
Findings of the Association for Computational Linguistics: NAACL 2022, pages 604 - 615
July 10-15, 2022 ©2022 Association for Computational Linguistics

StATIK: Structure and Text for Inductive Knowledge Graph Completion

Elan Markowitz1,2,†,*, Keshav Balasubramanian1,*, Mehrnoosh Mirtaheri1,2,
Murali Annavaram1, Aram Galstyan1,2, and Greg Ver Steeg1,2

1University of Southern California
2USC Information Sciences Institute

*Denotes equal contribution
†Corresponding author: esmarkow@usc.edu

Abstract

Knowledge graphs (KGs) often represent
knowledge bases that are incomplete. Ma-
chine learning models can alleviate this by
helping automate graph completion. Recently,
there has been growing interest in completing
knowledge bases that are dynamic, where pre-
viously unseen entities may be added to the
KG with many missing links. In this paper,
we present StATIK–Structure And Text for
Inductive Knowledge Completion. StATIK
uses Language Models to extract the semantic
information from text descriptions, while using
Message Passing Neural Networks to capture
the structural information. StATIK achieves
state of the art results on three challenging in-
ductive baselines. We further analyze our hy-
brid model through detailed ablation studies.

1 Introduction

Knowledge graphs (KGs) are appropriate represen-
tations of knowledge bases across many domains.
These domains include commonsense reasoning
(Bauer, 2021; Yan et al., 2021; Zhang et al., 2020),
question answering (Yasunaga et al., 2021; Feng
et al., 2020; Lin et al., 2019; Christmann et al.,
2019; Saxena et al., 2021; Hixon et al., 2015), rec-
ommendation systems (Guo et al., 2020; Wang
and Cai, 2020; Huang et al., 2018; Wang et al.,
2018), and many others (Hogan et al., 2021). These
graphs are extremely large and often incomplete.
As a result, there is significant interest in training
machine learning models that can help complete
these knowledge bases. In knowledge graphs, the
nodes, called entities, often possess textual descrip-
tions, while edges are typically labeled with one of
many relation types, which may also possess tex-
tual descriptions. Effective KG completion models
should learn to leverage this textual information
in order to correctly complete the knowledge base.
Additionally, such knowledge graphs are usually
dynamic (Das et al., 2018; Liao et al., 2021) as

FC Barcelona
A football team...

instance of:
-sports team

league
- La Liga

country
-Spain

La Liga

Spain

Sports team Cádiz FC
A football team...

instance of:
-sports team

league
- La Liga

country
- ???

Figure 1: Depiction of the problem addressed by induc-
tive learning. During training, only the blue portion of
the graph exists, including the entities FC Barcelona,
sports team, La Liga, and Spain. Later, the entity
Cádiz FC is added to the graph. When added, an en-
tity contains a description and some number of edges
(possibly zero). Since StATIK is inductive, it requires
no retraining or retroactive processing in any way to
make predictions about Cádiz FC. This could include
predicting Cádiz FC’s country i.e. the query (Cádiz FC,
country, ?). The correct prediction, (Cádiz FC, country,
Spain), is displayed in dashed red.

a result of the underlying knowledge base being
dynamic. Typically, this manifests as nodes and
edges being added and removed from the knowl-
edge graph while the set of relation types remains
more static. Thus, another quality we desire of
knowledge graph completion models, is that they
be inductive and generalize to unseen entities.

We propose a completely inductive, hybrid
model, called StATIK, that effectively leverages
both the structure of a knowledge graph as well as
the underlying textual descriptions of the entities
and relations. Structure is incorporated through
a Message Passing Neural Network (MPNN)
(Gilmer et al., 2017) that aggregates information
from a neighborhood defined around each entity,
while textual information is incorporated through a
pretrained language model such as BERT (Devlin
et al., 2019). Our main contributions are summa-
rized as follows:

1. We propose a completely inductive and hy-

604

Model Tr
an

sE

O
pe

nW
or

ld

G
lo

ve
-D

K
R

L

C
om

m
on

se
ns

e

In
dT

ra
ns

E

L
A

N

G
ra

IL

K
G

B
er

t

B
L

P

St
A

R

ou
rs

Inductive - Seen2Unseen ✗ ✗

Inductive - Unseen2Unseen ✗ ✗ ✗ ✗

End-to-end LM ✗ ✗ ✗ ✗† ✗ ✗ ✗

No Support Set Required ✗ ✗ ✗

Graph features ✗ ✗ ✗ ✗ ✗ ✗

Structure Objective ✗
Inference Scalability O(N) O(N) O(N) O(N) O(N) O(N) O(NQ) O(NQ) O(N) O(NR+Q) O(N +Q)

