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Abstract

Large transformer-based pre-trained language
models have achieved impressive performance
on a variety of knowledge-intensive tasks and
can capture factual knowledge in their param-
eters. We argue that storing large amounts
of knowledge in the model parameters is sub-
optimal given the ever-growing amounts of
knowledge and resource requirements. We
posit that a more efficient alternative is to pro-
vide explicit access to contextually relevant
structured knowledge to the model and train it
to use that knowledge. We present LM-CORE
– a general framework to achieve this– that al-
lows decoupling of the language model training
from the external knowledge source and allows
the latter to be updated without affecting the
already trained model. Experimental results
show that LM-CORE, having access to external
knowledge, achieves significant and robust out-
performance over state-of-the-art knowledge-
enhanced language models on knowledge prob-
ing tasks; can effectively handle knowledge
updates; and performs well on two downstream
tasks. We also present a thorough error anal-
ysis highlighting the successes and failures of
LM-CORE. Our code and model checkpoints
are publicly available1.

1 Introduction

Large pre-trained language models (PLMs) (Peters
et al., 2018; Devlin et al., 2019; Brown et al., 2020)
have achieved state-of-the-art performance on a va-
riety of NLP tasks. Much of this success can be
attributed to the significant semantic and syntactic
information captured in the contextual representa-
tions learned by PLMs. In addition to applications
requiring linguistic knowledge, PLMs have also

∗Work done as an intern at the Media and Data Science
Research Lab, Adobe, India.

1https://github.com/sumit-research/
lmcore

been useful for a variety of tasks involving factual
knowledge and it has been shown that models such
as BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) store significant world knowledge in their
parameters (Petroni et al., 2019).

PLMs are typically fed a large amount of unstruc-
tured text which leads to the linguistic nuiances and
world knowledge being captured in the model pa-
rameters. This implicit storage of the knowledge
in the form of the parameter weights not only leads
to poor interpretability while analyzing model pre-
dictions but also poses constraints on the amount
of knowledge that can be stored. It is not practical
to pack all the ever-evolving world knowledge in
the language model parameters due to the great
financial and environmental costs incurred by train-
ing of the PLMs. Further, since the PLMs acquire
knowledge from the text corpora they are trained
on, they tend to become sensitive to the contextual
and linguistic variations (Jiang et al., 2020). More-
over, PLMs do not contain explicit grounding to
real world entities, and hence, often find it difficult
to recall factual knowledge (Logan et al., 2019).
For example, the model may not be able to recall
correct information and successfully complete the
sentence, “The birthplace of Barack Obama is ”,
if the LM has seen this fact in a different context
during training (e.g., “Barack Obama was born in
Honolulu, Hawaii.”).

Large scale structured knowledge bases (KBs)
such as YAGO (Suchanek et al., 2007) and Wiki-
data (Vrandečić and Krötzsch, 2014) offer a rich
resource of high quality structured knowledge that
can provide the PLMs with explicit grounding to
real world entities. Consequently, efforts have been
made to integrate factual knowledge into PLMs
and create entity-enhanced language models (Pe-
ters et al., 2019; Zhang et al., 2019; Sun et al., 2020;
Liu et al., 2020; Wang et al., 2021a,b). However,
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Figure 1: Language Model Pre-Training with Contextually Relevant External Knowledge: 1 Using a sentence
sampled from the pre-training corpus, an input (x) is created by selecting an entity mention at random from the
potential mask candidates (underlined in red). 2 An NER tagger is then applied to the masked input sequence (x)

to identify named entities (underlined in black). 3 For the identified entities, the Knowledge Retrieval module
fetches the set Tx of all the triples from the Knowledge Base and then 4 scores all the retrieved triples using
input-triple and input-relation similarity (details in Section 3.2). 5 The top-k triples are fed to the Language Model
encoder along with the input sequence (x) and the model is trained to predict the masked token.

these works either update the PLM parameters or
modify the architecture to facilitate the storage of
factual knowledge in the model layers and parame-
ters, making it expensive to update knowledge.

In this work, we step back and ask – what if in-
stead of focusing on storing the knowledge in the
language model parameters, we provide the model
with contextually relevant external knowledge and
train it to use this knowledge? This approach offers
several potential advantages – (i) we can utilize the
already available high-quality large-scale knowl-
edge bases such as YAGO and Wikidata; (ii) not
all the knowledge needs to be packed in the pa-
rameters of the model resulting in lighter, smaller
and greener models; and (iii) as new knowledge
becomes available, the knowledge base can be up-
dated independently of the language model.

Our Contributions: We present LM-CORE, a
framework for augmenting language models with
contextually relevant external knowledge. The LM-
CORE framework is summarized in Figure 1 and
consists of a contextual knowledge retriever that
fetches relevant knowledge from an external KB
and passes it to the language model along with the
input text. The language model is then trained with
a modified entity-oriented masked language mod-
eling objective (Section 3). Our proposed solution
is simple, yet highly effective. Experiments on
benchmark knowledge probes show that the pro-

posed approach leads to significant performance
improvements over base language models as well
as state-of-the-art knowledge enhanced variants
of the language models (Section 4). We find that
with access to contextually relevant external knowl-
edge, LM-CORE is less sensitive to the contextual
variations in input text. We also show how LM-
CORE can handle knowledge updates without any
re-training and compare the performance of LM-
CORE on two knowledge-intensive downstream
tasks. Finally, we present an in-depth analysis of
cases where our proposed approach gives incorrect
answers paving the way for further research in this
direction (Section 4.7).

2 Related Work

Augmenting Additional Knowledge in PLMs:
Previous works on augmenting PLMs with addi-
tional knowledge can be grouped into two cate-
gories. One line of work adopts a retrieve and
read framework where the model is trained to re-
trieve relevant information followed by a reading
comprehension step to perform the downstream
task (Lee et al., 2019a; Guu et al., 2020; Agarwal
et al., 2021). While our proposal has similarities
with this line of work in terms of retrieving the
contextual knowledge, there are two major differ-
ences. First, most of these works consider external
knowledge in the form of unstructured text (such as
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Wikipedia documents). However, extracting factual
knowledge from unstructured text is hard and error-
prone due to ambiguities in natural language and
infrequent mentions of entities of interest (Peters
et al., 2019). This issue can be alleviated by using
a structured knowledge base where the knowledge
is represented (mostly) unambiguously – each fact
is a triple in the knowledge base. Further, these
approaches employ explicit supervision during pre-
training to train the model to fetch relevant pas-
sages from the text. This results in systems that are
more complex and resource-hungry than the base
PLMs used and also make it difficult to reuse or
adapt the models to different sources of knowledge.

The second body of work has focused on inject-
ing the factual knowledge directly into the model
parameters by feeding more data to the model
during pre-training (Poerner et al., 2020; Roberts
et al., 2020). A promising direction explored re-
cently is utilizing structured knowledge bases to
augment Transformer-based LMs. ERNIE (Zhang
et al., 2019) and KnowBERT (Peters et al., 2019)
are notable efforts in this direction where the en-
tity information from knowledge bases is explic-
itly linked with the input text during pre-training
yielding entity-enhanced variants of BERT models
with entity representations integrated within the
Transformer layers. An alternative way of train-
ing entity-aware language models is illustrated by
frameworks such as CoLAKE (Sun et al., 2020) and
KEPLER (Wang et al., 2021b) that jointly learn the
language and knowledge representations thereby
producing language models augmented with factual
knowledge and knowledge embeddings enhanced
with textual context. However, these approaches,
by design, will lead to larger and larger models to
store the ever-growing abundant knowledge. Fur-
ther, due to the strong coupling between the knowl-
edge and language signals, updating or adding
knowledge requires re-training of the model.

