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Abstract

Recent work has shown that either (1) in-
creasing the input length or (2) increasing
model size can improve the performance of
Transformer-based neural models. In this pa-
per, we present LongT5, a new model that
explores the effects of scaling both the in-
put length and model size at the same time.
Specifically, we integrate attention ideas from
long-input transformers (ETC), and adopt pre-
training strategies from summarization pre-
training (PEGASUS) into the scalable T5 ar-
chitecture. The result is a new attention mech-
anism we call Transient Global (TGlobal),
which mimics ETC’s local/global attention
mechanism, but without requiring additional
side-inputs. We are able to achieve state-of-
the-art results on several summarization and
question answering tasks, as well as outper-
form the original T5 models on these tasks.
We have open sourced our architecture and
training code, as well as our pre-trained model
checkpoints.

1 Introduction

Transformer models such as BERT (Devlin et al.,
2019), and other variants (Liu et al., 2019; Radford
et al., 2019; Raffel et al., 2019a; Lewis et al., 2020)
have achieved state-of-the-art results on many chal-
lenging NLP tasks. Moreover, recent work in long-
input transformers (Ainslie et al., 2020; Zaheer
et al., 2020b; Beltagy et al., 2020; Tay et al., 2021)
has shown that increasing the input length a Trans-
former is able to process results in further perfor-
mance gains. Additionally, it is also known that
increasing model size also leads to performance
gains in many tasks (Kaplan et al., 2020).

In this paper, we present a new model, called
LongT5, with which we explore the effects of scal-
ing both the input length and model size at the
same time. To achieve this, we integrate long-input
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Figure 1: The average ROUGE score ((R-1 + R-2 +
R-L)/3) of LongT5 and baseline models on arXiv and
PubMed summarization tasks (Cohan et al., 2018) with
different input length (x axis). Baseline models: HAT-
BART (Rohde et al., 2021), BigBird-PEGASUS (Za-
heer et al., 2020b), PRIMER (Xiao et al., 2021),
LED (Beltagy et al., 2020). The size of circle roughly
indicates the # of parameters for each model.

transformer attention and pre-training ideas into
the scalable T5 (Raffel et al., 2019a) model archi-
tecture. The resulting model, as shown in Figure 1,
achieves state-of-the-art performance on several
tasks which require handling long sequence inputs.

Regarding attention, we design a new atten-
tion mechanism, which we call Transient Global
(TGlobal), that mimics ETC’s local/global mecha-
nism (Ainslie et al., 2020). Importantly, TGlobal
attention removes the need for the additional side
inputs in ETC, in order to fit within the T5 archi-
tecture. The main idea of ETC’s local/global mech-
anism is to introduce local sparsity in the attention
mechanism to reduce the quadratic cost when scal-
ing to long inputs. Specifically, ETC only allows
tokens in the input (called the long input) to attend
to a local neighborhood, and adds a secondary input
called the global memory, through which tokens in
the long input can attend to each other indirectly.
One disadvantage of this mechanism is that it re-
quires designing this secondary global input for
each new problem. In order to adapt it to T5, our
new TGlobal mechanism synthesizes these global
tokens on the fly (as aggregations of groups of
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tokens in the input), at each attention layer. Our ex-
periments show that this mechanism results in only
a small degradation in performance with respect to
full attention in the same input length but allows
the model to scale to much larger input lengths,
resulting in significant performance gains.

Regarding pre-training, we adopt the pre-
training strategy in the PEGASUS (Zhang et al.,
2019a) model. This pre-training strategy was origi-
nally designed for abstractive summarization, but
in our experiments, we found it also improves
model performance for other tasks, such as ques-
tion answering, and hence we adopted it in LongT5.
The key idea is to mask out key (principle) sen-
tences from a document and ask the model to repro-
duce them as a single string, as if it was a summary.

We evaluate LongT5 on several summariza-
tion and question answering tasks (see Sections
4.2.1 and 4.3.1 for detailed descriptions of these
datasets). Thanks to the scaling of both input length
and model size, we achieve state-of-the-art results
on many of them.

The main contributions of this work are:

• A new Transformer architecture, LongT5, that
allows for scaling both input length and model
scale at the same time.

• A new attention mechanism (TGlobal), which
mimics ETC’s local/global mechanism but is
a drop-in replacement to regular attention for
existing Transformer architectures like T5.

• An analysis of model performance when vary-
ing both input length and model size of vanilla
T5 and LongT5 models (pushing both models
up to the maximum lengths they can handle
before encountering memory issues), to un-
derstand the trade-offs in both performance
and computation cost.

• State-of-the-art results on the arXiv, PubMed,
BigPatent, MediaSum, and TriviaQA datasets.
For Natural Questions, we used a slightly dif-
ferent formulation than the original tasks, and
hence we do not make state-of-the-art claims.

• We open source our model architecture1 and
training code, as well as pre-trained model
checkpoints on GitHub2.

