make lower success rates against
the adversarial attacks. We argue that this is be-
cause we use the Geometry Attack for adversarial
training during finetuning, and the adversarial ex-
amples from the Geometry Attack might not fully
match the distribution from the other attacks. Nev-
ertheless, we can still conclude that ADCL+ ADV
models are more robust than NP+ ADV models.

Our experiments also show that during con-
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Dataset Domain Pretrain Acc. (%) Success Rate (%) ↓ Replaced (%)↑
Geometry TextFooler PWWS BAE-R Geometry TextFooler PWWS BAE-R

AG

- NP 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4

In-Domain
BTCL 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5
ADCL 94.3 76.9 80.7 55.9 14.1 19.1 26.7 22.6 7.5

Out-of-Domain ADCL 94.1 79.2 84.0 60.4 16.3 18.7 25.9 21.9 7.5

IMDB

- NP 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0

In-Domain
BTCL 92.5 93.3 96.6 95.1 52.0 4.5 7.4 4.4 3.3
ADCL 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3

Out-of-Domain ADCL 92.5 92.3 95.7 94.5 50.1 4.4 8.6 5.3 3.1

Table 2: Comparison of Out-of-Domain with In-Domain. We use the DBpedia dataset as the out-of-domain
dataset for AG’s News and IMDB. Models are finetuned on clean examples after pretraining (FTC). Best results are
bolded, while the second best are in italic.

Dataset Attack Success Rate (%)
NP→ ADCL ADCL→ NP

AG

Geometry 30.2 62.3
TextFooler 19.7 55.0

BAE-R 26.4 60.2
PWWS 28.3 50.4

Yelp

Geometry 30.1 36.4
TextFooler 22.4 28.0

BAE-R 37.4 41.5
PWWS 34.8 36.3

IMDB

Geometry 38.2 41.4
TextFooler 22.1 25.2

BAE-R 28.9 30.8
PWWS 24.7 26.0

DBpedia

Geometry 34.6 52.2
TextFooler 27.5 42.8

BAE-R 32.5 55.8
PWWS 55.3 58.8

Table 3: Transferability of adversarial examples. The
models are pretrained under either NP or ADCL, and
then finetuned on clean examples. NP→ ADCL: Gener-
ate adversarial examples with the model pretrained with
NP, then test the model pretrained with ADCL on these
adversarial examples. Same applies to ADCL→ NP.

trastive learning, the queue size (see section 3.2)
has an impact on the final performance. We give
the detailed analysis in appendix C.

H3: For the Out-of-Domain setting, we use
the DBpedia dataset as the out-of-domain dataset
for the AG’s News and IMDB datasets, mainly be-
cause (1) Computational limits: While using larger
datasets such as BookCorpus or Wikipedia might
be more useful, conducting self-supervised con-
trastive learning on these datasets exceeds the limits
of our computational infrastructure; (2) The DBpe-
dia dataset is several times larger than AG’s News
and IMDB. This should give us a glimpse of what
it looks like when we scale self-supervised con-
trastive learning with adversarial perturbations to

even larger out-of-domain datasets; (3) The DBpe-
dia dataset (topic classification on Wikipedia) has
a different task and domain compared to the AG’s
News dataset (news classification from a newspa-
per) and IMDB dataset (sentiment classification
on movie reviews). This discrepancy allows us to
understand how out-of-domain datasets could help.

Table 2 shows our results. We can see
that models pretrained with ADCL under the
Out-of-Domain setting are more robust than
models without any pretraining at all (NP). This
shows that our method can improve model robust-
ness using out-of-domain data. For instance, for
the IMDB dataset, the success rate of TextFooler
decreases from 98.7% for FT models to 92.3% for
Out-of-Domain ADCLmodels. This shows that
our method can improve the model robustness even
if the dataset used for contrastive learning is from
a completely different domain. Note that in table 2,
after pretraining, we finetune the model on clean
examples (FTC).

We also notice that models pretrained with ADCL
under the Out-of-Domain setting are not as ro-
bust as models pretrained with ADCL under the
In-Domain setting. This indicates we might need
to use much larger unlabeled raw datasets to obtain
more improvements.

H4: To validate this hypothesis, we study the vector
representations of M = 1000 clean examples of
the AG’s News dataset and their corresponding
adversarial examples. We obtain the adversarial
examples by attacking a NP+ FTC model.

