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Abstract

Adversarial attack of structured prediction
models faces various challenges such as the
difficulty of perturbing discrete words, the sen-
tence quality issue, and the sensitivity of out-
puts to small perturbations. In this work, we in-
troduce SHARP, a new attack method that for-
mulates the black-box adversarial attack as a
search-based optimization problem with a spe-
cially designed objective function considering
sentence fluency, meaning preservation and at-
tacking effectiveness. Additionally, three dif-
ferent searching strategies are analyzed and
compared, i.e., Beam Search, Metropolis-
Hastings Sampling, and Hybrid Search. We
demonstrate the effectiveness of our attack-
ing strategies on two challenging structured
prediction tasks: part-of-speech (POS) tag-
ging and dependency parsing. Through auto-
matic and human evaluations, we show that
our method performs a more potent attack
compared with pioneer arts. Moreover, the
generated adversarial examples can be used
to successfully boost the robustness and per-
formance of the victim model via adversarial
training.

1 Introduction

Adversarial attacking aims to mislead the victim
model (e.g., a trained dependency parser) to pro-
duce erroneous outputs when feeding adversarial
examples. The process can be seen in Figure 1.
Adversarial training improves the victim model in
terms of performance and robustness by training on
adversarial examples. Since structured prediction
tasks such as sequence labeling and dependency
parsing are critical building blocks of many natural
language processing (NLP) systems, it is essential

˚Kewei Tu is the corresponding author. ; These authors
contributed equally.

Structured Classification
Prediction

Ratio of GT Change 0.8 0.2
Meaning Preservation 0.94 0.92
Fluency 142 144

Table 1: Perturbation sensitivity comparisons between
structured prediction and classification task.

to study adversarial attacks and defense of struc-
tured prediction models (Jia and Liang, 2017; Wang
et al., 2019).

However, multiple technical challenges are faced
by attackers of structured prediction models in the
NLP area. All adversarial attackers for NLP tasks
face general challenges related to gradient compu-
tation of discrete inputs, grammatical correctness,
and meaning preservation (Zhang et al., 2019a;
Jia and Liang, 2017; Wang et al., 2019; Cheng
et al., 2019b, 2020b). Another potential but impor-
tant challenge lies in the sensitivity of structured
prediction: small perturbations to input sentences
may very likely change the target output structures.
In contrast, small perturbations typically do not
change sentence classification labels. Han et al.
(2020) first qualitatively proposed this assumption.
We quantitatively investigate this sensitivity in Ta-
ble 1. Specifically, we attack two typical mod-
els (the sentiment classifier (Ren et al., 2019) for
the classification task and the dependency parser
(Dozat and Manning, 2017) for structured predic-
tion task) using the widely-used word-substitution
attackers PWWS (Ren et al., 2019) and FGSM
(Goodfellow et al., 2015) respectively. For both
tasks, we generate adversarial examples by substi-
tuting words with the same proportion. The adver-
sarial examples have similar qualities: fluency with
perplexity 142 vs. 144 and meaning-preservation
degree with BLEU 0.94 vs. 0.92. However, when
asking annotators to label the adversarial examples,
we find that around 80% adversarial examples of
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But stocks kept falling.

Attacker

Victim ModelSource

Adv. Example
And then stocks are falling.

And then stocks are falling .

But stocks kept falling .

Wrong Prediction Correct Prediction 

Figure 1: An illustration of attacking process.

the classification task keep the same target outputs
as the original input sentences, while only around
20% adversarial examples of the structured predic-
tion task have unchanged output target structures.
The huge gap shows the sensitivity of structured
prediction tasks, verifying the challenge of attack-
ing structured prediction models.

Despite these challenging issues, recently a few
researchers are working on attack of structured pre-
dictions. Zheng et al. (2020) tries to preserve the
original target output structures by replacing words
with the same part of speech tags. Wang et al.
(2021) follows a similar method to generate adver-
sarial examples. However, these approaches cannot
handle the aforementioned sensitivity. Wang et al.
(2021) reveals that the syntactic structures of 25%
generated examples of the attacker from Zheng
et al. (2020) and 15% from Wang et al. (2021)
are changed, although they both carefully design
specific rules based on linguistic prior knowledge
to preserve the structures. On the other hand, Han
et al. (2020) chooses to generate silver structures in-
stead of assuming unchanged target outputs. How-
ever, the proposed method of training a sequence-
to-sequence adversarial example generator needs
time-consuming training and often leads to ungram-
matical and unnatural-looking sentences.