1Published under the Flaxformer GitHub https:
//github.com/google/flaxformer/tree/
main/flaxformer/architectures/longt5

2https://github.com/google-research/
longt5

2 T5

T5 (Raffel et al., 2019a) is a transformer based text-
to-text pre-trained language model that is gaining
popularity for its unified framework that converts
all text-based language problems into a text-to-text
format, and its ease to scale up in number of param-
eters (from 60M to 11B parameters) with model
parallelism. With full attention transformer, T5 has
been successfully applied to many NLP tasks, but
the tasks only require shorter input sequences. This
is due to the limitation of quadratic computation
growth with respect to input sequence length, re-
sulting in larger memory consumption and longer
training time. Recently, Press et al. (2021) explored
scaling up T5 style models at inference time to
longer sequences than seen during training, but how
to scale up T5 style models in the input sequence
length during training remains underexplored.

3 LongT5

3.1 Architecture
We extend the original T5 encoder with global-
local attention sparsity patterns (Ainslie et al.,
2020; Zaheer et al., 2020a) to handle long inputs.
For the work reported in this paper, we used a stan-
dard T5 decoder since all of the tasks we considered
require relatively short output sequence lengths.

Architecturally, the main difference between T5
and LongT5 lies in the attention mechanism. We
experiment with two attention mechanism varia-
tions for LongT5, illustrated in Figure 2: (1) Lo-
cal Attention and (2) Transient Global Attention
(TGlobal). Both variations preserve several prop-
erties of T5: relative position representations, sup-
port for example packing, and compatibility with
T5 checkpoints.

3.1.1 Local Attention
For Local Attention, we simply replace the encoder
self-attention operation in T5 with a sparse sliding-
window local attention operation following the im-
plementation in ETC (Ainslie et al., 2020). Specif-
ically, for a given local radius r, this formulation
only allows each token to attend r tokens to the left
and right of it (see Figure 2.a). We found r = 127
to be sufficient in practice, where r is the number
of neighboring tokens to the left and to the right.

Local Attention does not introduce any new pa-
rameters and easily accommodates the attention
masking required for example packing3. For a

3Example packing refers to packing more than one short
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Figure 2: Illustration of the two attention mechanisms we experimented with in LongT5.

given choice of r, complexity is linear in input
sequence length l: O(l × r).

3.1.2 Transient Global Attention (TGlobal)
To allow input tokens to interact with each other in
each layer of the encoder at a longer range than Lo-
cal Attention’s local radius, we introduce Transient
Global Attention as a modification of ETC’s global-
local attention in a “fixed blocks” pattern. Namely,
we divide the input sequence into blocks of k to-
kens, and for each block we compute a global token
by summing (and then normalizing) the embed-
dings of every token in the block (see Figure 2.b).
Now when computing attention, we allow each
input token to attend not only to nearby tokens
like in Local Attention, but also to every global
token. We call these global tokens transient be-
cause in contrast to ETC-like global-local attention
patterns, these tokens are dynamically constructed
(and subsequently discarded) within each attention
operation, removing any requirement for deciding
which input tokens should be treated as “global”.

TGlobal attention only introduces a couple new
parameters4: (1) T5-style relative position biases
representing the distance from an input token’s
block to the block of each global token it’s attend-
ing to, and (2) T5-style layer normalization parame-
ters for normalizing each global token’s embedding.
The rest of the parameters are identical to T5, and
we accommodate sequence packing by addition-

example in the same input sequence to increase training effi-
ciency. This is specially useful in LongT5, since with the large
input lengths used in our model, if many examples are short,
most of the input sequence would be dedicated to padding,
wasting significant computation.

4For base models, we introduced 10k additional parame-
ters, 25k for large, and 50k for xl.

ally masking attention from input tokens to global
tokens of other examples. We found block size
k = 16 to be sufficient in practice. Notice thus,
that TGlobal attention introduces a block of l ∗ l/k
additional attention key-value pairs to calculate on
top of Local Attention (l input tokens, attending
to l/k global tokens; represented by the right most
rectangle in Figure 2.b), hence for input sequence
length l, complexity is O(l(r + l/k)).

3.2 PEGASUS Principle Sentences
Generation Pre-training

T5 is pre-trained with a span corruption objective,
where spans of consecutive input tokens are re-
placed with a mask token and the model is trained
to reconstruct the masked-out tokens. While it is
effective, recent work on masked language model-
ing (MLM) (Liu et al., 2019; Zhang et al., 2019b)
shows that carefully selecting the prediction objec-
tive could lead to significantly better performance.
One argument is that predicting more informative
tokens from the text could force the model to learn
better semantics of the text. Motivated by that,
we explore masking and generating the principle
sentences from the text. In particular, we adopt
the Gap Sentences Generation with Principle Ind-
Uniq strategy from Zhang et al. (2019a), which
was used for summarization pre-training.

Following Zhang et al. (2019a), we select
top-m scored (Principle) sentences based on
ROUGE-F1 score (Lin, 2004) using si =
rouge(xi, D \ {xi},∀i), where i is the sentence
index, D is the collection of sentences in the docu-
ment. Each sentence is scored independently (Ind),
and each n-gram is only counted once (Uniq).
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4 Experiments

4.1 Configurations

LongT5 is implemented using JAX5 and the Flax-
former6 library. Following the same setup as
T5.1.17, we consider models of 3 sizes: base
(∼220M), large (∼770M), and xl (∼3B), and use
the same cased English SentencePiece vocab model
used by T5.1.1, which contains 32000 sentence
pieces. We use batch size of 128 and Adafactor
as the optimizer in all experiments. We decide to
use greedy decoding instead of beam search for
all our experiments even with the test sets, there-
fore, our results reported below could potentially
be improved further by using beam search, but we
would like to make the setup consistent with our
dev setup.