Let v1,v2...vM and v′
1,v

′
2...v

′
M be the vector

representations of the clean examples and corre-
sponding adversarial samples, respectively. For
each setting, we evaluate three metrics:
• Average distance dpos between each of the posi-
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Figure 3: t-SNE plot of the vector representations of clean examples and adversarial examples from the AG’s
News dataset. Markers of the same color indicate a pair of clean example (◦) and adversarial example (△).
Check section 4.4 for the evaluation settings. The ranges of x-axis and y-axis are normalized to [0, 1]. We connect
each clean example by a dotted line to its corresponding adversarial example.

Dataset Distance (dpos/dneg/δ)

NP+ FTC ADCL+ FTC NP+ ADV ADCL+ ADV

AG 2.4/3.9/1.5 1.8/4.0/2.2 0.7/4.1/3.4 0.7/4.4/3.7

Yelp 3.5/3.7/0.2 2.9/4.0/1.1 0.7/3.2/2.5 0.5/3.4/2.9

IMDB 3.0/3.7/0.7 2.3/3.8/1.5 0.6/3.4/2.8 0.6/3.8/3.2

DBpedia 2.8/4.8/2.0 2.3/5.1/2.8 0.4/4.9/4.5 0.4/5.2/4.8

Table 4: Vector space study. For each setting, we
evaluate three metrics: (a) Average distance between
positive pairs; (b) Average distance between negative
pairs; (c) Difference between (a) and (b).

tive pairs vi and v′i, where 1 ≤ i ≤M . Then we
have:

dpos =
1

M

M∑

i=1

d(vi,v
′
i)

where d(·, ·) denotes the distance between two
vectors.

• Average distance dneg between negative pairs:

dneg =
M∑

i=1

M∑

j=1

1i ̸=j(d(vi,vj) + d(vi,v
′
j)

2(M − 1)

• Difference δ = dneg − dpos between (a) and (b).
Furthermore, we evaluate the above metrics un-

der the following settings:
• NP+ FTC: Finetune on clean examples.
• ADCL + FTC: First do ADCL pretraining, and

then finetune on clean examples.
• NP+ ADV: Finetune with adversarial training.
• ADCL+ ADV: First do ADCL pretraining. Then

finetune with adversarial training.
Table 4 shows the results. We can see that our
method (1) increases the distance between negative
pairs in all settings; (2) decreases the distance be-
tween positive pairs in NP+FTC and ADCL+FTC

models, while the distances between positive pairs
barely change in NP+ADV and ADCL+ADV mod-
els; (3) increases δ in all settings. The above ob-
servations validate H4 in section 4.3, and further
explain that our method achieves higher robustness
by pushing vector representations of clean exam-
ples and adversarial examples closer.

In fig. 3, we further give qualitative analysis on
the distances between clean examples and adversar-
ial examples of the AG’s News dataset by showing
the t-SNE plot. We can see from the plot that the
distances between the clean examples and the corre-
sponding adversarial examples are closer when we
apply ADCL pretraining, and that combining ADCL
with ADV gives the smallest distance between su-
pervised adversarial examples. Additional plots of
other datasets are available in appendix H.

5 Conclusion and Future Work

In this paper, we improve the robustness of pre-
trained language models against word substitution-
based adversarial attacks by using self-supervised
contrastive learning with adversarial perturbations.
Our method is different from previous works as we
can improve model robustness without accessing
annotated labels. Furthermore, we also conduct
word-level adversarial training on BERT with on-
the-fly generated adversarial examples. Our adver-
sarial training is different from previous works in
that (1) it is on the word level; (2) we generate ad-
versarial examples on the fly, instead of generating
a fixed adversarial set beforehand. Experiments
show that our method improves model robustness.
We find that combining our method with adversar-
ial training results in better robustness than con-
ducting adversarial training alone. In the future,
we plan to scale our method to even larger out-of-
domain datasets.
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Ethical Considerations

To the best of our knowledge, the data used in
our work does not contain sensitive information.
Although our models are evaluated on academic
datasets in this paper, they could also be used in
sensitive contexts, e.g. healthcare or legal scenarios.
It is essential that necessary anonymization and
robustness evaluation is undertaken before using
our models in these settings.
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Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. In NAACL.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In ACL.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
ACL.

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan,
Ruoxi Jia, Bo Li, and Jingjing Liu. 2021a. Infobert:
Improving robustness of language models from an
information theoretic perspective. In ICLR.

96



Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.
2021b. CLINE: Contrastive learning with semantic
negative examples for natural language understand-
ing. In ACL.

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He.
2021c. Adversarial training with fast gradient projec-
tion method against synonym substitution based text
attacks. In AAAI.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. arXiv preprint arXiv:1509.01626.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei
Chang, and Xuanjing Huang. 2021. Defense against
synonym substitution-based adversarial attacks via
Dirichlet neighborhood ensemble. In ACL.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In ICLR.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In ICCV.