Table 1: Related works comparison table. N is number of entities, Q is number of queries, R is number of relation
types. †Model uses domain adaptation but does not train end-to-end. References are TransE (Bordes et al., 2013),
OpenWorld(Shah et al., 2019), Glove-DKRL(Xie et al., 2016), Commonsense(Malaviya et al., 2020), IndTransE(Dai
et al., 2021), LAN(Wang et al., 2019a), GraIL(Teru et al., 2020), KGBert(Yao et al., 2019), BLP(Daza et al., 2021),
StAR(Wang et al., 2021)

brid knowledge graph completion model com-
posed of an MPNN to leverage structure and
a language model to leverage text.

2. We demonstrate empirically that incorporat-
ing structure via an MPNN leads to much bet-
ter generalization in the inductive setting.

3. We achieve state-of-the-art results on three in-
ductive benchmarks in which each predicted
triple contains at least one new entity (dy-
namic setting) or exclusively new entities
(transfer setting).

4. We design our model with scale in mind and
show that the proposed model is significantly
faster than similar alternatives, particularly for
inference.

2 Inductive Representation Learning on
Knowledge Graphs

We can define a knowledge graph with textual infor-
mation as G = (E ,R, T ,D) where E is the set of
entities, R is the set of relation types, T is the set of
triples (h, r, t) ∈ E ×R×E , and D is the set of en-
tity and relation descriptions. The inductive graph
completion task is defined as follows. Let the train-
ing graph be Gtrain = (Etrain,R, Ttrain,Dtrain)
where Etrain is a subset of E , Dtrain is the cor-
responding subset of D, and Ttrain is the subset
of T containing triples only involving entities in
Etrain. The inference task is then to predict the
triples in T /Ttrain, only having trained the model
on Gtrain. Specifically, for a given evaluation triple,
Ti = (h, r, t), do head and tail prediction on the

graph G − Ti. This means that given a query of the
form (h, r, ?) or (?, r, t), rank all possible tail or
head candidates (targets) such that the real triple is
ranked as highly as possible. Figure 1 demonstrates
a motivating example.

Similar to the transductive setting, such a task
can be solved by learning a model that scores triples
through minimizing some objective. We use a mar-
gin ranking loss as our objective where given a set
of real triples, T , a corresponding set of negative
triples, T ′, and a scoring function f (higher scores
imply more likely triple), we compute the loss as

∑

(t,t′)∈(T×T ′)

max
(
0, 1− f(t) + f(t′)

)
(1)

In order to learn the inductive objective, the
model should avoid entity specific parameters such
as an entity embedding tables as those parameters
will not translate to the new entities at test time.
To tackle this challenge StATIK uses text features
instead of embeddings and extends prior work by
also incorporating structural information through
message passing.

3 Related Work

Much of the work in the area of Knowledge Graph
Completion has focused on the transductive setting
i.e. performing link prediction between entities
seen at training time. Generally, these methods
learn embeddings in a geometric space such as
TransE (Bordes et al., 2013), ComplEx (Trouillon
et al., 2016), DistMult (Yang et al., 2015), RotatE
(Sun et al., 2019), and SimplE (Kazemi and Poole,

605

(a) Model Flowchart (b) Message Passing Layer

Figure 2: Depiction of model flowchart (left) and the MPNN component (right). Green indicates model inputs.
Yellow indicates pre-processing steps. Purple indicates data loading steps. Blue indicates model computation steps.
Solid lines represent inputs and outputs. Dashed lines indicate residual connections.

2018), or through a machine learning decoder such
as ConvE and HypER (Dettmers et al., 2017; Bal-
azevic et al., 2018). There has also been effort in
using graph neural networks for knowledge graph
completion. R-GCN (Schlichtkrull et al., 2018)
brings the original GCN (Kipf and Welling, 2017)
to the multi-relational knowledge graph setting.
Wang et al. (2020b) looked at using a modified
version of GAT (Velickovic et al., 2018) to get
strong results in the transductive setting.