4.1.1 Pre-training

We pre-train LongT5 models for 1M steps on
4096 input sequence length and 910 output se-
quence length. We use the same inverse square-
root learning rate schedule as T5, with learn-
ing rate set to 1/

√
max(step, warm_up steps),

where warm_up steps is set to 10000. The same as
T5.1.1, we pre-train LongT5 only on the C4 dataset
(Raffel et al., 2019b), and we do not apply dropout
during pre-training. As described in section 3.2,
we use the PEGASUS Principle Sentences Gener-
ation objective as our pre-training objective. The
configuration is similar to what was described by
Zhang et al. (2019a) for their larger models, ex-
cept for the masked sentence ratio in which we
use a value of 0.2 instead of 0.458. In section 5.3,
we will show our ablation study between Principle
Sentences Generation and Span Corruption.

4.1.2 Fine-tuning

For fine-tuning, we use a constant learning rate of
0.001 and dropout rate of 0.1 for all tasks. For
summarization tasks, we experiment with values of
4096, 8192, and 16384 for input lengths and 512
for output lengths. For QA tasks, we experiment
with values starting at 512 and scale up to 36864
for input lengths and 128 for output lengths.

5https://github.com/google/jax
6https://github.com/google/flaxformer
7https://github.com/google-research/text-to-text-transfer-

transformer/blob/main/released_checkpoints.md#t511
8We briefly experimented with other values, but found 0.2

to work best with the downstream tasks of interest.

4.2 Evaluation on Summarization Tasks

We choose to benchmark our models on summa-
rization tasks that cover various context lengths,
because of their long context understanding and
generative nature.

4.2.1 Datasets
LongT5 was benchmarked on the following six
datasets.

CNN / Daily Mail (Nallapati et al., 2016) News
from CNN and Daily Mail are used as input and the
article’s summary bullets are the target summary.

PubMed (Cohan et al., 2018) Scientific docu-
ments were collected from PubMed, with a docu-
ment’s content used as input and its corresponding
abstract as the target summary.

arXiv (Cohan et al., 2018) Similar to PubMed,
but with documents taken from arXiv.

BigPatent (Sharma et al., 2019) U.S. patent doc-
uments, with the patent’s details used as input and
the patent’s abstract as the target summary.

MediaSum (Zhu et al., 2021) Interview tran-
scripts from CNN and NPR were used as input
and their corresponding topic and overviews used
as the target summary.

Multi-News (Fabbri et al., 2019) The task in-
volves summarizing multiple news documents
about a topic into a human-written summary.

Table 1 provides statistics for the number of ex-
amples in train, validation, and test splits, and the
average, median, max, and 90th percentile input
sequence length. As can be seen, these datasets are
long in input length, and would benefit from mod-
els that can model lengthier inputs. We included
the CNN / Daily Mail dataset to benchmark on a
common task, especially to see how using TGlobal
attention impacts the model, despite the length of
the inputs being smaller than the other datasets.

4.2.2 Results
We compare LongT5 with various top approaches:
BigBird-PEGASUS (Zaheer et al., 2020b), HAT-
BART (Rohde et al., 2021), DANCER PEGASUS
(Gidiotis and Tsoumakas, 2020), PRIMER (Xiao
et al., 2021), TG-MultiSum (Cui and Hu, 2021),
LED (Beltagy et al., 2020), and an application of
BART by Zhu et al. (2021). For these comparisons,
we use common evaluation metrics of ROUGE-1,
ROUGE-2, and ROUGE-L.
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Dataset Example Count Input Length
Train Validation Test Average Median Max 90th percentile

CNN / Daily Mail 287,113 13,368 11,490 982.39 894 5268 1659
arXiv 203,037 6,436 6,440 10,720.18 8,519 378,825 20,170
PubMed 119,924 6,633 6,658 4,747.97 3,883 452,915 8,883
BigPatent 1,207,222 67,068 67,072 6,537.32 5,236 294,004 11,328
MediaSum 443,596 10,000 10,000 2,302.02 1,748 125,974 4,128
Multi-News 44,972 5,622 5,622 2,593.81 1,902.5 683,544 4,853

Table 1: Statistics for the summarization datasets. Input length measured in tokens using a SentencePiece Model.

arXiv
Approach R-1 R-2 R-L

DANCER PEGASUS 45.01 17.6 40.56
BigBird-PEGASUS (large) 46.63 19.02 41.77
HAT-BART 46.68 19.07 42.17
LED (large) 46.63 19.62 41.83
PRIMER 47.6 20.8 42.6

LongT5 (large - 16k input) 48.28 21.63 44.11
LongT5 (xl - 16k input) 48.35 21.92 44.27

PubMed
Approach R-1 R-2 R-L

DANCER PEGASUS 46.34 19.97 42.42
BigBird-PEGASUS (large) 46.32 20.65 42.33
HAT-BART 48.36 21.43 37.00