To address the above challenges, in this paper,
we propose a novel and efficient attack method:
SearcH-based adversarial Attack for stRuctured
Prediction (SHARP)1. We formulate black-box ad-
versarial attack as an optimization problem that
seeks to maximize a specially designed objective
function for better fluency, contextual consistency,
and attacking effectiveness. In addition, we use a
pretrained masked language model (PLM) to prune
candidate sentences when exploring the search
space. While our approach can be applied to any
structured prediction tasks, in this paper we evalu-
ate our approach on POS tagging models and de-

1Our implementations are publicly available at https:
//github.com/JZXXX/SHARP.

pendency parsing models. Both automatic and hu-
man evaluations show that our method beats previ-
ous state-of-the-art (SOTA) approaches by a large
margin. We also show that the generated adver-
sarial examples can be used to boost the victim
model in terms of accuracy and robustness with
adversarial training.

2 Preliminaries

2.1 Structured Prediction
Structured prediction in NLP aims to predict a
structured output such as a sequence in the POS
tagging task or a tree in the dependency parsing
task. Given an input sentence x, a structured pre-
diction model predicts the output y by maximizing
the log conditional probability:

argmax
yPT

logP py|xq

where T is the set of all possible outputs. The
prediction model can be trained by maximizing the
log probability of the target structure y˚ given a
training set which contains px,y˚q pairs.

Our purpose is to attack a well-trained struc-
tured prediction model through searching adversar-
ial sentences. Besides, by leveraging adversarial
sentences and the original training data to retrain
the model, we can defend against attacks and en-
hance the model’s robustness.

2.2 Adversarial Attack
Let xori “ twori

0 , wori
1 , ..., wori

N´1u denote an orig-
inal sentence with N words. The victim model
MV pxq : x Ñ y has been trained to produce
a structured prediction output that is close to the
golden structure y˚. Then the task for adversar-
ial attack is to fool the model MV by feeding an
imperceptible adversarial example xadv such that
MV pxadvq ‰ target output of xadv.

In this work, we focus on the black-box attack
setting, where only the outputs of the victim model
MV are accessible, while the internal details are
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invisible, including the model structure, hyper-
parameters, training strategy, the training dataset,
and gradients over each layer, etc.

3 Search-based Adversarial Attack

3.1 Attacking Objective

Typically, an ideal adversarial natural language ex-
ample should be: (i) able to fool the victim parser to
generate an erroneous output; (ii) fluent and gram-
matically correct; (iii) semantically consistent with
the original sentence xori. We consider the follow-
ing objectives to address the above requirements,
respectively.

Attacking Effectiveness. Ensuring the error of
MV pxadvq is non-trivial due to the lack of new
ground truth structured outputs. To estimate
the new ground truth and further identify if the
adversarial sentence can indeed fool the vic-
tim model MV , we follow Han et al. (2020)
to make use of two external reference models
MA and MB . Because we want the victim
model to predict wrong outputs of the adversar-
ial examples, a good adversarial example xadv

should maximize the difference between the pre-
dicted structures MV pxadvq and reference out-
puts pMApxadvq,MBpxadvqq, while minimizing
the difference between MApxadvq and MBpxadvq.
Formally, a scoring function can be formulated as

rpxq “simpMApxq,MBpxqq
` p1´ simpMV pxq,MApxqqq
` p1´ simpMV pxq,MBpxqqq

(1)

where simp¨, ¨q P r0, 1s is a similarity function,
e.g., Directed Dependency Accuracy (DDA) that
evaluates the similarity between two parse trees.

Fluency. We use the perplexity of a PLM to eval-
uate the grammatical correctness and fluency of
the generated sentences following Holtzman et al.
(2018); Xu et al. (2018); Pang et al. (2020). For a
single sentence x, the Perplexity score (PPL) can
be computed as

fpxq “ PPLpxq “ P pxq´ 1
N (2)

where N denotes the sequence length. A lower per-
plexity indicates that the sentence is more natural
and grammatically correct.

Meaning Preservation. Note that the previous
two scores neglect the original sentence xori when
attacking, which will commonly result in a “zom-
bie" output, i.e., no matter what the input sentence
is, the attack always produces exactly the same ad-
versarial sentence. We maintain the diversity of
generated sentences by using a score function to
ensure the consistency of meanings between the
generated sentences and the original sentences. We
use BERTSCORE (Zhang et al., 2019b) to evaluate
the similarity, which matches each token in x to a
token in xori to compute recall, and each token in
xori to a token in x to compute precision, finally
combines precision and recall to compute an F1
measure.

spx,xoriq “ BERTSCOREpx,xoriq (3)

Such metric correlates better with human judgment
than traditional measures such as BLEU (Papineni
et al., 2002).