3.1 Inductivity
Recently, there has been increased focus on the
inductive setting. Works such as LAN (Wang et al.,
2019a) and IndTransE (Dai et al., 2021) as well as a
few others look at learning embeddings for new en-
tities based on edges to entities in the training graph
(Wang et al., 2020a; Bhowmik and de Melo, 2020).
This requires a sufficient number of edges from
nodes seen during training to the new nodes (seen-
to-unseen). Other methods, such as GraiL (Teru
et al., 2020), have been able to achieve inductivity
without such requirements, and as a result, can op-
erate on unseen-to-unseen entities.1 There have
also been some works on open domain knowledge
graph completion, a similar learning task. These
works include Shah et al. (2019) (OpenWorld) and
Shi and Weninger (2018), and some of their tech-
niques, such as using text to enable generalization
to new entities, have continued in the works ana-
lyzed here. OpenWorld specifically aims to learn a

1GraiL is technically designed to do relation prediction,
not link prediction, but is included here due to its relevance.

function that aligns unsupervised text embeddings
with knowledge graph embeddings so that new en-
tities can be placed in the KG embedding space.

3.2 Support Sets

Most of the aforementioned inductive works (Wang
et al., 2019a; Dai et al., 2021; Wang et al., 2020a;
Bhowmik and de Melo, 2020) all require a support
set, or edges connecting to known entities in the
training graph, for the new entities seen at test time.
While it is certainly useful to be able to use a sup-
port set when available, an ideal model would have
the flexibility to use such edges when present but
still be able to produce meaningful representations
without them.

3.3 Language Models

Transformers (Vaswani et al., 2017), have created a
renaissance in language modeling over recent years.
Combined with self-supervised pretraining, lan-
guage models such as BERT (Devlin et al., 2019)
are able to capture the contextual and semantic
information of natural language.

As many KGs contain text associated with each
entity, researchers have sought to use that infor-
mation for improved performance or inductivity.
KGBert (Yao et al., 2019) looked into using trans-
formers for link prediction, treating it as a text
classification task. Bert for Link Prediction (BLP)
(Daza et al., 2021) and StAR (Wang et al., 2021)
have sought to incorporate language models while
improving on some of the flaws of KGBert. Com-
monsense (Malaviya et al., 2020) also incorporates

606

a language model (along with a Graph Neural Net-
work). However, it only uses the language model
to initialize an embedding table. As a result, it is
not inductive like the other models. Older model
DKRL (Xie et al., 2016) uses a simpler language
model with GloVe embeddings (Pennington et al.,
2014).

3.4 Structural Objective
Most KG completion models use some form of
structural objective; The scoring function uses spa-
tial or geometric transformations to capture the
graph structure. For instance, TransE applies the
structural objective that a head embedding + a re-
lation embedding should be close to the tail em-
bedding of a true triple. KGBert is one of the few
models that does not use such an objective.

3.5 Graph features
Structural objectives alone have some limitations
with regard to capturing graph structure. Being able
to explicitly use the local graph structure and topol-
ogy as a feature (often through message passing) is
beneficial for both general performance and induc-
tivity. Many of the models mentioned (Malaviya
et al., 2020; Dai et al., 2021; Wang et al., 2019a;
Teru et al., 2020) make use of such features.

3.6 Scalability
Scalability is an incredibly important aspect of KG
completion as knowledge graphs can include mil-
lions to billions of entities and edges. When dealing
with complex encoders such as MPNNs or LMs,
the number of encoder passes becomes an espe-
cially pressing issue, even for smaller graphs.

In KG completion, every entity is considered a
possible solution to a query. If each of these possi-
ble triples is evaluated independently, the problem
quickly becomes a combinatorial mess. This is
the case for KGBert and GraiL which can only
evaluate a single triple at a time. This makes the
link prediction task quadratic in complexity. StAR
improves on KGBert’s approach but requires evalu-
ating each entity in conjunction with every relation
type. While definitely an improvement, this can
still be problematic for big graphs.

Table 1 gives a comparison of the most relevant
related works.

4 StATIK Architecture

We can conceptualize KG completion models as
having an encoder and a decoder. Whereas most

KG models use an embedding table for the encoder,
our model utilizes a hybrid language model and
MPNN based network. Our decoder is a relatively
simple scoring function.

4.1 Language Models for Feature Extraction

For any entity or relation x, let L(x) ∈ Rd0 be the
d0 dimensional BERT-base encoding for the text as-
sociated with x. For every entity and relation type,
we preprocess L(x) for all x to create a meaningful
feature matrix.

4.2 Encoder

We explore combining two different encoders, a
transformer for processing text and a message pass-
ing neural network for processing structural data.

4.2.1 Language Model Transformer
Separately from the text featurization process, we
also train through a language transformer in an
end-to-end manner.