Examining the knowledge contained in PLMs:
Petroni et al. (2019) posit that while training over
large amounts of input text, PLMs may also be
storing (implicit) relational knowledge in their pa-
rameters and proposed the Language Model Analy-
sis (LAMA) framework to measure the relational
knowledge stored in a PLM. Jiang et al. (2020) ar-
gue that due to the sensitivity of the PLMs on the
input context, such manually created prompts are
sub-optimal and might fail to retrieve facts that the
PLM does know, thus providing only a lower bound

Person 
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anchor text for  
<wikipedia.org/wiki/Bob_Kane>
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  = valid [MASK]
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Figure 2: We create our pre-training corpus from
Wikipedia by masking entity spans detected using an-
chor text of hyperlinks.

estimate of the knowledge contained in it. Subse-
quent work (Shin et al., 2020; Zhong et al., 2021)
has attempted to generate better prompts in order
to tighten this estimate. Poerner et al. (2020) intro-
duced LAMA-UHN (UnHelpfulNames), a much
harder subset of LAMA where the input probes
provide little or no helpful contextual signals from
other tokens in the probe, thus measuring the innate
ability of the PLM to recall information.

3 LM-CORE: Knowledge Retrieval and
Training Framework

Task setting and Overview: Consider a language
model L (such as BERT and RoBERTa) and a
knowledge base K = {thrt =< h, r, t > |h, t ∈
E ; r ∈ R}. Here, we consider the knowledge base
K as a set of triples such that each triple thrt rep-
resents the relationship r between entities h and t.
E is the set of all the entities, and R is the set of
all the relationship types present in the knowledge
base. Given a text input x, the proposed LM-CORE
framework retrieves a set of triples Tx ∈ K such
that the triples in Tx are contextually relevant to x.
The language model is then presented with the orig-
inal input x and the contextually relevant knowl-
edge in the form of Tx and is trained to make predic-
tions using this additional knowledge. We posit that
the model essentially needs to learn relevant seman-
tic associations between natural language input text
and various relation types present in the knowledge
base. Identifying the correct relation types will
help the model leverage the corresponding relevant
facts in order to make an accurate prediction. This
is accomplished via a modified Masked Language
Modeling (MLM) (Devlin et al., 2019) pre-training
objective. Figure 1 summarizes the complete work-
flow of our proposed LM-CORE framework and
we describe the three main components in detail in
the following sub-sections.
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3.1 Entity span masking

Masked Language Modelling is a popular task used
for training PLMs where the objective is to predict
the masked token in the input sequence. In order to
improve model’s grounding to real world entities,
previous works have adopted different strategies
for explicitly masking entity information in the in-
put text by using entity representations obtained by
knowledge base embeddings (Zhang et al., 2019),
using named entity recognizers (NER) and regu-
lar expressions (Guu et al., 2020), and verbaliz-
ing knowledge base triples (Agarwal et al., 2021).
These approaches often result in noisy masks due
to the limitations of underlying rules, and NER
and entity linking systems. To overcome these
limitations, we propose a novel way of creating
high-quality and accurate entity masks by using
Wikipedia as the base corpus for training. Note
that in order to create entity masks, we need to
identify corresponding entity mentions in the in-
put text for which we utilize the human-annotated
links in Wikipedia. The official style guidelines
of Wikipedia require the editors to link mentions
of topics to their corresponding Wikipedia pages.
In Figure 2, the left textbox shows a screenshot of
the Wikipedia article about Batman where vari-
ous other related topics, or concepts, are linked to
their corresponding Wikipedia pages (underlined in
red in the figure, and displayed as blue anchor-text
in Wikipedia). This information provides us with
high-quality human annotation of entity mentions
in the input text. As illustrated in Figure 2, the un-
derlined tokens (such as DC Comics, Bob Kane,
Bill Finger) constitute the set of entity tokens that
could be masked. For each such mask, we can
also obtain the corresponding contextual knowl-
edge from the external knowledge base (illustrated
for Bob Kane in the right text box). By masking
only the entity tokens (instead of randomly sam-
pled words) and providing contextually relevant
knowledge to the model retrieved from the knowl-
edge base (as described in next subsection), we
expect the model to learn to predict the masked
entity tokens by utilizing the external knowledge.

3.2 Contextual Knowledge Retrieval

After preparing the masked input for training, the
second component in our framework fetches con-
textually relevant knowledge to feed to the lan-
guage model.Consider the sentence, “Warren Buf-
fet is the chairman of [MASK]", where the masked

token is Berkshire Hathaway. In the typical MLM
setting, the model only has access to the linguistic
and contextual clues present in the input text to
predict the masked token. However, if contextually
relevant information is available as additional input,
the model can use it to output the correct token.

We consider the problem of finding contextually
relevant facts given the input query text as an infor-
mation retrieval (IR) problem and adopt a retrieve
and re-rank approach that has empirically been
found to perform well in a variety of tasks (Chen
et al., 2017; Wang et al., 2017; Das et al., 2019;
Yang et al., 2019). Recall the example input dis-
cussed above – “Warren Buffett is the chairman
of [MASK]". Intuitively, in this input text, there
are two important signals that the retriever needs
to utilize – entity and relation information. The
entity mention Warren Buffett indicates that we
need to fetch facts related to Warren Buffet from
the knowledge base. Typically, there are numer-
ous facts related to a given entity in the knowledge
base, especially for popular entities such as War-
ren Buffett. Thus, the retriever also needs to utilize
the presence of the word chairman to retrieve facts
(KB triples) representing the management or exec-
utive relation.

Given an input text, our retriever pipeline per-
forms Named Entity Recognition (NER) to iden-
tify named entity mentions in the input text. We
use the NER model from FLAIR (Akbik et al.,
2019) to identify named entity mentions and then
select KB entities having maximum overlap with
the mention-span of the identified entities. For
instance, if the input query is “Buffett was born
in [MASK]", all of the entities containing Buf-
fett - Warren_Buffett, Howard_Warren_Buffett,
Howard_Graham_Buffett, Volcano_(Jimmy_
Buffett_song) etc. are selected, but if the query is
“Warren Buffett was born in [MASK]", only the first
two entities will be chosen). Once these entities are
selected, all the facts from the KB involving these
entities are retrieved (denoted by Tx in Figure 1).