97



A Geometry Attack for Contrastive Loss

Algorithm 1 is the pseudocode of our Geometry
Attack for contrastive loss. Refer to Section 3.3 for
more details.

B Datasets

Dataset Labels Avg Len Train Test

AG’s News 4 44 120K 7.6K

IMDB 2 292 25K 25K

DBPedia 14 67 560K 70K

Yelp 2 177 560K 38K

Table 5: Statistics of the datasets.

The statistics of each dataset are shown in Ta-
ble 5. In our work, the maximum sequence length
is set to 128 for AG’s News and DBpedia, 256
for Yelp, and 512 for IMDB. To save time during
evaluating the model robustness against attacks,
we randomly select a part of the test examples in
each dataset for evaluation. Specifically, we select
1,000 samples from IMDB, 2,000 samples from
Yelp, and 5,000 samples from DBpedia. We use
all 7,600 samples from the AG’s News test set for
evaluation.

AG’s News3 Topic classification dataset with four
types of news articles: World, Sports, Business and
Science/Technology.

IMDB (Maas et al., 2011) Binary sentiment clas-
sification dataset on positive and negative movie
reviews.

Yelp Yelp review dataset for binary sentiment clas-
sification. Following Zhang et al. (2015), reviews
with star 1 and 2 are considered negative, and re-
views with star 3 and 4 are considered positive.

DBpedia (Zhang et al., 2015) Topic classification
dataset with 14 non-overlapping classes. Both con-
tent and title fields are used in our work.

C Effect of Queue Size

We conduct additional experiments to study the
effect of queue size. We use a queue size of
8192, 16384, 32768, and 65536 under the setting
of ADCL+FT for the AG’s News dataset. As is
shown in Table 6, a larger queue size generally
helps improve the model robustness. However, we
also notice that when the queue size is too large

3http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

Queue Size Original Acc. (%) Success (%) Replaced (%)

Vanilla 94.2 86.2 18.6

8192 94.4 77.8 18.9

16384 94.3 76.9 18.7

32768 94.3 76.5 19.1

65536 94.4 76.7 19.3

Table 6: Effect of queue size. We use the Geometry
Attack to evaluate the robustness of each model. The
FT model is finetuned without contrastive learning.

(65536), the model robustness starts to decrease.
We argue that this is because a too large queue size
results in less frequent queue updates, which makes
the vectors in the queue stale.

D Speed of Different Attacks

We show in Table 7 the average number of seconds
each attack needs for one example. We obtain
the average time by attacking 1000 examples and
then taking the average. We can observe that the
Geometry attack is at least four times faster than
TextFooler, and 4 to 10 times faster than PWWS
and BAE-R.

Attack AG’s News IMDB DBpedia Yelp

Geometry 0.44 2.02 0.69 1.16

TextFooler 2.48 8.69 2.89 4.86

PWWS 6.29 21.86 2.52 10.27

BAE-R 5.37 24.10 7.74 16.03

Table 7: Average number of seconds each attack needs
for an example.

E Adversarial Training with
Pre-generated Examples

We compare two different methods for adversarial
training:

• Pre-generated We pre-generate for each ex-
ample in the training set an adversarial exam-
ple. We then augment the original training
set with the adversarial examples. Finally, the
model is finetuned on the augmented dataset.

• On-the-fly This setting is the same as ADV
in Table 1, where we generate adverarial ex-
amples on the fly for each mini-batch during
training.

Table 8 shows the results on the AG’s News
dataset. We can see that on all four attacks, adver-
sarial training with on-the-fly generated adversarial
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Algorithm 1 Geometry Attack for Contrastive Loss

1: Input: Example Xi = {w1, w2, . . . , wL}, encoder f and MLP g
2: Output: Adversarial example X ′

i

3: Initialize zi ← g(f(Xi))
4: for iter = 1 to N do
5: calculate ℓi using Equation 1
6: vzi ← ∇ziℓi
7: E ← BertEmbeddings(X ′

i) = {e1, e2, . . . , eL}
8: G← ∇Eℓi = {g1, g2, . . . , gL}
9: t← argmaxt ||gt||

10: C ← BertForMaskedLM({w1, · · · , wt−1,[MASK], wt+1, · · · , wL})
11: C ← Filter(C) // construct candidates set C = {wt1 , wt2 , · · · , wtT }; filter using counter-fitted

embeddings
12: for each wtj ∈ C, 1 ≤ j ≤ T do
13: Xij ← {w1, · · · , wt−1, wtj , wt+1, · · · , wL}
14: zij ← g(f(Xij ))
15: rij ← zij − zi

16: pij ←
rij ·vzi

||vzi ||
17: end for
18: m← argmaxj ||pij ||
19: Xi ← Xim

20: zi ← zim
21: end for
22: X ′

i ← Xi

23: return Xi

Dataset Success Rate / Replaced (%)
Geometry TextFooler PWWS BAE-R

Pre-generated 55.3/17.1 59.4/22.6 42.0/17.4 16.5/7.3

On-the-fly 20.7/20.5 25.1/29.3 26.1/22.3 10.7/7.7

Table 8: Comparison between adversarial training with
pre-generated adversarial examples and on-the-fly gen-
erated adversarial examples.

examples gives higher robustness than adversarial
training with pre-generated adversarial examples.