When encoding target entities, we simply
pass the text associated with the entity through
the encoder. However, when encoding queries,
we condition the entity on the relation type.
Similarly to StAR, for tail prediction–(h, r, ?)–
we append the text associated with the head
and the relation together giving head_text +
relation_text. For queries of the form
(?, r, t), we prepend the relation text with the
text "inverse of". This gives us the text for
the query as tail_text + "inverse of"
+ relation_text. In contrast, StAR only ever
appends head entities to relation text. This makes
the head prediction task more complicated as one
would have to encode each possible head-relation
pair as the target of the head prediction queries.

4.2.2 Message Passing Graph Neural Network
(MPNN)

We employ an MPNN of the following form (see
fig 2b for overview). For each query of the form
(h, r, ?) or (?, r, t), let s be the “query entity”,
meaning the head or tail that is part of the query
(or the target entity if encoding target candidates).
We then form a subgraph around s using the edges,
E, connecting s to its neighbors, N (s).

We then compute the initial representations of
all the entities in the subgraph, V = N (s) ∪ {s},
as

X0 = σ
(
L(V)W

(e)
0

)
(2)

607

where W
(e)
0 is a Rd0×d parameter to reduce the

dimension to the model’s hidden dimension size d;
σ is the model’s element-wise activation function
(LeakyReLU in our case).

For the m edges in the subgraph, let ih and it be
Em vectors indicating the heads and tails respec-
tively of each edge. Let ir ∈ Rm be the relation
type of each edge. Let idir ∈ {0, 1}m be the rela-
tive direction of the edge w.r.t. the query entity it
is connected to, s. The initial edge representations
are

E0 = σ
(
L(ir)W

(r)
0

)
+Edir[idir] (3)

where W(r)
0 is a Rd0×d parameter similar to W

(e)
0 ,

and Edir is the binary embedding tables to encode
the direction of the edge relative to the query entity.

4.2.3 Message Passing Layer
We follow the work of Galkin et al. (2020);
Vashishth et al. (2020) and do not learn separate
message passing transformations for each relation
type. Instead, we learn only two transformations:
One for messages passed in the forward direction
and one for those passed backwards.

Mfwd = (X[ih] ∥ E)Wfwd

Mback = (X[it] ∥ E)Wback

(4)

where W<dir> is the Rd×d weight matrix for
the corresponding message direction, and ∥ is the
concatenation operator. The messages in Mfwd are
sent to it while the messages in Mback are sent to
ih. We then use mean aggregation and residual
connections giving an entity update of

x′i =
1

|N (i)|
∑

N (i)

Mfwd[it = i] + Mback[ih = i]

x′i = σ
(
x′i
)
+ xi

(5)

This calculation can be efficiently computed in
parallel using vectorized scatter_mean.

4.2.4 Edge Update Layer
Similarly to (Gong and Cheng, 2019), we also
maintain and update edge representations through
each layer. We do this using a simple transforma-
tion using the previous edge representation and the
entity representations of the head and tail:

E′ = σ
(
(X[ih] ∥ E ∥ X[it])W

(e)
)
+ E (6)

where W(e) is the R3d×d edge update parameter.
We use edge update layers between each message
passing layer.

4.2.5 Combining the Encoders
We combine the the MPNN and the language model
in a sequential manner, in which the output of the
language model is used to replace the features for
the entities being queried (query entities and target
entities). These are the same entities whose repre-
sentations will eventually be used by the decoder.

4.3 Decoders

We use a simple TransE (Bordes et al., 2013) model
to score each candidate triple.

For given triple q = (h, r, t), with final entity
representations X, and relation embedding table
H ∈ R|R|×d, TransE scores the triple as

TransE(q) = −∥X[h] +H[r]−X[t]∥2 (7)

where higher scores indicate a higher likelihood
of existing in the graph. While, TransE, on it’s
own cannot represent all classes of relations (e.g.
symmetric relations), this analysis does not apply
when tied to a more expressive encoder.

4.4 Scalability

We aim to be able to use StATIK in real-world,
large-scale settings. As a result, scalability is crit-
ically important. We employ a number of tech-
niques that allow us to implement our message
passing neural network on very large graphs.

4.4.1 Neighbor sampling
Neighbor sampling has been a key technique in
scaling GNNs to large graphs (Hamilton et al.,
2017b; Chen et al., 2018; bing Huang et al., 2018;
Markowitz et al., 2021) and is even more critical
with knowledge graphs. In homogeneous graphs,
nodes have relatively similar degrees. In knowl-
edge graphs, this is not the case. In our largest
informally tested graph some nodes have degree
greater than 10 million while the vast majority have
degree less than 10. As a result neighbor sampling
becomes a critical step to reduce computational
complexity of the model.