Objective Function. Taking together, the objec-
tive of our adversarial attack can be defined as a
non-negative function:

Fpxq “ rpxq ¨ spx,xoriq
f pxq (4)

By maximizing Fpxq, we hope to produce xadv

that are natural-sounding, human-imperceptible,
and effective in attacking the victim model.

3.2 Optimization-based Search

Our optimization problem can be considered as a
T -step sequential decision-making process with its
state changes along tx0,x1, ...,xT´1u and x0 “
xori. At step t, xt moves to xt`1 with respect to

xt`1 “ at̊ pwt̊ ,xt, wcq
pat̊ , wt̊ q “ argmax

atPA,wtPxt

Fpatpwt,xt, wcqq (5)

where wt is a selected word in xt, and at is a word-
level manipulation such that xt`1 “ atpwt,xt, wcq.
In this work, we consider three different ma-
nipulations A “ tReplace, Insert,Deleteu:
Replacepw˚,x, wcq indicates replacing the word
w˚ in sentence x with another word wc P W;
Insertpw˚,x, wcq inserts a word wc after w˚;
Deletepw˚,x, nullq simply removes w˚ from x,
null means we do not need another word.
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Pruning W . Exploring the entire vocabulary set
at each step for Replace and Insert will be time-
consuming. Therefore, we prune the search space
with a pretrained masked language model (PLM),
e.g., RoBERTa (Liu et al., 2019). Specifically, the
expected position for wc in sentence xt is replaced
with a mask token [MASK] and will be predicted
using RoBERTa. Then wc will be selected from the
pruned word set W that includes the top Nw “ 50
predictions in the masked position according to
PRoBERTapwrMASKs|xq.

We consider the following three strategies of
exploring the search space: Beam Search (BS),
Metropolis-Hastings Sampling (MHS) and Hybrid
Search (HS).

Beam Search Traditional beam search creates
the beam by exhaustively searching all candidates
created with one manipulation and one word from
xt. Then the top k (beam size) candidates that max-
imize Fpxq are selected and stored in the beam in a
greedy manner, each of which will be considered as
the input sentence for next step. However, for each
sentence, there are a huge number of possible can-
didates, i.e., different positions for manipulation
and different words for replacement or insertion.
To reduce the time complexity, at each step, we
sample a single type of manipulation a P A and
a single word w˚ P xt on which the manipulation
is performed. Therefore, the time complexity for
a single step is reduced to Opk|W|q. Due to the
nature of local optimization of BS, we consider
such strategy as exploitation.

Metropolis-Hastings Sampling To get out of
the local optima that BS is commonly stuck in,
we use a sampling-based approach – Metropolis-
Hastings Sampling (Metropolis et al., 1953; Hast-
ings, 1970; Chib and Greenberg, 1995) – to explore
the space beyond the starting local optimum and
increase the chance of finding a global optima. We
consider this strategy as exploration.

Specifically, we can create a proposal xt`1 by
sampling an action at, a selected word w P xt

and a new word wc P W . Given the stationary
distribution defined as

πpxq9Fpxq, (6)

MHS accepts the proposal with the following rate:

αpxt`1|xtq “ min

"
1,
πpxt`1qT pxt|xt`1q
πpxtqT pxt`1|xtq

*
,

(7)

T pxt`1|xtq “ rrTrpxt`1|xtq ` riTipxt`1|xtq
` rdTdpxt`1|xtq,

(8)
where T defines the overall transition distribution,
rr, ri and rd are transition ratios, Trp¨q, Tip¨q
and Tdp¨q are transition likelihoods of Replace,
Insert and Delete, respectively. The transition
likelihoods can be calculated as:

Trpx1|xq “ 1pwc PWq ¨ P pReplacepw˚,x, wcqqř
wPW P pReplacepw˚,x, wqq

Tipx1|xq “ 1pwc PWq ¨ P pInsertpw˚,x, wcqqř
wPW P pInsertpw˚,x, wqq

Tdpx1|xq “
#
1, if x1 “ Deletepw˚,xq
0, otherwise

where P pReplacepw˚,x, wcqq and
P pInsertpw˚,x, wcqq are the probabilities
of the sentence pw0, w1, ..., wc, ..., wN´1q and
the sentence pw0, ...w

˚, wc, ..., wN´1q given by
a pre-trained language model e.g., RoBERTa,
respectively.