After retrieving the facts involving the entities
mentioned in the input, we next need to rank these
triples based on their relevance to the input. In or-
der to measure the contextual relevance of a given
triple t to the input x, we compute the following
two scores.
Query-Triple similarity: We obtain representa-
tions of the input text x as well as the triple t and
compute the inner product of the representations to
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obtain the similarity score as follows.

sim(x, t) = Emb(x)T Emb(t), t ∈ Tx (1)

Here, Emb(·) is obtained using the Sentence Trans-
former (Reimers and Gurevych, 2019). While it is
straightforward to obtain representations of input x,
sentence transformer can not be applied directly to
KB triples. Application of KB embeddings such as
TransE (Bordes et al., 2013) is also not feasible as
then the representations of the input text and triples
will be in different embedding spaces. To overcome
this, we adopt a simple approach of verbalizing the
knowledge base triples by concatenating the head
entity, relationship and the tail entity, and obtain
the representation of the verbalized triple from the
sentence transformer. For example, the triple (War-
ren_Buffett, hasOccupation, Investor) is verbal-
ized as Warren Buffett has occupation Investor and
is fed as input to the sentence transformer.
Relation-based scoring: A triple is highly rele-
vant for the input text if the triple represents the
same relationship that is being talked about in the
text. To capture this intuition, we embed all the
relation types in the KB in the same embedding
space as triples using the sentence transformer and
compute the similarity between the input text and
the relation type of the triple as follows.

sim(x, r) = Emb(x)T Emb(r), r ∈ R (2)

where R is the set of all relations in the KB. The fi-
nal relevance score for the triple t, relevance(x, t)
is obtained by taking a product of the above two
scores. Based on this final score, we select the top-
k triples that constitute the contextual knowledge
to be fed as input along with x to the LM. We use
k = 8 in this work (See Appendix 4.3 for effect of
varying k). Some illustrative examples of the final
retrieved knowledge base triples are presented in
Appendix A.3.

3.3 Language Model Pre-training with
Contextual Knowledge

With the masked training corpus and the module
to fetch contextually relevant knowledge, we now
train the model to utilize the additional contextual
knowledge to predict the masked token. From the
masked corpus, we select a sentence and a valid
entity span is chosen at random out of all the po-
tential spans in the sentence. We mask this span
to create the input text x. We filter out sentences
starting with pronouns such as he, she, her, and

they as we observed that most of such sentences
do not contain other useful signals to unambigu-
ously predict the masked words. For instance, if
the input example is - “He developed an interest
in investing in his youth, eventually entering the
Wharton School of the University of Pennsylvania"
and Wharton School of the University of Pennsylva-
nia is masked, the remaining words in the sentence
are not providing any informative signals to the
model to predict the masked tokens. Given the
input sentence thus selected, the contextual knowl-
edge retriever fetches the relevant triples from the
knowledge base. The representations of the input
sentence and the retrieved triples are then concate-
nated and fed to the model and the model is trained
to minimize the following MLM loss.

LMLM =
1

M

M∑

m= 1

log p(xindm | x, t1, t2, ..., tk)

(3)
where M is the total number of [MASK] tokens in
x and indm is the index of the mth masked token.

With the additional contextual information avail-
able to the model, we expect the model to learn
the associations between linguistic cues in the in-
put text and relevant relationship information in
the triples. For example, we expect the model to
associate different ways in which someone’s date
of birth could be mentioned in natural language
(such as X was born on, the birthday of X is, and
numerous other linguistic variations) to the KB rela-
tion birthDate and utilize the information from the
corresponding triple. Note that since the types of
relations in the knowledge base are relatively small
in number, and do not change often, we expect the
model to generalize well and be more robust to
linguistic variations.

4 Experiments and Discussions

Data Sources and Pre-processing: We create our
pre-training corpus using the December 20, 2018
snapshot of English Wikipedia that contains about
5.5M documents. Processing all the articles follow-
ing the masking strategy described in Section 3.1
resulted in a total of ∼46.3M sentences with valid
masks, from which we randomly sample sentences
to create input examples.

In order to illustrate the general nature of
LM-CORE, we used two different PLMs as our
LM encoders – BERT-base (uncased) model and
RoBERTa-base (cased) model. We use YAGO and
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Table 1: Mean precision at one (P@1) of various models on LAMA probe. We group all the models based on the
base language model used (BERT or RoBERTa). For LM-CORE, (·, ·) indicates the variant – (b, r corresponds to
BERT and RoBERTa, respectively, and y, w indicate YAGO and Wikidata5M, respectively). Best results in each
column are highlighted in bold and the second best performance is underlined

Complete Google-RE T-REx SQuAD Concept
NetDoB PoB PoD All 1-1 N-1 N-M All

BERT-based models

BERT-base 24.73 1.59 15.46 10.33 9.12 67.94 32.67 23.54 30.83 14.29 15.88
BERT-large 25.44 1.59 15.53 12.16 9.76 74.23 31.30 25.30 31.05 17.61 18.72
ERNIE 22.16 1.42 13.48 4.97 6.62 61.51 28.57 21.93 27.58 13.62 14.83
LM-CORE(b,y) 39.64 64.44 52.71 50.98 56.04 74.37 51.18 34.57 45.83 15.61 14.78
LM-CORE(b,w) 42.83 0.66 37.62 31.11 23.13 81.79 59.86 45.48 55.32 17.28 16.15

RoBERTa-based models

RoBERTa 20.46 1.85 12.98 1.23 5.35 57.49 23.14 21.59 24.21 12.94 18.47
RoBERTa-large 24.24 1.41 12.48 0.46 4.78 70.24 29.08 23.28 28.82 18.88 22.09
KEPLER 19.36 1.47 11.73 3.08 5.43 52.32 21.58 21.41 23.01 9.10 17.25
CoLAKE 23.38 1.79 15.72 10.79 9.43 64.08 29.40 23.54 28.80 8.39 17.17
LM-CORE(r,y) 34.60 46.33 43.47 26.35 38.71 68.21 45.30 30.40 40.60 13.29 17.53
LM-CORE(r,w) 41.96 0.38 33.11 28.20 20.56 70.21 60.30 43.18 54.11 15.73 18.38

Wikidata as two different knowledge bases giving
us four variants of LM-CORE ({bert, roberta} ×
{yago, wikidata}). We use the English Wikipedia
version of YAGO 4 (Suchanek et al., 2007) and pre-
process it to obtain our retrieval corpus consisting
of roughly 17M triples spanning over 4.9M enti-
ties and 131 unique relations. For Wikidata, we
used the Wikidata5M version (Wang et al., 2021b)
that consists of roughly 21M triples covering 821
unique relations and 4.8M entities. Further details
regarding retrieval corpus generation and process-
ing can be found in the Appendix (Section A.2).
For computing triple representations for retrieval
(Section 3.2), we concatenate the subject (head),
relation, and object (tail) of triples and embed them
using the Sentence Transformers (Reimers and
Gurevych, 2019) and obtain the 768-dimensional
embeddings (same as LM encoder dimensions).

4.1 Does External Knowledge Help PLMs in
Knowledge Intensive Tasks?

We now present an analysis of how much, and
if, having access to external knowledge can help
PLMs in knowledge-intensive tasks. A popular way
of assessing a model’s ability to perform at such
tasks is by using benchmark knowledge probes.
We use the LAMA probe (Petroni et al., 2019) that
provides a cloze-style sentence representation of
facts and the model being evaluated is required to
predict the masked words in these sentences (e.g.,
Barack Obama was born in .).