LongT5 (large - 16k input) 49.98 24.69 46.46
LongT5 (xl - 16k input) 50.23 24.76 46.67

BigPatent
Approach R-1 R-2 R-L

BigBird-PEGASUS (large) 60.64 42.46 50.01

LongT5 (large - 16k input) 70.38 56.81 62.73
LongT5 (xl - 16k input) 76.87 66.06 70.76

MultiNews
Approach R-1 R-2 R-L

TG-MultiSum 47.10 17.55 20.73
PRIMER 49.9 21.1 25.9

LongT5 (large - 8k input) 47.18 18.44 24.18
LongT5 (xl - 8k input) 48.17 19.43 24.94

MediaSum
Approach R-1 R-2 R-L

BART (large) 35.09 18.05 31.44

LongT5 (large - 4k input) 35.54 19.04 32.20
LongT5 (xl - 4k input) 36.15 19.66 32.80

CNN / Daily Mail
Approach R-1 R-2 R-L

HAT-BART 44.48 21.31 41.52

LongT5 (large - 4k input) 42.49 20.51 40.18
LongT5 (xl - 4k input) 43.94 21.40 41.28

Table 2: Summarization results comparing LongT5
with best known approaches. LongT5 scores are with
models using TGlobal attention. For each task, we
scale up the input length depending on the inputs’ statis-
tics, thus not all are scaled to 16k. For more results,
please see Section A in the Appendix.

As can be seen in Table 2, LongT5 is able
to achieve state-of-the-art rouge scores for arXiv,
PubMed, BigPatent, and MediaSum. For arXiv
and PubMed, which are composed of longer inputs,
being able to scale up to 16k input length helps
LongT5 achieve strong results.

One dataset where LongT5 is not able to achieve
state-of-the-art results is with Multi-News. LongT5
is the 2nd best model, slightly worth than PRIMER.
This is understandable as the PRIMER model was
pre-trained on a large corpus of documents related
to news events, thus exposing the model to a similar
corpus as that seen in Multi-News.

When looking at CNN / Daily Mail, we can
see that LongT5 was comparable with HAT-BART,
despite not having full attention. LongT5 did at
least get stronger scores in the ROUGE-2 metric.

4.3 Evaluation on QA Tasks

For the evaluation on QA tasks, we choose two pop-
ular benchmarks, Natural Questions and TriviaQA,
that require long context understanding.

4.3.1 Datasets
NaturalQuestions (NQ) Questions are real
queries issued by multiple users to Google search
that retrieve a Wikipedia page in the top five search
results. Answer text is drawn from the search re-
sults (Kwiatkowski et al., 2019).

The original NQ dataset asks models to predict a
short answer (including no-answer or yes/no) and
a long answer. We framed the task as a seq2seq
task and ignored the long answer. Hence, our re-
sults focus only on short answer. Moreover, since
our models predict answer texts instead of answer
spans, our evaluation method differs slightly from
the leader boards, and our results are not directly
comparable to other existing approaches: (1) Since
only the train and dev sets are publicly available,
we use 90% of the official train set for training
while using 10% as hold-out dev set to fine-tune
the hyperparameters and training epoch, and use
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Dataset Example Count Input Length
Train Validation Test Average Median Max 90th percentile

NQ 307,373 7,830 6,695.92 4,486 151,519 15,290.8
TriviaQA 87,622 11,313 10,832 69,082.51 45,011 1,174,918 150,643

Table 3: Statistics for the QA datasets. Input length measured in tokens using a SentencePiece Model.

NQ
Approach EM F1

T5.1.1 (base - 512 input) 50.93 52.54
T5.1.1 (base - 6k input) 56.73 56.73
T5.1.1 (large - 512 input) 57.29 60.68
T5.1.1 (large - 3k input) 60.09 64.17
T5.1.1 (xl - 4k input) 60.75 64.07

Local:
LongT5 (base - 512 input) 54.39 58.24
LongT5 (base - 36k input) 55.77 59.66
LongT5 (large - 512 input) 55.19 58.00
LongT5 (large - 10k input) 60.01 64.40
TGlobal:
LongT5 (base - 512 input) 55.73 59.06
LongT5 (base - 12k input) 58.12 62.44
LongT5 (large - 512 input) 57.55 61.53
LongT5 (large - 4k input) 60.77 65.38
LongT5 (large - 6k input) 59.17 63.38
LongT5 (xl - 8k input) 62.66 66.61

TriviaQA
Approach EM F1

BigBird-ETC (random attn) 80.86 84.5
Fusion-in-Decoder 80.09 84.35
ReadTwice 76.86 80.85

TGlobal:
LongT5 (base - 16k input) 74.67 78.9
LongT5 (large - 16k input) 78.38 82.45
LongT5 (xl - 16k input) 81.00 84.83

Table 4: QA results: (1) NQ results comparing T5.1.1
and LongT5. Base/large models are trained on 4x8
TPUv3 with no model partitioning. Xl models are
trained on 8x16 TPUv3 with 8 partitions. (2) Trivi-
aQA results compared to top models on leader board.
LongT5 scores using Local and TGlobal attention. Full
results in Appendix B.

the official dev set as our test set. (2) We benchmark
LongT5 against the corresponding T5.1.1 models
instead of directly comparing to the leader boards.