Hybrid Search The intuition behind HS stems
from the balance between exploration and exploita-
tion. Studies have shown that with a proper bal-
ance between exploration and exploitation, the op-
timization performance can be substantially im-
proved (Črepinšek et al., 2013; Wilson et al., 2021).
Specifically, at each step, we randomly select be-
tween BS and MHS.

HS “
#
BS rand ă i{n
MHS rand ě i{n , (9)

where i is the current step number, n is the max-
imum number of search steps, and rand is uni-
formly sampled from r0, rs, r P r0, 1s controls the
exploitation-exploration trade-off. It can be seen
that with the increase of i, HS gradually changes
from exploration (MHS) to exploitation (BS). Af-
ter r ˚ n step, only BS is used.

3.3 Adversarial Training
Following Goodfellow et al. (2015); Madry et al.
(2017), we use adversarial training to resist attacks.
More specifically, we defend against attacks and
increase model robustness by retraining the model
with a mix of adversarial examples and the original
data. We choose those adversarial examples where
the two reference models MA and MB have the
same predictions and take the same predictions as
the target outputs.
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4 Experiments

4.1 Implementation Details

The PLM used to select candidate word set is
RoBERTa (Liu et al., 2019). We search hyper-
parameters on 300 sentences randomly sampled
from the PTB development dataset. The criterion
used to select all the hyper-parameters is the token
level attacking success rate.

4.2 Evaluation

Automatic Evaluation Following Han et al.
(2020), we evaluate the adversarial examples on
two aspects: generation quality (including fluency
and meaning preservation) and attacking efficiency.
Specifically, we treat outputs from reference model
A, reference model B, or the agreement part of
models A&B as ground truths and evaluate the
following two attacking success rates (ASRs):
• Token-level ASR: the percentage of words in

the adversarial examples that are assigned the
wrong head without considering the dependence
type in dependency parsing or the wrong tag in
POS tagging.

• Sentence-level ASR: the percentage of mispre-
dicted examples in the adversarial examples.

Human Evaluation We conduct human evalua-
tion of generation quality (fluency, meaning preser-
vation) and attacking efficiency (token and sentence
level). We hire three volunteers with linguistic
background to label 50 data (sampled from the
PTB test set). For generation quality, we ask the
annotators to rate from 1 to 5, the higher, the better.
For attacking efficiency, we ask them to manually
annotate erroneous outputs in the same way as in
automatic evaluation.

4.3 Attack on Dependency Parsing

We apply our approach to the dependency parsing
task. We choose the Deep Biaffine parser (Dozat
and Manning, 2017) as the victim parser PV and
two other SOTA dependency parsers as the refer-
ence parsers: StackPTR (Ma et al., 2018) as parser
PA and BiST (Kiperwasser and Goldberg, 2016)
as parser PB .

The three parsers are all trained with Penn Tree-
bank 3.0 (PTB, Marcus et al. (1994)) dataset fol-
lowing the same hyper-parameters reported in their
papers.

Token-level ASRÒ
Parser A Parser B Parser A & B

MHS 18.7 26.4 10.0
BS 33.6 35.4 31.7
HS 36.6 38.7 32.8

Table 2: Experimental results of three modes: BS,
MHS, and HS on PTB development set based on auto-
matic evaluation in the dependency parsing task. ASR:
Attacking Success Rate.

4.3.1 Main Results

Adversarial Attacks To assess our three modes,
we random sample 300 samples from the PTB de-
velopment set. Results are shown in Table 2. Ob-
servation shows that HS, taking advantage of both
MHS and BS, performs better in attacking effec-
tiveness than single MHS or BS. Therefore, we
adopt HS in the following experiments.

Then we summarize automatic evaluation results
in Table 3 and human evaluation results in Table 4.
Human evaluation is consistent with automatic eval-
uation: our proposed method significantly outper-
forms the baseline model at almost all metrics.
Particularly, our approach in the “Ours-HS” row
demonstrates HS’s advantage on the attacking suc-
cess rate. The attacker from Zheng et al. (2020)
uses the black-box setting to attack the same word-
based Biaffine model and 15% words are allowed
to be modified. Their method keeps better sentence
quality, at the cost of a low ASR. Compared with it,
our approach is more than twice better than theirs
in ASR and maintains a comparable generation
quality. In contrast of the attacker from Zheng et al.
(2020) that can only use substitution with the same
part of speech tag, our attacker allows more flexible
manipulations. A case study is shown in Figure 2,
our approach replace But and kept with And and
are respectively, and add then. These manipula-
tions lead to a successful attack. Compared with
Han et al. (2020), our HS is much more effective
in terms of ASR and GQ.