Table 1 reports the performance of various PLMs

on the LAMA probe as measured by Precision at
1 (P@1). The numbers in the Table are grouped
based on the base language model used by different
models. We use ERNIE (Zhang et al., 2019) (based
on BERT and Wikidata), and KEPLER (Wang et al.,
2021b) and CoLAKE (Sun et al., 2020) (based
on RoBERTa) as the representative knowledge en-
hanced language models. Both KEPLER and Co-
LAKE have used Wikidata5M as the knowledge
base. We used author provided code and check-
points for obtaining the reported numbers. For LM-
CORE, we use four variants with different knowl-
edge base and language encoder combinations as
described above.

We observe that our approach of providing ex-
ternal knowledge to the PLMs leads to substan-
tially improved performance over the base lan-
guage models and their SoTA knowledge enhanced
variants. LM-CORE(b,w) achieves P@1 of 42.83%
compared to 25.44% for BERT-large. Likewise,
LM-CORE(r,w) achieves a P@1 of 41.96% signif-
icantly outperforming RoBERTa-large (24.24%).
We also report the numbers on the four different
subsets of LAMA revealing interesting insights.
For all the models considered, we note that the
performance on T-REx subset is higher than the
Google-RE subset. We attribute this to the nature
of knowledge required for probes in the four sub-
sets. Note especially the column for Date of Birth
(DoB) in the Table. All the models, except for LM-
CORE(b,y) and LM-CORE(r,y) perform extremely
poorly. This is because the Wikidata5M KB does
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Table 2: P@1 for different models on LAMA-UHN.

LAMA LAMA
UHN

Percentage
Change

BERT-based models

BERT-base 24.73 18.72 -24.31
BERT-large 25.44 19.92 -21.67
ERNIE 22.16 15.81 -28.66
LM-CORE(b,y) 39.64 41.33 +4.26
LM-CORE(b,w) 42.83 45.50 +6.23

RoBERTa-based models

RoBERTa-base 20.46 13.66 -33.24
RoBERTa-large 24.24 17.99 -25.78
KEPLER 19.36 12.46 -35.64
CoLAKE 23.38 17.16 -13.74
LM-CORE(r,y) 34.60 34.25 -1.01
LM-CORE(r,w) 41.96 44.75 +6.65

not have date entity type and hence, the poor per-
formance of models using Wikidata. We also note
that on the SQuAD and Concept Net subsets, the
knowledge enhanced models do not offer signifi-
cant improvements over the base language models.
While Google-RE and T-REx focus more on factual
world knowledge (present in abundance in YAGO
and Wikidata), SQuAD and ConceptNet concen-
trate more on commonsense knowledge (limited in
YAGO and Wikidata). This is a major focus of our
continuing work on enhancing the external knowl-
edge with commonsense knowledge bases such as
ConceptNet (Speer et al., 2017) Atomic (Sap et al.,
2019).

4.2 Sensitivity to Contextual Signals in Input

PLMs are often sensitive to the linguistic variations
in the input and are overly reliant on the surface
form of entity names for making its predictions Po-
erner et al. (2020). For example, BERT can predict
that a person with an Italian-sounding name was
born in Italy even if this is factually incorrect. In or-
der to evaluate the sensitivity and robustness of dif-
ferent models, we report the P@1 numbers for the
LAMA-UHN (UnHelpfulNames) probing bench-
mark (Table 2) – a much harder subset of LAMA
where input probes with helpful entity names are
removed and the PLM has little or no helpful con-
textual signals from other tokens in the probe. We
observe that the LM-CORE variants significantly
outperform the base language models and their
knowledge enhanced variants. Further, note that
while all the baseline models suffer a significant
fall in performance (expected due to the hardness
of LAMA-UHN), the drop in performance of LM-
CORE variants is much less. This indicates that

0 2 4 6 8 10

# Input Triples (K)

10

20

30

40

50

60

P
r
e
c
i
s
i
o
n
 
@
 
1

T-REx(b,y)

Google-RE(b,y)

Google-RE(r,w)

T-REx(r,w)

Figure 3: Effect of k on performance of different mod-
els.

having access to relevant external knowledge helps
reduce the dependence on linguistic signals and
results in the robust outperformance of LM-CORE
variants.

4.3 Effect of Varying Number of Input Triples
to LM-CORE

We analyze the effect of varying the number of can-
didates (k) during retrieval in Figure 3. We discuss
with respect to Google-RE and T-REx subsets as
our factual knowledge triples are most relevant for
answering queries in these subsets (in comparison
to commonsense queries in ConceptNet).

We plot the Precision@1 (P@1) against increas-
ing k values from 1 to 10 for LM-CORE(b,y) and
LM-CORE(r,w) variants. We do not observe any
consistent optimal k value across variants and data
subsets. To add, there is no significant difference
between P@1 values as k varies from 4 to 10.
Hence, in order to maximize our recall while keep-
ing the computational expense in mind, we select
k = 8 for our experiments.

4.4 Role of LM-CORE Pre-training and
Retrieved Knowledge

We now study the role LM-CORE pre-training
plays in helping the model access and utilize the re-
trieved knowledge and ensure that the model does
not just rely on the knowledge stored in its param-
eters. We also study the effect of augmenting the
base LMs with knowledge retrieved by LM-CORE.
In addition to providing an insight into the qual-
ity of the knowledge retrieved by LM-CORE, this
will also help us better understand the ability of
LM-CORE to utilize the retrieved knowledge.

We consider the following four variants on the
LAMA probe (Table 3):

1. RoBERTa-base
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Table 3: Ablation study analyzing the effectiveness
of LM-CORE pre-training and contextually retrieved
knowledge (Precision@1 values).

All Google
RE T-REx SQuAD Concept

Net

RoBERTa
(base) 20.46 5.35 24.21 12.94 18.47

RoBERTa-base
+LM-CORE triples 30.06 9.79 38.71 7.69 16.26

LM-CORE(r,w) +
random triples 19.51 9.05 22.74 13.99 16.92

LM-CORE(r,w) 41.69 20.56 54.11 15.73 18.38

2. RoBERTa-base + triples retrieved by LM-
CORE’s Contextual Knowledge Retriever

3. LM-CORE(r,w) + random triples

4. LM-CORE(r,w)

We observe that LM-CORE(r,w)’s performance
(41.69 P@1) significantly exceeds RoBERTa-
base’s performance using the same triples in input
(30.06 P@1) , demonstrating that our training pro-
cedure equips the model with the capability of iden-
tifying and using relevant external knowledge effec-
tively. There is a large drop in performance (from
41.69 P@1 to 19.51 P@1) when LM-CORE(r,w) is
provided with random triples in input. This shows
that the model exclusively accesses external knowl-
edge to answer queries correctly. While the perfor-
mance drops, it is important to note that the P@1
is similar to RoBERTa-base (20.46 P@1), high-
lighting that our training procedure does not lead to
catastrophic forgetting and the model is able to rely
on the knowledge stored in its parameters when se-
mantically relevant triples are not provided in the
input. Finally, although RoBERTa-base when aug-
mented with contextually relevant triples does not
perform competitively with LM-CORE, it demon-
strates considerable improvement over the base
RoBERTa model. This shows that high-quality
relevant external knowledge has the potential to
improve factual prediction, further reinforcing our
motivation to train models to efficiently retrieve
and use this knowledge.