TriviaQA Trivia enthusiasts authored question-
answer pairs. Answers are drawn from Wikipedia
and Bing web search results, excluding trivia web-
sites (Joshi et al., 2017).

We use the official train/validation splits for
training and fine-tuning the hyperparameters and
training epoch, then re-train that model combining
both train and validation sets to evaluate on the
Wikipedia domain on the leader board 9.

Table 3 shows the dataset statistics for the num-
ber of examples in train and validation splits, and
the average, median, max, and 90th percentile input
sequence length.

4.3.2 Results
Table 4 shows a summary of the results for the NQ
and TriviaQA datasets (see Appendix B for full
results). For each dataset, we show two metrics:
EM (Exact Match) and F1 score (evaluating preci-
sion and recall of individual words in the answer
compared to the ground truth, ignoring stop words).

For NQ, we compare T5.1.1, LongT5 with Local
Attention, and LongT5 with TGlobal attention. We
decided to run T5.1.1 (1) with the default 512 input
sequence length10 and (2) with the largest input
sequence length that can fit into device memory11,
and use those as baselines. Since we are comparing
against T5.1.1, for LongT5 experiments we report
results at 512 input length for base and large, and
the largest input length allowed by each model be-
fore running out of memory on the same hardware
configuration used in our T5.1.1 experiments.

As the table shows, increasing input length gen-
erally results in significant benefits in NQ, with
models with larger input lengths significantly out-
performing those with smaller input lengths in most
cases. Some times, models with the largest input

9https://competitions.codalab.org/competitions/17208
10For base and large models.
11For base and large models, we used 4x8 TPUv3 and no

model partitioning; for xl model, we used 8x16 TPUv3 and 8
partitions.
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length for T5.1.1, LongT5 with Local Attention and
LongT5 with TGlobal attention. Input lengths start at
512, and go as far as possible before running out of
memory. Measurements taken with batch size 128, on
4x8 TPUv3 slices. base and large model sizes shown.

lengths underperform those with 4k length, but we
believe those to be due to noise in the experiments,
as results are the output of just one repetition of
each experiment due to resource constraints. More-
over, while LongT5 with Local Attention often
underperforms T5.1.1, LongT5 with TGlobal at-
tention significantly outperforms T5.1.1. For ex-
ample, considering the large size models, T5.1.1
was able only to scale up to an input length of 3k
tokens, while the TGlobal model was able to reach
6k tokens, outperforming T5.1.1 at 4k token length
(there was a dip at 6k token length, but we hypothe-
size this is just due to variance, as we only did one
run for each configuration).

For TriviaQA, we compare LongT5 with various
top approaches on the leader board: BigBird-ETC
(Zaheer et al., 2020a), Fusion-in-Decoder (Izacard
and Grave, 2021), and ReadTwice (Zemlyanskiy
et al., 2021). As shown in Table 3, TriviaQA inputs
are quite long, therefore being able to scale up both
in model size and to 16k input length helps LongT5
achieve state-of-the-art.

5 Analysis

5.1 Input Length vs Speed
In order to evaluate the training speed and mem-
ory consumption of LongT5, compared to T5.1.1,
we performed a series of training runs in the NQ
data set starting at input length 512, and increasing
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LongT5 with TGlobal attention, for different input se-
quence lengths. Input lengths start at 512, and go as far
as possible before running out of memory. Measure-
ments taken with batch size 128, on 4x8 TPUv3 slices.

the input length steadily until models ran out of
memory on a 4x8 TPUv3 slice. Results are shown
in Figure 3, which compares 6 different model
configurations: T5.1.1 base, T5.1.1 large, LongT5
(base Local), LongT5 (large Local), LongT5 (base
TGlobal), and LongT5 (large TGlobal). For each
model configuration, we show a curve plotting the
number of sequences per second processed during
training (speed, in the vertical axis) for each input
length (horizontal axis). Both axes are shown in
logarithmic scale.

We can see that at shorter lengths (512), T5.1.1,
LongT5 Local, LongT5 TGlobal have similar
speeds, but as we increase the sequence length,
LongT5 becomes significantly faster. For exam-
ple at sequence length 2048, T5.1.1 base can only
process 479 sequences per second, while LongT5
(base TGlobal) can process 765 and LongT5 (base
Local) can process 860. The differences grow even
larger as sequence length increases.

Another important fact that Figure 3 shows is
that T5.1.1 models reach their out of memory point
much earlier. For example, we could only scale
up to 6k tokens for T5.1.1 base. On the other
hand, LongT5 (base Local) can go up to 36k tokens
in length, and LongT5 (base TGlobal) up to 12k.
Large models show a similar picture with T5.1.1
large going only up to 3k, but the LongT5 variants
going to 10k (large Local) and 6k (large TGlobal).

5.2 Input Length vs Performance
This section presents a similar analysis, but where
we plotted model speed versus performance in NQ
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(F1 score). Results are shown in Figure 4 for mod-
els with large size. Each point in the curves is
annotated with the corresponding sequence length.