Defense Against Adversarial Attack Attacking
the PTB training set, our HS approach can gen-
erate about 8000 adversarial examples satisfying
PV pxq ­“ PApxq “ PBpxq. The mixed dataset of
adversarial examples and the original training data
is used to retrain the victim parser. After adversar-
ial training, the unlabeled attachment score (UAS)
of the victim model increases from 95.37 to 95.53.
To investigate the significance of the improvement,
we perform significance tests on the UAS score.
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GQ Token-level ASRÒ Sentence-level ASRÒ
FluencyÓ MPÒ Parser A Parser B Parsers A&B Parser A Parser B Parsers A&B

Original 156.02 1 3.9 9.1 1.7 36.7 59.3 21.0
Zheng et al. (2020) 281.99 0.94 7.5 14.5 2.8 52.2 71.4 30.2

Han et al. (2020) 174.16 0.80 14.5 19.9 5.6 78.4 87.7 53.8
Ours-HS 157.41 0.92 35.3 37.8 32.4 98.7 98.8 100.0

Table 3: Experimental results on PTB test set based on automatic evaluation in dependency parsing task. “Original”
shows the results of original sentences in the PTB test set. We use the perplexity of GPT-2 (Radford et al., 2019) to
evaluate the sentence fluency (Fluency), lower is better. We use the BERTSCORE (Zhang et al., 2019b) to evaluate
the meaning preservation (MP). Higher is better. GQ: Generation Quality.

GQÒ ASRÒ
Fluency MP Tl. Sl.

Zheng et al. (2020) 4.57 4.07 15.3 42
Han et al. (2020) 4.07 3.16 23.8 70

Ours-HS 4.21 3.65 38.4 93
Table 4: Experimental results on PTB test set based
on human evaluation. TL: Token-level. SL: Sentence-
level.

Token-level ASRÓ
Parser A Parser B Parser A&B

Original 36.6 38.7 32.8
Retrain 32.3 35.0 28.0

Table 5: Token level attacking success rates after adver-
sarial training.

Original Sentence But stocks kept falling .

And

And

And

then stocks are

then stocks are

then stocks are

falling .

falling .

falling .Generated Sentence

Ground Truth

Prediction

(a) Dependency Parsing
Original Sentence

Generated Sentence

Ground Truth

Prediction

Original Sentence

Generated Sentence

Ground Truth

Prediction

Buyers  stepped in  to  the futures pit .

Buyers    had     stepped     in           to        open    futures  market       .

  NNS     VBD     VBN      IN         TO         JJ        NNS       NN      .

  NNS     VBD     VBN      RP         TO        VB      NNS       NN      .

 Are you kidding ! 

 Wait        .         Were      you     kidding      ?   

  VB         .         VBD      PRP     VBG         .   

  UH         .          VB        PRP      VB           .   

(b) POS Tagging
Figure 2: Adversarial examples of dependency pars-
ing (a) and POS tagging (b) generated by our approach.
Red color indicates misprediction.

We calculate the p-value using the one-tailed sign
test with the bootstrap re-sampling from the PTB
test set following Chollampatt et al. (2019). We
compare the retrained model with the original vic-
tim model. The p-values is 1.61e-5 that shows the
significance. To test the adversarial robustness, we

use our HS approach to attack the retrained model
on 300 randomly sampled data from the PTB de-
velopment set. As shown in Table 5, adversarial
training significantly reduces the token level attack-
ing success rate on all three settings.

4.4 Attack on POS Tagging

We apply our approach to the POS tagging task.
We use the tagger from Ma and Hovy (2016) as our
victim tagger TV , and we choose two state-of-the-
art taggers: Stanford POS tagger (Toutanova et al.,
2003) and Senna tagger (Collobert et al., 2011) as
our reference tagger TA and tagger TB , respectively.
We conduct experiments on the PTB dataset. All
the hyper-parameters of the three taggers are the
same as reported in their papers.