F Implementation Details

In our paper, we use PyTorch Lightning4 and Hug-
gingFace Transformers5 in our implementation.
We use BERT as the encoder f(·), and the rep-
resentation of the [CLS] symbol in the last layer
is used for h. g(·) is a two-layer MLP, of which
the output size c is 128. g(·) uses Tanh as activa-
tion function in the output layer. We use FP16 in
training step to reduce GPU memory usage, and

4https://www.pytorchlightning.ai/
5https://huggingface.co/transformers/

use FusedAdam from DeepSpeed6 as the optimizer.
We enable DeepSpeed ZeRO Stage 2 to further
speed up training. We conduct all our experiments
on 8 RTX TITAN GPUs.

Contrastive learning For Geometry Attack for
contrastive loss, to reach a balance between attack
success rate and efficiency, the maximum num-
ber of iterations K is set to 10 for AG’s News,
DBpedia, and Yelp, and 15 for IMDB dataset.
We do not perturb words that were already per-
turbed in previous iterations. For an example Xi =
{w1, w2, . . . , wL}, at most min{K, 0.2 ·L} words
can be perturbed. For each word wt, 1 ≤ t ≤ L,
the upper limit of the candidate set size T is set to
25. Due to the various maximum lengths in down-
stream datasets and GPU memory limits, we use
different batch sizes for different datasets. During
contrastive learning, the batch size is set to 1024
for AG’s News and DBpedia, 448 for Yelp, and
192 for IMDB.

Fine-tuning During finetuning, we train the model
for two epochs for AG’s News and DBpedia, 3 for

6https://www.deepspeed.ai/
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Yelp, and 4 for IMDB. The learning rate is set to
2e− 5 and is adjusted using linear scheduling.

Adversarial training For adversarial training, the
number of training epochs is set to 3 with an
additional first epoch of finetuning on clean ex-
amples. The adversarial examples are generated
on the fly in each batch during training. For the
Geometry Attack in adversarial training, at most
min{K, 0.4 ·len(Xi)} words can be perturbed in
an example. The upper limit of the candidate set
size is set to 50.
Back Translation We use pretrained trans-
lation models opus-mt-en-roa and
opus-mt-roa-en from Helsinki-NLP to
generate one translation for each example.

G Hard Positive Examples from
Geometry Attack for Contrastive Loss

In Table 9, we show hard positive examples gener-
ated by our Geometry Attack for contrastive loss
from the AG’s News dataset.

Original Zurich employees plead guilty in probe new york
(reuters) - two senior insurance underwriters at zurich
american insurance co pleaded guilty on tuesday to mis-
demeanors related to bid-rigging in the insurance mar-
ket.

Adversarial Zurich employees plead guilty in probe new york
(reuters) - two senior insurance agents at zurich ameri-
can insurance co testified guilty on tuesday to violations
related to bid-rigging in the insurance market.

Original Black watch troops move into position the first units
of a black watch battlegroup are due to arrive today
in their new positions south of baghdad as tony blair
indicated that more british troops may replace them in
the american - controlled zone before the end of the
year.

Adversarial Black watch troops move into place the first units of a
black watch operation are due to arrive today in their new
positions south of baghdad as tony blair indicated that
more british troops may replace them in the american -
controlled zone before the end of the year.

Table 9: Hard positive examples generated by Geometry
Attack for contrastive loss. Blue words in the original
examples are replaced by red words in the adversarial
examples.

H Additional t-SNE plots

We give t-SNE plots of the vector representations
of clean examples and adversarial examples from
Yelp, IMDB and DBpedia in fig. 4, fig. 5 and fig. 6,
respectively.
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Figure 4: t-SNE plot of the vector representations of
clean examples and adversarial examples from the Yelp
dataset.
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Figure 5: t-SNE plot of the vector representations
of clean examples and adversarial examples from the
IMDB dataset.
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Figure 6: t-SNE plot of the vector representations of
clean examples and adversarial examples from the DB-
pedia dataset.
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