As Figure 4 shows, performance increases sig-
nificantly as input length increases, highlighting
the benefits of LongT5. Moreover, input length by
itself is not enough to achieve good performance
in all datasets, and in particular, in the NQ dataset
(used in this figure), using Local Attention signif-
icantly hurts performance when compared with
TGlobal or with T5.1.1. So, even at very long
input lengths, LongT5 with Local Attention just
matches T5.1.1 with input length of 3k in NQ. How-
ever, LongT5 with TGlobal attention outperforms
T5.1.1. Moreover, note that although the plot shows
a few irregularities (such as 8k length for LongT5
with Local Attention, or 6k length with TGlobal
Attention), that is because the plot shows only the
results of a single run, and hence there is some
noise. However, trends can clearly be seen.

5.3 Principle Sentences Generation vs. Span
Corruption

As mentioned in section 3.2, we use PEGASUS
Principle Sentences Generation instead of default
Span Corruption used in T5 as our pre-training
objective. Table 5 shows our ablation study for
fine-tuning on NQ and arXiv from a model pre-
trained using the default Span Corruption objec-
tive, a model pre-trained with Principle Sentences
Generation, and a model pre-trained with both ob-
jectives. The comparison is done on the dev set of
the tasks, and with TGlobal base models. Both pre-
training and fine-tuning on the models mentioned
above are done with input sequence length 4096.
The table shows, even though Principle Sentences
Generation was developed by Zhang et al. (2019a)
as a pre-training strategy for summarization, it ben-
efits both summarization and QA tasks, but using
both objectives together perform worse than just
using PSG.

Table 6 shows an additional ablation study with
arXiv and PubMed, where we compare using reg-
ular T5.1.1 with Span Corruption compared to
T5.1.1 pretrained with Principle Sentences Gen-
eration while using the same pre-training input se-
quence length of 512 (as was done in the original
T5.1.1 pre-training task). As expected, Principle
Sentences Generation helped the model achieve
better results compared to Span Corruption when
seeing the same amount of pre-training data. We

NQ arXiv
Objective EM F1 R-1 R-2 R-3

PSG 62.21 66.94 44.95 18.74 40.99

SC 58.65 63.05 43.49 18.12 39.71
SC + PSG 59.74 64.54 44.85 18.79 40.90

Table 5: Ablation study on dev set for different pre-
training strategies using span corruption (SC) vs. prin-
ciple sentences generation (PSG) and the effects on
NQ and arXiv fine-tuning tasks. The models are
TGlobal base, and fine-tuning is done with input se-
quence length 4096.

arXiv
Objective R-1 R-2 R-3

SC 44.59 18.34 40.65
PSG 45.78 18.94 41.53
LongT5 (4k) 45.66 19.22 41.49
LongT5 (16k) 48.21 21.7 44.03

PubMed
Objective R-1 R-2 R-3

SC 47.86 22.14 44.39
PSG 48.74 23.42 45.24
LongT5 (4k) 48.47 23.38 45.01
LongT5 (16k) 50.12 24.78 46.56

Table 6: Ablation study on arXiv and PubMed for
different pre-training strategies using span corruption
(SC) vs. principle sentences generation (PSG) with
T5.1.1 model along with LongT5 with TGlobal atten-
tion. Fine-tuning was done on large model size, with
input sequence length of 4096 except where otherwise
noted.

also compare this with dev scores from LongT5
with TGlobal attention at 4k and 16k input lengths,
such that we can see having full attention will allow
for better results, but being able to scale to longer
input sequence lengths allows LongT5 to achieve
its stronger results.

6 Related Work

Language model pre-training followed by task
specific fine-tuning has proven to be a powerful
tool for numerous NLP tasks (Devlin et al., 2019;
Liu et al., 2019; Zhang et al., 2019b; Radford et al.,
2019; Raffel et al., 2019a; Lewis et al., 2020; Joshi
et al., 2020). BERT (Devlin et al., 2019) intro-
duced Mask Language Model (MLM), where a
model predicts masked tokens given a sequence of
text input. Fine-tuning a pre-trained BERT model
has led to improved performance on various NLP
tasks. However, MLM predictions are not made
auto-regressively, which limits the capability of the
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BERT family for generation tasks. Raffel et al.
(2019a) introduced the span corruption task in T5
as the pre-training objective, where a model pre-
dicts the masked token span using an autoregressive
model. It can handle the generation tasks as the pre-
training is done in a generative way. BART (Lewis
et al., 2020) is similar to T5 but used a slightly
different pre-training objective, in which spans are
masked from the input but the complete output is
predicted. However, none of these works tried to
investigate pre-training for very long sequence in-
puts. They often use a transformer (Vaswani et al.,
2017) architecture as backbone, the complexity of
which is quadratic to the input length, making them
impractical to model very long sequence input.

Long text modeling An extensive amount of
work has also been done for modeling long text like
documents. The work from Roy et al. (2016); Chen
(2017); Wu et al. (2018) obtained document embed-
dings from word-level embeddings. Another line
of research tries to model long documents through
hierarchical training. The work from Yang et al.
(2016); Miculicich et al. (2018) employed Hier-
archical Attention Networks for document classi-
fication and neural machine translation, and Guo
et al. (2019) proposed using a hierarchy network
to build document embeddings on top of sentence
embeddings for parallel document mining.