4.5 Downstream Tasks

We consider two downstream tasks to study the
effectiveness of LM-CORE for different NLP ap-
plications. We take Zero-Shot Relation Extrac-
tion (ZSRE) (Levy et al., 2017) and open-domain
question answering over Web Questions (WQ) (Be-
rant et al., 2013) dataset as the representative
knowledge-intensive tasks. Tables 4 and 5 re-

port the performance of LM-CORE and various
other baselines for the two tasks, respectively. We
use the LM-CORE(b,w) variant for these experi-
ments as most baselines use BERT as the LM and
Wikipedia as the knowledge base. For the ZSRE
task, we use the data splits and evaluation systems
provided as part of the KILT benchmark (Petroni
et al., 2021). We find that for the ZSRE task, LM-
CORE achieves a significantly higher F-1 score
(74.80) compared to the second-best RAG model
(49.95). Also, note that the online evaluator for the
task considers exact string match (including casing,
punctuations, etc.) for computing accuracy num-
bers but not for computing other metrics. Hence,
the reported accuracy number for LM-CORE rep-
resent a lower bound as we don’t have access to the
same pre-processing pipeline to process its output.
For the WQ dataset, we find that LM-CORE out-
performs BERT with BM25 and neural retrievers,
and the DrQA system. We observe that LM-CORE
is outperformed by ORQA, designed explicitly for
this task, and RAG (a retrieval augmented gener-
ative model). However, do note that all the mod-
els except LM-CORE have access to much larger
knowledge source (complete Wikipedia corpus. ≈
2B words), whereas LM-CORE only has access to
the KB triples (21M triples, ≈ 140M words). As
we show in the following subsection, with access
to additional external knowledge, the performance
of LM-CORE can improve significantly.

Table 4: F1 and Accuracy on Zero Shot RE. ∗ The
accuracy for LM-CORE is the lower-bound number
as the online evaluator considers exact string match to
compute accuracy.

#params F1 Accuracy

BERT+DPR (Karpukhin et al., 2020) 330M 37.28 6.93
T5 (base) 220M 13.52 9.02
BART (large) 406M 12.21 9.14
BART+DPR 626M 34.47 30.43
RAG (Lewis et al., 2020) 626M 49.95 44.74

LM-CORE(b,w) 110M 74.80 14.24∗

4.6 Handling Knowledge Updates

Once PLMs have been trained, it is expensive to
retrain them with new and updated knowledge. LM-
CORE, on the other hand, can easily access updated
knowledge as it is external to the model. Instead of
storing all the KB facts in the PLM, LM-CORE es-
sentially learns semantically relevant associations
between the input text and KB relations and can
easily query for the relevant knowledge by using
the learned relationship associations. We illustrate
this ability to handle dynamic knowledge by in-
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Table 5: Accuracy on Web Questions. BM25, Neur. Re-
triever, DRQA and LM-CORE perform static retrieval.

Accuracy

BM25 + BERT 17.7
Neur. Retriever + BERT 7.3
DrQA (Chen et al., 2017) 20.7
LM-CORE (b,w) 21.9

ORQA (Lee et al., 2019b) 36.4
RAG (Lewis et al., 2020) 45.5

troducing new triples in the KB and verifying if
LM-CORE is able to leverage this new information
to correct its earlier predictions. We consider the
LM-CORE(b,y) variant for this experiment. We
randomly sample 100 instances from the LAMA
probe where the model failed and manually analyze
these instances to identify the cases where the cor-
responding fact was not present in the YAGO KB.
There were a total of of 41 such instances and we
manually added the correct facts needed to answer
the corresponding questions in YAGO. We then
presented the 41 inputs again to the model with the
updated KB. This time, the model used this newly
added knowledge and was able to correct its predic-
tion without any re-training for 36 out of 41 cases
(87.8%). As discussed in the following sub-section
(4.7), a majority of errors made by LM-CORE are
due to missing facts in the KB and we expect that
most of such errors can be corrected by having ac-
cess to a larger, more comprehensive Knowledge
Base.

4.7 Discussions

We now present some representative examples to
illustrate the successes and failures of LM-CORE.
Consider a test probe from the Google-RE sub-
set of LAMA – Phil Mogg is a member of .
Here, the correct output token is UFO, the band
and BERT model incorrectly predicts parliament as
the output token. This highlights the sensitivity of
PLMs on context; BERT’s prediction seems to be
derived from its memorization of the frequently en-
countered phrase member of parliament during pre-
training. We argue that the contextual knowledge
retrieved by LM-CORE which includes the rele-
vant fact <Phil Mogg; member of; UFO (band)>
has helped the model to produce the correct output.
We present more such successful examples in the
Appendix (Tables 10 and 11).

Next, we analyzed the cases where the proposed
framework produced incorrect output and observed
three major reasons for erros – (i) the required
knowledge was not present in the knowledge base;

(ii) the required knowledge was not retrieved de-
spite being present in the knowledge base; and (iii)
the system made errors after retrieving the rele-
vant knowledge. The first problem cause could
be addressed by enhancing the knowledge base as
shown in Section 4.6. The other two causes of
failure highlight the scope of improvement in our
retrieval module as well as pre-training module,
where further training could help the model make
better use of the retrieved knowledge. Some rep-
resentative examples of these different cases are
presented in the Appendix (Table 12). Finally, we
noticed some errors that could be attributed to the
characteristics of the LAMA probe. Specifically,
there are input probes that refer to entities without
providing any additional context for disambigua-
tion. For example, the sentence “James Johnson
was born in " has no clues to determine whether
the prompt is referring to the basketball player, Vir-
ginia congressman, or the Governor of Georgia
with this name. We also noticed certain probes
where there are multiple correct completions and
the benchmark considers only one of these as the
correct answer. For example, “Michelangelo is a

by profession" can be correctly completed by
poet, painter or architect, but the evaluation con-
siders only poet as the correct answer. We also
noticed some input examples with highly unam-
biguous language. For example, “X died in ",
can refer to either X’s place of death or date of
death but only the former is accepted as the cor-
rect answer. Lastly, there are cases where slight
(and correct) variations of the expected answer are
evaluated as incorrect by the probe. For example,
for the prompt “Harashima is citizen." Japan
is provided as the correct answer while the predic-
tion made by LM-CORE (Japanese) is considered
incorrect.

5 Conclusion

We presented LM-CORE, a framework to train lan-
guage models with contextually relevant external
knowledge. We show that having access to exter-
nal knowledge leads to significant and robust out-
performance over base language models and their
knowledge enhanced versions on knowledge prob-
ing and two downstream tasks. We also showed
how LM-CORE can handle knowledge updates and
presented a thorough error analysis that helped us
identify possible directions of future work.
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Appendix

A LM-CORE Training Details

We used the Hugging Face Transformer2 mod-
els BERT and RoBERTa as base models for
LM-CORE pre-training. We use the BASE
(12-layer, 768-hidden, 12-heads) size models
and initialize from bert-base-uncased and
roberta.base parameters, respectively. This
is consistent with the initialization in Peters et al.
(2019); Zhang et al. (2019); Wang et al. (2021b)
and is a common practice to save up on pre-training
time.

We used the Adam (Kingma and Ba, 2015) opti-
mizer and a learning rate of 3e-5 across all settings.
We could not perform a lot of hyperparameter tun-
ing owing to the computational requirements of
the task. Pre-training was done using 8 Nvidia
A100 GPUs with a batch size of 512 using gradient
accumulation. The masked LM loss continued to
decrease at the end of pre-training, suggesting fur-
ther improvement in performance can be expected.
The pre-trained checkpoints for all four variants of
LM-CORE can be found here.