4.4.1 Main Results
Adversarial Attacks As in the experiments of
the dependency parsing task, we first randomly
sample 300 samples from the PTB development
set to compare our three search methods. Results
are shown in Table 7. We can find that the HS
still performs the best in the attacking success rate.
But it performs a relative more minor advantage in
this task than its performance in the dependency
parsing task. One possible reason is that, compared
to dependency parsing, POS tagging is a simpler
task, so BS is effective while MHS (exploration
with more randomness) can not bring more benefit.
We still adopt HS in the following experiments as
the experiments on dependency parsing.

We show the automatic evaluation results on
the test set in Table 6 and human evaluation re-
sults on the sampled test set in Table 8. Fluency,
meaning preservation and attacking success rate of
our approach are all above Han et al. (2020). Our
approach shows its high efficiency even though
in the relatively simple task. Particularly, our ap-
proach improves the token level attacking success
rate by 8.4%, and on the sentence level, our ap-
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GQ Token-level ASRÒ Sentence-level ASRÒ
FluencyÓ MPÒ Tagger A Tagger B Tagger A&B Tagger A Tagger B Taggers A&B

Original 156.02 1 2.7 3.4 0.7 38.8 45.8 12.9
Han et al. (2020) 142.59 0.88 13.8 9.5 2.3 76.8 74.6 23.2

Ours-HS 136.16 0.93 12.8 14.2 10.7 96.3 97.0 93.4
Table 6: Experimental results on PTB test set in the POS tagging task based on automatic evaluation.

Token-level ASRÒ
Tagger A Tagger B Taggers A & B

MHS 5.8 11.2 2.9
BS 14.8 15.9 12.8
HS 15.1 16.3 13.1

Table 7: Experimental results of three modes in the
POS tagging task: BS, MHS, and HS on PTB dev set
based on automatic evaluation.

GQÒ ASRÒ
Fluency MP Tl. Sl.

Han et al. (2020) 3.88 3.16 8.10 52.0
Ours-HS 4.20 3.59 10.43 88.67

Table 8: Experimental results on PTB test set in the
POS tagging task based on human evaluation. TL:
Token-level. SL: Sentence-level.

proach shows its powerful attack capability, achiev-
ing more than 70% improvement compared to pre-
vious baseline, even though the approach of Han
et al. (2020) involves training a generating model
and is much more computationally expensive than
ours. Case studies are shown in Figure 2(b).

Defense Against Adversarial Attack We also
conduct adversarial training in the POS tagging
task. To compared with Han et al. (2020), we sam-
ple 1000 additional adversarial sentences generated
by attacking the PTB training set using our HS ap-
proach. We mixed these sentences with the initial
training set to retrain the victim tagger. As a re-
sult, the accuracy of the tagger improves 0.21 from
97.55 to 97.76 on the PTB test set, while Han et al.
(2020) reports a 0.13 improvement in the same
setting. That demonstrates the high quality and ef-
fectiveness of our generated adversarial sentences.

4.5 Analysis

We conduct our analytical experiments in the de-
pendency parsing task.

Impact of Metric for Reference Models Due to
the sensitivity to small perturbations as illustrated
in Table 1, the structured-prediction attackers re-
quire an automated yet unbiased evaluation scheme
that is suitable for assessing the prediction of the ad-
versarial examples. For this purpose, we adopt the
agreement of two pre-trained parsers. The criterion

26 83 116

ParserA ParserB

16 103 25

ParserA ParserA’

Figure 3: Illustration of OIoU. Parser A and Parser A’
denote the same architectures trained with different ran-
dom seeds. The numbers in the set denote the mispre-
dicted token numbers.

for selecting these reference parsers is that they
should be diverse besides having a high parsing
accuracy (Han et al., 2020). Therefore, we pro-
pose the metric Opposite Intersection over Union
(OIoU) to evaluate the diversity degree of refer-
ence parsers. In particular, we propose OIoU as
one minus the number of common erroneous pre-
dictions from two reference parsers divided by the
total number of unique erroneous predictions made
by two reference parsers. A quantitative exam-
ple is demonstrated in Figure 3. The diverse de-
grees of the parsers on the left and right are 0.631
(1´ 83{p26` 83` 116q) and 0.285 respectively.
Our experiments find that the parsers on the left
with a higher OIoU indeed result in better attack-
ing efficiency than those on the right (12.9% vs.
5.2% token-level ASR). Note that, for fair compar-
ison of SHARP with prior work, we reuse the same
reference parsers for all the experiments.