More recent research has been focusing on im-
proving the memory and computation efficiency
of transformer models (Tay et al., 2020b, 2021)
for handling long input. One type of such ap-
proaches is using non-full attention patterns to re-
strict the attention field range, so that it reduces the
attention complexity from O(n2) to O(nlogn) or
O(n), including Sinkhorn (Tay et al., 2020a), Long-
former (Beltagy et al., 2020), ETC (Ainslie et al.,
2020), and BigBird (Zaheer et al., 2020a). An-
other type of approaches is leveraging the low-rank
approximation of the attention matrix, such as Lin-
former (Wang et al., 2020), Performer (Choroman-
ski et al., 2021), Random Feature Attention (Peng
et al., 2021), and LUNA (Ma et al., 2021).

7 Conclusion

This paper presented a new Transformer-based neu-
ral model called LongT5, with which we have ex-
plored the effects of scaling both input length and
model size at the same time. Specifically, the main
differences of LongT5 with respect to T5.1.1 are
(1) a new scalable attention mechanism called Tran-

sient Global attention, which is a drop-in replace-
ment to the standard T5 attention mechanism, and
hence can be used without needing additional side-
inputs to the model or modifications to the model
inputs; and (2) using a PEGASUS-style Principle
Sentences Generation pre-training objective.

Via experimentation in several challenging sum-
marization and question answering datasets, we
have explored the performance gains that can be
achieved by scaling both input length and model
size, resulting in state-of-the-art results on several
datasets: arXiv, PubMed, BigPatent, MediaSum,
and TriviaQA.

As part of our future work, we would like to pur-
sue several directions such as studying efficient at-
tention mechanisms in the decoder and decoder-to-
encoder attention pieces of the model (both Local
Attention and TGlobal attention are only applied
to the encoder in LongT5 for now). Additionally,
we would like to incorporate additional long-input
transformer ideas into the LongT5 architecture, that
could further improve model efficiency.
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A Summarization Results

Table 8 shows the full set of results on the summa-
rization datasets used in this paper. This includes
both standard T5 model (using version T5.1.1), T5
with PEGASUS Principle Sentences Generation
pre-training, and LongT5 model.

As can be seen, scaling up the input size for the
models helps achieve better performance metrics.
T5 models though struggle when scaling up to 4k
for input, as the fine-tuning task can take many
days even when using a large topology of TPUv3.

When comparing regular T5.1.1 model with
a T5.1.1 model using PEGASUS Principle Sen-
tences Generation pre-training, the latter was able
to achieve better results, with the results also im-
proving as the input size scaled up. This helps
show that both using the latter pre-training objec-
tive along with scaling up allows us to get the best
results from these models.

LongT5, despite having a reduced attention from
using TGlobal attention, is able to get strong per-
formance results due to both scaling up to larger
inputs and leveraging the Gap Sentences Genera-
tion pre-training strategy.

B QA Results

Table 7 shows the full set of results comparing
T5.1.1 and LongT5 models on the QA datasets
used in this paper. For both NQ and TriviaQA in
this comparison study, we use 90% of the official
training set for training while using 10% as hold-
out dev set to fine-tune the hyperparameters and
training epoch, and use the official dev set to report
the numbers in this table. We run each model to
the largest input length allowed before running out
of memory on specific hardware configuration -
base/large models on 4x8 TPUv3 with no model
partitioning, and xl models on 8x16 TPUv3 with 8
partitions.

NQ TriviaQA
Approach EM F1 EM F1

base:
T5.1.1 (512) 50.93 52.54 48.91 52.89
T5.1.1 (6k) 56.73 56.73 59.09 63.31
large:
T5.1.1 (512) 57.29 60.68 53.26 57.01
T5.1.1 (3k) 60.09 64.17 60.15 64.15
xl:
T5.1.1 (4k) 60.75 64.07 65.33 69.43

base Local:
LongT5 (512) 54.39 58.24 - -
LongT5 (1k) 54.60 57.88 - -
LongT5 (2k) 56.48 60.56 - -
LongT5 (4k) 56.10 60.52 - -
LongT5 (8k) 55.90 59.98 - -
LongT5 (16k) 56.41 60.46 - -
LongT5 (32k) 55.84 59.59 - -
LongT5 (36k) 55.77 59.66 - -
base TGlobal:
LongT5 (512) 55.73 59.06 - -
LongT5 (1k) 57.41 61.25 - -
LongT5 (2k) 56.96 60.25 - -
LongT5 (4k) 58.97 63.03 - -
LongT5 (8k) 58.07 62.67 - -
LongT5 (12k) 58.12 62.44 63.27 67.42
large Local:
LongT5 (512) 55.19 58.00 - -
LongT5 (1k) 57.47 60.79 - -
LongT5 (2k) 58.49 62.12 - -
LongT5 (4k) 59.44 63.72 - -
LongT5 (8k) 58.66 62.28 - -
LongT5 (10k) 60.01 64.40 - -
large TGlobal:
LongT5 (512) 57.55 61.53 - -
LongT5 (1k) 59.69 63.91 - -
LongT5 (4k) 60.77 65.38 - -
LongT5 (6k) 59.17 63.38 63.76 67.82
xl TGlobal:
LongT5 (4k) 62.38 66.39 - -
LongT5 (8k) 62.66 66.61 67.89 71.71