A.1 Pre-Training corpus
We use the English Wikipedia (December 20,
2018) snapshot3 to create our pre-training cor-
pus and WikiExtractor4 to process the dumps.
This Wikipedia version contains about 5.5M doc-
uments. We retain the hyperlinks while extracting
Wikipedia articles as we use them for creating en-
tity masks (Section 3.1). Following the entity mask-
ing strategy described in Section 3.1, we obtain our
pre-training corpus which contains ∼46.3M sen-
tences in total.

During pre-training the base LMs, we sample
sentences containing valid masks. The pre-training
corpus is maintained consistent across all LM-
CORE variants.

A.2 Retrieval corpus
We use two popular knowledge bases (KBs) in
LM-CORE - YAGO 4 (Suchanek et al., 2007) and
Wikidata5M (Wang et al., 2021b). The statistics of
the KBs – number of facts, entities and relations

2https://github.com/huggingface/
transformers

3https://archive.org/
download/enwiki-20181220/
enwiki-20181220-pages-articles.xml.bz2

4https://github.com/attardi/
wikiextractor

can be found in Table 6. We describe the prepro-
cessing steps followed to obtain the respective final
retrieval corpora in the following subsections.

A.2.1 YAGO
YAGO 45 is in RDFS format. YAGO facts are
derived from Wikidata, however, all the entities are
arranged in a taxonomy mapped to schema.org.

We pre-process YAGO to remove triples involv-
ing relationships such as image, logo and url that
point to meta-data such as images and other files.
We also filter out triples that point to RDF literals
or Wikidata URLs.

A.2.2 Wikidata5M
We use the Wikidata5M subset of Wikidata as made
available by Wang et al. (2021b) 6. This subset of
Wikidata is aligned with Wikipedia such that each
entity in Wikidata5M has a corresponding entry in
Wikipedia. We used the raw graph as provided in
the dataset, the statistics of which are reported in
Table 6.

Table 6: Statistics of the knowledge bases used for re-
trieval in terms of number of triples, entities and rela-
tions

Facts Entities Relations

Yago 17,421,942 4,927,897 131
Wikidata5M 21,285,880 4,797,808 821

A.3 Example Retrieved Triples
We provide a closer look into our pre-training ap-
proach by showing examples of masked input sen-
tences and the retrieved triple candidates from the
knowledge base (Table 7). We observe that the
facts retrieved are highly relevant for predicting the
masked entities in the input context.

B Additional Experiments

B.1 How LM-CORE Compares with Other
Retrieval Paradigms

Table 8 also reports results of REALM (Guu
et al., 2020) – a retrieval-based language model
that retrieves relevant documents from a text cor-
pus during pre-training. We observe that LM-
CORE outperforms REALM on the ConceptNet,

5https://yago-knowledge.org/downloads/
yago-4

6https://deepgraphlearning.github.io/
project/wikidata5m
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Input Masked Token Candidates (correct fact in bold)

Henri Jules Louis Marie Rendu
(24 July 1844 – 16 April 1902) was
a French physician born in [MASK].

Paris
(Henri Jules Louis Marie Rendu; birth date; 1844-07-24)
(Henri Jules Louis Marie Rendu; birth place; Paris)
(Henri Jules Louis Marie Rendu; death date; 1902-04-16)
(Henri Jules Louis Marie Rendu; nationalit;y France)
(Henri Jules Louis Marie Rendu; given name; Henri)

Weisenborn attended the [MASK].
University
of Chicago

(Gordon Weisenborn; alumni of; University of Chicago)
(Clara Weisenborn; member of; Republican Party (United States)
(Günther Weisenborn; nationality; Germany)
(Günther Weisenborn; death place; West Berlin)
(Clara Weisenborn; nationality; United States)

Dehorokkhi (English: Bodyguard)
is a Bangladeshi [MASK] directed
by Iftakar Chowdhury.

action film
(Dehorokkhi; director; Iftakar Chowdhury)
(Dehorokkhi; in language; Bengali language)
(Dehorokkhi; genre; Action film)
(Bangladeshi Idol; in language; Bengali language)
(British Bangladeshi Who’s Who; in language; English language)

Palaemon macrodactylus is
a [MASK] of shrimp of the
family Palaemonidae.

species
(Palaemon macrodactylus; parent taxon Palaemon (genus))
(Palaemon macrodactylus; parent taxon; Palaemon (genus))
(Palaemon macrodactylus; taxonomic rank; Species)
(Palaemonidae; taxonomic rank; Family (biology))
(Palaemonidae; parent taxon; Palaemonoidea)

Table 7: Examples of masked input sentences (from Wikipedia) and top-5 retrieved candidates during pre-training.

DoB (Google-RE), and 1-1 (T-REx) subsets, while
REALM outperforms the proposed solution in
other subsets of the LAMA probe. We specifically
highlight an absolute 15 points improvement on
the date-of-birth relation despite REALM
using explicit date masks while training whereas
our training corpus only has entity masks. This
indicates that our model can use the the contextual
knowledge provided by the retriever module even
though it is not explicitly shown such knowledge
during training.

Note that while REALM is similar to our pro-
posed solution as far as the idea of retrieving rel-
evant knowledge is concerned, the key difference
in the two approaches lies in the source of knowl-
edge being used. REALM relies on an unstructured
text corpus (Wikipedia) as the source of knowledge
and employs a computationally complex retrieve
and read paradigm requiring additional training
of the knowledge retriever model. Our proposed
solution, on the other hand, uses structured knowl-
edge which offers the advantage of being (almost)
unambiguous and less resource-hungry compared
to unstructured text. We present the resource re-
quirements of our approach and REALM in Table
9. Note that the size of the external knowledge
(in number of words) used by REALM is an order
of magnitude greater, and requires three times the
number of parameters compared to our model. Fur-

thermore, REALM was trained for 200K steps with
a batch size of 512 on an 80 TPU cluster, whereas
our proposed solution is much more efficient being
trained for 1K steps with a batch size of 512 on a
machine with 8 Nvidia A100 GPUs. This compu-
tational efficiency of our proposed solution allows
us to continue further work on improving our per-
formance by enhancing the structured knowledge
base and bridge the performance gap with more
complex and computationally expensive models
such as REALM.

C LAMA Evaluation

We use the official LAMA data code7 for evaluat-
ing P@1 numbers in Table 1. All the BERT-based
models are evaluated using this repository. The
LAMA code provides functionality for evaluating
RoBERTa models trained in the fairseq framework.
Hence, we evaluate RoBERTa-base, RoBERTa-
large and KEPLER (Wang et al., 2021b) using this
code. The KEPLER repo also points to this code
for evaluation. CoLAKE (Sun et al., 2020), has
adapted the official code8 to allow huggingface
transformer checkpoints as input, and hence this
code is used for CoLAKE, LM-CORE(r,y) and
LM-CORE(r,w) evaluation. We ensure the model

7https://github.com/facebookresearch/
LAMA

8https://github.com/txsun1997/CoLAKE
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Table 8: Precision at one (P@1) on LAMA probe. We consider only LM-CORE(b,y) and LM-CORE(b,w) as
REALM is trained on BERT. Best results in each column are highlighted in bold and the second best performance is
underlined.