Generalizability We exchange the victim parser
and reference parser to show the generalization of
our black-box adversarial attack methods. Specif-
ically, we take the Deep Biaffine parser (Dozat
and Manning, 2017) as the reference parser PA

and the StackPTR (Ma et al., 2018) as the victim
parser PV . We repeat the experiments of depen-
dency parsing keeping the same setup of Table 3
except for the parser choice. Experimental results
based on automatic evaluation on the test set are
shown in Table 9. We can find that our approach
still can keep high attacking success rate both on
token level and sentence level. Moreover, the flu-
ency of the generated adversarial sentences of Han
et al. (2020) becomes worse after changing victim
parser, but our approach well maintains the quality
of the sentences.
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GQ Token-level ASRÒ Sentence-level ASRÒ
FluencyÓ MPÒ Parser A Parser B Parsers A&B Parser A Parser B Parsers A&B

Original 156.02 1.00 3.7 8.5 1.5 36.7 57.2 9.2
Han et al. (2020) 244.69 0.92 19.6 23.3 13.4 70.8 77.2 24.3

Ours-HS 142.78 0.94 33.6 36.8 30.8 98.1 98.2 92.4
Table 9: Experimental results on PTB test set in the dependency parsing task based on automatic evaluation with
StackPTR as the victim model while the Deep Biaffine parser and BiST as reference models.

GQ Token-level ASRÒ Sentence-level ASRÒ
FluencyÓ MPÒ Parser A Parser B Parsers A&B Parser A Parser B Parsers A&B

Ours-HS 188.01 0.92 35.8 39.0 32.8 98.6 98.6 95.6
-spx,xoriq 220.35 0.91 36.2 38.9 33.0 99.3 99.7 97.7

-fpxq 672.54 0.92 44.9 46.9 41.2 99.7 100 100
-rpxq 67.00 0.93 6.72 13.75 3.0 56.8 77.1 24.4

random 919.85 0.88 16.3 25.2 7.9 90.4 93.8 45.5

Table 10: Ablation study on 300 samples of PTB development set in the dependency parsing task based on auto-
matic evaluation.

Ablation Study We show the impact of the three
different scores in our objective function. Table
10 shows the automatic evaluation results of gen-
eration quality and attacking success rate on 300
samples randomly sampled from the development
set. It can be seen that without considering the
fluency of generated sentences (Row ´fpxq in Ta-
ble 10), it is natural that the attacking success rate
can be further increased, but the generation qual-
ity becomes worse. Without considering meaning
reservation between original sentences and gener-
ated sentences (Row ´spx,xoriq), we can find that
MP drops marginally. To verify the importance of
meaning preservation (Row spx,xoriq), we experi-
ment in the same setting as Section 4.3.1 except for
using the adversarial examples generated without
considering meaning preservation. We find that the
unlabeled attachment score (UAS) of the victim
model is 94.57 (vs 95.53), which shows that the
quality of generated sentences is important to im-
prove the victim model in terms of performance and
robustness after retraining on adversarial examples.
The importance is also demonstrated by prior work
of Wang et al. (2021). Without optimizing rpxq,
we can see that the attack success rate is even lower
than random sampling because it needs to promise
the quality of sampled sentences. A big gap on
both generated quality and attacking success rate
between random sampling and our HS approach
demonstrates that the strength of our methods.

Impact of Candidate Size and Manipulation
Count Figure 4 and 5 show the result on different
candidate sizes and manipulation counts, respec-
tively. We can find that, with the increase of the

candidate size, the attacking success rate also in-
creases, but the growth rate gradually slows down.
The manipulation count shows a similar trend.

In our setting, the computing cost has a linear
relationship with these two hyper-parameters. Thus
we have a trade-off between time and performance:
in our experiments, we set the candidate size and
manipulation count to 5 and 50, respectively.

Impact of Beam Size We investigate the impact
of the beam size under the same computing re-
sources. For example, when the beam size is 1, the
candidate number is 10; and when the beam size
is 2, the candidate number is 5. The manipulation
count keeps the same. The results are shown on
Figure 6. It can be seen that 2 is the best.