Table 7: QA results comparing T5.1.1 and LongT5 at
different sequence lengths. Base and large models are
trained on 4x8 TPUv3 with no model partitioning, and
xl models are trained on 8x16 TPUv3 with 8 partitions.
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arXiv PubMed
Approach R-1 R-2 R-L R-1 R-2 R-L

DANCER PEGASUS 45.01 17.6 40.56 46.34 19.97 42.42
BigBird-PEGASUS (large) 46.63 19.02 41.77 46.32 20.65 42.33
HAT-BART 46.68 19.07 42.17 48.36 21.43 37.00
LED (large) 46.63 19.62 41.83 - - -
PRIMER 47.6 20.8 42.6 - - -

T5.1.1 (large - 1k input) 39.79 14.02 36.23 42.18 16.60 38.96
T5.1.1 (large - 2k input) 42.84 16.62 39.01 45.51 19.55 42.10
T5.1.1 (large - 4k input) 44.51 18.20 40.62 47.90 22.08 44.36
T5.1.1 + PSG (large - 1k input) 38.53 13.61 35.08 43.34 17.55 40.10
T5.1.1 + PSG (large - 2k input) 42.85 16.50 38.99 46.51 20.37 43.00
T5.1.1 + PSG (large - 4k input) 45.86 18.40 41.62 48.94 22.92 45.4
LongT5 (base - 4k input) 44.87 18.54 40.97 47.77 22.58 44.38
LongT5 (large - 4k input) 45.64 18.6 41.51 48.38 23.32 44.93
LongT5 (large - 8k input) 46.61 19.67 42.44 49.81 24.3 46.26
LongT5 (large - 16k input) 48.28 21.63 44.11 49.98 24.69 46.46
LongT5 (xl - 4k input) 45.99 19.51 42.04 48.99 23.48 45.51
LongT5 (xl - 8k input) 47.44 20.84 43.34 50.04 24.45 46.42
LongT5 (xl - 16k input) 48.35 21.92 44.27 50.23 24.76 46.67

BigPatent MultiNews
Approach R-1 R-2 R-L R-1 R-2 R-L

BigBird-PEGASUS (large) 60.64 42.46 50.01 - - -
TG-MultiSum - - - 47.10 17.55 20.73
PRIMER - - - 49.9 21.1 25.9

T5.1.1 (large - 1k input) 55.07 37.49 45.90 43.69 16.26 23.03
T5.1.1 (large - 2k input) 60.07 43.49 50.90 44.95 17.26 23.74
T5.1.1 (large - 4k input) 62.14 45.85 52.95 45.67 17.88 24.15
T5.1.1 + PSG (large - 1k input) 58.58 41.80 49.74 44.43 15.85 22.41
T5.1.1 + PSG (large - 2k input) 64.51 49.15 56.01 46.65 17.74 23.74
T5.1.1 + PSG (large - 4k input) 67.05 52.24 58.70 47.48 18.60 24.31
LongT5 (base - 4k input) 60.95 44.22 51.52 46.01 17.37 23.5
LongT5 (large - 4k input) 66.17 51.10 57.70 46.99 18.21 24.08
LongT5 (large - 8k input) 67.42 52.62 59.04 47.18 18.44 24.18
LongT5 (large - 16k input) 70.38 56.81 62.73 - - -
LongT5 (xl - 4k input) 75.82 64.64 69.54 48.15 19.30 24.76
LongT5 (xl - 8k input) 76.39 65.37 70.16 48.17 19.43 24.94
LongT5 (xl - 16k input) 76.87 66.06 70.76 - - -

MediaSum CNN / Daily Mail
Approach R-1 R-2 R-L R-1 R-2 R-L

HAT-BART - - - 44.48 21.31 41.52
BART (large) 35.09 18.05 31.44 - - -

T5.1.1 (large - 1k input) 30.68 14.88 27.88 42.60 20.41 40.03
T5.1.1 (large - 2k input) 32.83 16.75 29.79 42.55 20.25 39.99
T5.1.1 (large - 4k input) 34.37 18.09 31.12 42.27 19.93 39.72
T5.1.1 + PSG (large - 1k input) 32.02 16.15 28.89 42.62 20.46 40.02
T5.1.1 + PSG (large - 2k input) 34.04 17.87 30.77 42.69 20.40 40.06
T5.1.1 + PSG (large - 4k input) 36.11 19.48 32.67 43.41 20.99 40.77
LongT5 (base - 4k input) 35.09 18.35 31.87 42.15 20.11 39.6
LongT5 (large - 4k input) 35.54 19.04 32.20 42.49 20.51 40.18
LongT5 (xl - 4k input) 36.15 19.66 32.80 43.94 21.40 41.28

Table 8: Summarization results comparing T5, T5 with PEGASUS-style Principle Sentences Generation (PSG)
pre-training, and LongT5 with best known approaches for the various datasets. All T5 scores are with standard
T5.1.1 model. All LongT5 scores are with models using TGlobal attention. For each task, we scale up the input
length depending on the statistics of the inputs, thus not all of the tasks were scaled to 16k. We do not include input
length of other models because each model uses the input differently, and hence, direct comparison is not possible.
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