Google-RE T-REx SQuAD Concept
NetDoB PoB PoD All 1-1 N-1 N-M All

BERT-base 1.59 15.46 10.33 9.12 67.94 32.67 23.54 30.83 14.29 15.88
BERT-large 1.59 15.53 12.16 9.76 74.23 31.30 25.30 31.05 17.61 18.72
LM-CORE(b,y) 64.44 52.71 50.98 56.04 74.37 51.18 34.57 45.83 15.61 14.78
LM-CORE(b,w) 0.66 37.62 31.11 23.13 81.79 59.86 45.48 55.32 17.28 16.15
REALM 49.06 79.56 64.13 67.36 55.81 69.54 66.98 68.18 27.96 4.78

Model no. of Retrieval Resources
params corpus size used

LM-CORE(b,y) 110M 17M KB triples 8 GPUs
(∼100M words)

LM-CORE(b,w) 110M 21M KB triples 8 GPUs
(∼140M words)

REALM 330M 5.5M documents 80 TPUs
(∼2B words)

Table 9: Resource requirements of LM-CORE and
REALM. REALM requires additional ICT pre-training
over all Wikipedia documents for initialization.

vocabularies and data is consistent across evalua-
tion. We have used author provided/recommended
code and publicly available checkpoints from the
official code repositories for all baselines.

C.1 LAMA: Qualitative Analysis

Table 10 and 11 show examples spanning different
relationships in LAMA where LM-CORE(b,y) and
LM-CORE(r,w) are able to make correct predic-
tions. We also compare the predictions with BERT-
base and RoBERTa-base respectively and highlight
how these PLMs struggle to make knowledgeable
predictions.

C.2 LAMA: Error Analysis

We present various failure cases for LM-CORE in
Table 12. These are representative of the type of
errors we encountered, however, we observed that
majority of the errors resulted due to correct facts
missing from the KB.

C.3 Complete LAMA-UHN results

The complete LAMA-UHN results over all subsets
of Google-RE and T-REx can be found in Table 13.

D Downstream Evaluation

We discuss the experimental setup and hyperparam-
eter settings for our downstream tasks.

D.1 Zero Shot RE
We consider the open domain version of Zero Short
RE (Levy et al., 2017) from Petroni et al. (2021).
The dataset is split into three disjoint sets – train
(147,909 samples, 84 relations), dev (3,724 sam-
ples, 12 relations) and test (4,966 samples, 24 re-
lations). The systems are evaluated on relations
never seen during training.

We fine tune our model for 2 epochs with a batch
size of 96. We use the Adam (Kingma and Ba,
2015) optimizer and a learning rate of 3e-5. We
performed multiple trials by tuning the number of
epochs in {1, 2, 5}.

D.2 Web Questions
Web Questions (Berant et al., 2013) was created
using questions that were sampled from the Google
Suggest API. We used the same splits as Lee et al.
(2019b) with training, dev and test sets containing
3417, 361 and 2032 samples respectively.

We fine tuned our model for 20 epochs – we
experimented with number of epochs in {10, 20,
30, 50}. We use the Adam (Kingma and Ba, 2015)
optimizer and a learning rate of 3e-5.

E Risks Statement

This work considers training of large language mod-
els using large textual corpora as well as structured
knowledge bases. The model learns the nuances
of the language and correlations between differ-
ent real-world entities based on the data that is
being used for training the model. Hence, there is
a chance that the biases and noise in the training
data will creep into the model parameters as well
that can lead to a biased model behavior. We need
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to be careful in deploying the model and extrapo-
lating the output of the model in applications such
as search, conversational systems and recommen-
dation systems where model’s inherent biases can
lead to catastrophic impacts on the user.
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Relation Input query LM-CORE(b,y) BERT-base Candidatesprediction prediction

G
oo

gl
e-

R
E

birth-place Stanley Corrsin was born
in .

Philadelphia London (Stanley Corrsin birth date 1920-04-03)
(Stanley Corrsin nationality United States)
(Stanley Corrsin birth place Philadelphia)
(Stanley Corrsin given name Stanley (given name))
(Stanley Corrsin death date 1986-06-02)
(Stanley Corrsin has occupation Physicist)
(Stanley Corrsin alumni of University of Pennsylvania)
(Stanley Corrsin member of
American Academy of Arts and Sciences)

birth-date Tom Coppola (born ). 1945 1975 (Tom Coppola birth date 1945-06-06)
(Tom Coppola given name Tom (given name))
(Tom Coppola nationality United States)
(Tom Coppola family name Coppola (surname))
(Tom Coppola alumni of USC Thornton School of Music)
(Christopher Coppola birth date 1962-01-25)
(Anton Coppola nationality United States)
(Chris Coppola birth date 1962-01-25)

death-place Aglaja Orgeni died
in .

Vienna Bucharest (Aglaja Orgeni death date 1926-03-15)
(Aglaja Orgeni death place Vienna)
(Aglaja Orgeni birth date 1841-12-17)
(Aglaja Orgeni birth place Rimavská Sobota)
(Aglaja Orgeni nationality Austria)
(Aglaja Orgeni nationality Hungary)
(Aglaja Orgeni has occupation Opera singer)
(Aglaja Orgeni death place Vienna)

T-
R

E
x

P106 Cigoli is a
by profession.

architect lawyer (Cigoli has occupation Architect)
(Cigoli nationality Italy)
(Cino Cinelli has occupation Businessperson)
(Francesco Cirio has occupation Businessperson)
(Cigoli birth place Cigoli, San Miniato)
(Emilio Cigoli has occupation Stage actor)
(Francesco Cigalini has occupation Mathematician)
(Ciputra has occupation Businessperson)

P463 Phil Mogg is a
member of .

UFO parliament (Phil Mogg member of UFO (band))
(Phil Mogg nationality United Kingdom)
(Phil Mogg birth date 1948-04-15)
(Phil Mogg birth place London)
(Mo Mozzali member of Minneapolis Millers)
(John Mogg, Baron Mogg nationality United Kingdom)
(Jamie Moyer member of Colorado Rockies)
(Jamie Moyer member of Philadelphia Phillies)

P407 Summerfolk was written
in .

russian english (Summerland (novel) in language English language)
(Summerfolk in language Russian language)
(The World That Summer genre Neofolk)
(Summerfolk author Maxim Gorky)
(Summer (novel) in language English language)
(Summertime (novel) in language English language)
(A Summer Tale date published 2000)
(Summerteeth in language English language )

P1303 Nigel Pulsford plays
.

guitar sgt (Nigel Pulsford has occupation Guitarist)
(Nigel Pulsford given name Nigel)
(Nigel Pulsford birth date 1963-04-11)
(Nigel Pulsford nationality United Kingdom)
(Nigel Pulsford nationality Wales)
(Nigel Pulsford birth place Newport, Wales)
(William Pulsford nationality
United Kingdom of Great Britain and Ireland)
(Reginald Purdell has occupation Actor)

Table 10: Illustrative examples of cases where LM-CORE(b,y) model successfully output the correct completions
for various probes in LAMA. Candidates containing correct fact are in bold.
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Relation Input query LM-CORE(r,w) RoBERTa-base Candidatesprediction prediction

G
oo

gl
e-

R
E

birth-place Sebastiano Maffettone
was born in .