Causal Analysis of Adversarial Attacks Since
SHARP searches the whole sentence space for
adversarial attacks without pre-defined templates,
the generated adversarial examples have the po-
tential for unseen discoveries. Therefore, we ana-
lyze the adversarial examples and conclude some
new templates that cause mispredictions of the vic-
tim model. We list two observations here. First,
uncommon words (e.g., replacing the place name
with an adverb or adding a surname) often cause a
misprediction. For example, the adversarial exam-
ple “What is Santa actually worth?” (the original
sentence is “What is Santa Fe worth?”) makes
the victim model mispredict the head of “Santa”
being “actually”. A probable reason is that inter-
rogative sentences with uncommon words are rare
in the training set and the victom model is con-
fused with these out-vocabulary words. The other
observation is that symbols such as “%” and “.” of-
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Figure 4: Token-level attacking suc-
cess rate on different candidate sizes.
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Figure 5: Token-level attacking suc-
cess rate on different manipulation
counts.
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Figure 6: Token-level attacking suc-
cess rate on different beam size.

ten mislead the model predictions. Surprisingly,
the victim model can predict the correct structure
for the sentence “It is widely expected that they
will.” but fails when the period in this sentence is
dropped. We give a simple quantitative analysis of
these adversarial types. For the first type (adding
a surname to an interrogative sentence), we ran-
domly choose 100 names and write the sentence
“What doesName Surname like?”. We get 100%
sentence-level attack success. For the second type
(adding an adverb after “%”), we randomly select
100 sentences which contain “%” from the origi-
nal dataset, and then add adverb “globally” after
the “%” to generate new sentences as adversarial
samples. We get about 50% sentence-level attack
success in this case.

5 Related Work

There is limited literature available for adversarial
attacking on structured prediction tasks. Previous
adversarial training has been conducted on NLP
tasks such as text classification (Liang et al., 2018;
Alzantot et al., 2018), machine translation (Zhao
et al., 2018; Ebrahimi et al., 2018; Cheng et al.,
2020a) and dialogue systems (Cheng et al., 2019a).
Recently, adversarial training has also been ex-
plored on structured prediction tasks, such as de-
pendency parsing (Zheng et al., 2020; Han et al.,
2020). Zheng et al. (2020) replaced some words
with adversarially chosen counterparts with the
same part of speech tags. They target specific
syntactic adversarial sentence examples to attack
dependency parser. Han et al. (2020) investigated
generation-based attackers for structured prediction
tasks.

6 Conclusion

In this paper, we quantitatively investigate the sen-
sitivity of structured prediction tasks and formulate

the black-box adversarial attack as a search prob-
lem that seeks to maximize a specially designed
objective function. Both automatic and human eval-
uations show that our approach beats the previous
approaches by a large margin in attacking victim
models and simultaneously guarantees better flu-
ency and meaning preservation. Our defense exper-
iments show that the adversarial samples generated
by our approach can be used to improve the original
model’s robustness and performance.
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A Technical Details

A.1 Hyper-Params

The shared hyper-parameters of Beam Search (BS),
Metropolis-Hastings Sampling (MHS), and Hybrid
Search (HS) are listed in Table 11.

Beam Size 2
Size of Candidate Set 5
Manipulation Count 50
pr 0.5
pi 0.25
pd 0.25

Table 11: Hyper-parameter setting.

A.2 Evaluation

In Table 2 and Table 5 of the main body, we use
different evaluation metrics to measure results of
Parsers A&B compared with Han et al. (2020).
Take Token-level ASR as an example, they cal-
culate Parser A&B using 1 ´ s{n, where s is the
number of tokens of which the three parsers (A, B
and C) have the same prediction (i.e., MApxq “
MBpxq “MCpxq), and n is the total number of
tokens. We use a{b, where a is the number of to-
kens that MApxq ‰ pMBpxq “ MCpxqq, and b
is the number of tokens that MBpxq “ MCpxq.
Since the assumption behind identifying the ground
truth of the structured outputs is that two external
reference parsers have the same prediction, it is
more reasonable to use a{b when calculating the
attack success rate to identify if the adversarial
sentence can indeed fool the victim model. We re-
calculated all the Parsers A&B results of Han et al.
(2020) in the main body of this work. For reference,
we give results of our model calculated according
to their formula as Table 12. It can be seen that our
approach outperforms the approach proposed by
Han et al. (2020) even with the original metrics.
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Token-level ASRÒ
Parser A Parser B Parser A & B

Han 13.9 19.2 24.1
our-HS 36.6 38.7 37.6

Table 12: Experimental results on PTB test dataset in
dependency parsing task.
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Figure 7: Objective score curve on increasing sampling
steps.

B Optimizing Process

We show our optimizing curve in the Figure 7. We
can see that the objective score is oscillating in the
early stages of sampling, because MHS sampling
is chosen with high probability in the early stages,
which shows the exploration process. After the
early stage, we see a clear upward trend of the
objective score, where our approach chooses BS
with high probability, and BS directly searches the
local optimal.
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