Naples Rome (Sebastiano Maffettone place of birth Naples)
(Sebastiano Mazzoni place of birth Florence)
(Sebastiano Mocenigo place of birth Venice)
(Sebastiano Martinelli place of birth Italy)
(Sebastiano Baggio place of birth Italy)
(Stanley Corrsin has occupation Physicist)
(Sebastiano Vassalli place of birth Genoa)
(Sebastiano Poma place of birth Parma)

T-
R

E
x

P413 Rivaldo plays in
position.

midfielder the (Rivaldo position played on team forward)
(Rivaldo position played on team midfielder)
(Rivaldo Gonzalez position played on team midfielder)
(Rivaldo Coetzee position played on team defender)
(Rivaldo Vítor Mosca Ferreira Júnior position played on team forward)
(Rivaldo member of sports team brazil national football team)
(Rivaldo member of sports team brazil national under-20 football team)
(Rivaldo member of sports team São Paulo fc)

P176 Amiibo is
produced by .

Nintendo Samsung (amiibo manufacturer nintendo)
(amiibo tap: nintendo’s greatest bits publisher nintendo)
(animal crossing: amiibo festival publisher nintendo)
(amiibo tap: nintendo’s greatest bits platform wii u)
(animal crossing: amiibo festival developer nintendo entertainment
planning & development)
(animal crossing: amiibo festival platform wii u)
(amiibo instance of internet protocol)
(animal crossing: amiibo festival genre party game)

P138 Uraninite is named
after .

uranium the (uraninite named after uranium)
(uraniborg named after urania)
(uranopilite named after compound)
(uranopilite named after uranium)
(uraniinae instance of taxon)
(urania parent taxon uraniinae)
(uranocircite-ii named after uranium)
(30 urania named after urania

P159 The headquarter of
Stelco is in .

Hamilton Madrid (Stelco headquarters location Hamilton)
(Stelco lake erie works located in the administrative
territorial entity Ontario)
(Stelco owned by U.S. steel)
(Stelco lake erie works country Canada)
(Stelco industry ferrous metallurgy)
(Stelco instance of business)
(Stec, inc. headquarters location California
(Stekey located in the administrative territorial entity louisiana)

P37 The official language
of Virrat is .

Finnish English (Virrat official language Finnish)
(Virrat country Finland)
(Virrat located in the administrative territorial entity Pirkanmaa)
(Virrat located in time zone utc+2)
(Virrat located in time zone utc+03:00)
(Virrat instance of municipality of Finland)
(Virrat instance of town)
(Virrat instance of city)

Table 11: Illustrative examples of cases where LM-CORE(r,w) model successfully output the correct completions
for various probes in LAMA. Candidates containing correct fact are in bold.
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Input
Query

Expected
Answer

Model
Output

Retrieved
Candidates Comments

Hans Gefors was
born in .

Stockholm Hamburg (Hans Raj Hans birth date 1953-11-30) Corresponding fact not
present in KB. We
speculate that the
candidate in bold led the
model to predict
Hamburg. BERT
predicted Oslo as the
answer.

(Hans Raj Hans given name Hans (name))
(Hans Raj Hans nationality India)
(Hans Raj Hans has occupation Politician)
(Hans Raj Hans member of Indian National Congress)
(Claus Gerson birth place Hamburg)
(Hans Geister birth date 1928-09-28)
(Hans Gericke nationality Germany)

Victor Salvi plays
.

harp quarterback (Victor Salvi given name Victor (name))

Corresponding fact not
present in KB

(Victor Salvi nationality United States)
(Victor Salvi death place Milan)
(Victor Salvi death date 2015-05-10)
(Victor Salvi birth place Chicago)
(Victor Salvi birth date 1920-03-04)
(Joan Lui actor Francesco Salvi)
(Victor Salvi birth date 1920-03-04)

CBeebies is owned
by .

BBC Microsoft (CBeebies founding date 2002)

Corresponding fact not
present in KB.

(Gigglebiz creator CBeebies)
(CBEF contained in place Ontario)
(CBEF location Ontario)
(Bambi production company The Walt Disney Company)
(CBE Software founding date 2006)
(Paddington Bear (TV series) production company ITV Central)
(CBS Interactive parent organization CBS Corporation)

Ivan Petch was
born in .

Concord Sydney (Ivan Petch birth date 1939-03-01)

Correct fact is retrieved.
However, the model is
still not able to predict
correct output.

(Ivan Petch birth place Concord, New South Wales)
(Ivan Petch family name Petch)
(Ivan Petch given name Ivan (name))
(Ivan Petch nationality Australia)
(Ivan Petch has occupation Politician)
(Ivan Petch has occupation Electrical engineer)
(Ivan Petch alumni of Fort Street High School)

Scientist was
born in .

Kingston London (Scientist (musician) birth date 1960-04-18)

Ambiguous query, leads
to poor retrieval results.

(Thomas Young (scientist) has occupation Physicist)
(I Am a Scientist date published 1994)
(Thomas Prince (scientist) has occupation Physicist)
(Bambi production company The Walt Disney Company)
(Allen Taylor (scientist) nationality United States)
(Lawrence Roberts (scientist) nationality United States)
(David Thomas (Canadian scientist) has occupation Biochemist)

Moldova shares
border with .

Ukraine Romania (Moldova shares border with Ukraine)

Multiple answers correct,
however, LAMA
considers only one.

(Moldova shares border with Romania)
(Moldova shares border with aa)
(Moldova shares border with Jabara)
(Moldova Nouã shares border with Bela Crkva)
(Moldova contains administrative territorial entity Transnistria)
(Moldova diplomatic relation Russia)
(Moldova diplomatic relation European Union)

Table 12: Illustrative examples of cases where the proposed solution produced incorrect completions.
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Table 13: Mean precision at one (P@1) of various models on LAMA-UHN probe. Best results are highlighted in
bold and the second best performance is underlined

Complete Google-RE T-REx

DoB PoB PoD All 1-1 N-1 N-M All

BERT-based models

BERT-base 18.72 1.59 6.98 3.98 4.18 62.86 21.99 17.32 22.16
BERT-large 19.92 1.59 7.71 5.66 49.86 70.13 22.35 19.62 23.62
ERNIE 15.81 1.42 6.57 1.38 3.12 55.68 17.90 15.40 18.76
LM-CORE(b,y) 41.33 64.44 46.80 46.02 52.42 71.04 44.42 29.11 39.75
LM-CORE(b,w) 45.50 0.66 30.93 23.39 18.33 80.05 55.16 41.17 50.92

RoBERTa-based models

RoBERTa 13.66 1.85 4.18 0.55 2.19 53.36 13.99 15.80 16.62
RoBERTa-large 17.99 1.41 5.68 0.36 2.48 67.27 20.47 17.86 21.74
KEPLER 12.46 1.47 4.88 0.91 2.42 48.70 12.60 14.44 15.08
CoLAKE 17.16 1.79 6.89 5.83 4.84 59.84 18.85 17.61 20.37
LM-CORE(r,y) 34.25 46.33 35.66 19.31 33.77 63.83 37.74 25.20 34.12
LM-CORE(r,w) 44.75 0.38 24.80 20.04 15.07 67.53 55.72 39.77 50.07
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