608

Train Validation Test

Relations Entities Triples Entities Triples Entities Triples

WN18RR 11 32,755 69,585 4,094 11,381 4,094 12,087
FB15k-237 237 11,633 215,082 1,454 42,164 1,454 52,870

Wikidata-5M 822 4,579,609 20,496,514 7,374 6,699 7,475 6,894

Table 2: Statistics of the datasets used in the experiments.

4.4.2 Compact Adjacency

In order to sample efficiently we adapt the compact
adjacency structure from Markowitz et al. (2021)
to the multi-relational setting. This data structure is
similar to a CSR-formatted sparse matrix in which
all the data is left-aligned. This allows fast row
access, giving us the ability to get the neighbors
of each node and sample from them in an efficient
manner. Further details can be found in the ap-
pendix.

4.4.3 Query-Target Independence

As done in StAR and BLP, we separately calculate
the embeddings for queries and targets, requiring
Q + N (#queries + #targets) passes through the
encoder to run the graph completion task. However,
unlike StAR, we do not need every entity-relation
pair in order to do head prediction.

4.5 Optimized Negative Sampling

Rather than sampling negative entities as targets,
that require additional passes through the encoder.
We use the true targets for other queries in the batch
as negative samples, filtering if the target would
form a true triple. This does affect inference but
does dramatically accelerate training.

5 Experiments

In this section we describe our thorough evaluation
protocol. We describe the two settings in which
we evaluate our inductive model and the infrastruc-
ture on which we implemented our model before
demonstrating its effectiveness on three benchmark
datasets. To analyze the importance of the various
components of StATIK, we present the results of
some detailed ablation studies. 2

2The code for our work can be found at
https://github.com/Elanmarkowitz/StATIK
and more details for reproduction can be found in the
supplement.

5.1 Evaluation Protocol

Our evaluation protocol follows that in (Bordes
et al., 2013), wherein for each test triple (h′, r, t′)
we generate two queries for the tail and head predic-
tion tasks: (h′, r, ?) and (?, r, t′). For each query,
we consider every entity in the graph as a candidate
target. We then rank all candidate triples in decreas-
ing order of score to see where the correct triple
(h′, r, t′) ranks. We evaluate in the filtered setting
as in Bordes et al. (2013). In the filtered setting,
existing valid triples are ignored when ranking can-
didate targets. We report Mean Reciprocal Rank
(MRR), Hits@1, Hits@3 and Hits@10 in line with
literature. All our metrics are reported as the aver-
age between the head prediction and tail prediction
tasks. This is more challenging than training for
only one type of prediction at a time.

As in Daza et al. (2021), we demonstrate the
effectiveness of StATIK in both a dynamic set-
ting as well as a transfer setting. The dynamic
setting corresponds to one in which at least one of
the entities present in a given test triple (h′, r, t′)
has not been seen by the model during training, i.e.
(h′ /∈ Etrain ∨ t′ /∈ Etrain). The dynamic setting
represents the most likely way in which a knowl-
edge graph grows over time. New entities that are
added, connect to one or more existing entities as
well as other new ones. The transfer setting rep-
resents the situation in which neither the head nor
the tail already exists in the knowledge graph, i.e.
(h′ /∈ Etrain ∧ t′ /∈ Etrain). This is a slightly more
challenging setting and performance in this setting
is a good indicator of inductivity.

5.2 Datasets

We test StATIK on three datasets. The first two are
the inductive versions of WN18RR and FB15k-237
created in Daza et al. (2021). These datasets split
the entities into a training set, Etrain, a validation
set, Eval, and a test set, Etest. The training graph
consists of the all the triples in which the head
and tail are both in Etrain. The validation and test

609

WN18RR FB15k-237

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Commonsense-KBC** 0.01 0.0055 0.009 0.019 0.00028 0.00001 0.000028 0.000056

GloVe-BOW* 0.170 0.055 0.215 0.405 0.172 0.099 0.188 0.316
BE-BOW* 0.180 0.045 0.244 0.450 0.173 0.103 0.184 0.316
GloVe-DKRL* 0.115 0.031 0.141 0.282 0.112 0.062 0.111 0.211
BE-DKRL* 0.139 0.048 0.169 0.320 0.144 0.084 0.151 0.263

BLP-TransE† 0.285 0.135 0.361 0.580 0.195 0.113 0.213 0.363
BLP-DistMult† 0.248 0.135 0.288 0.481 0.146 0.076 0.156 0.286
BLP-ComplEx† 0.261 0.156 0.297 0.472 0.148 0.081 0.154 0.283
BLP-SimplE† 0.239 0.144 0.265 0.435 0.144 0.077 0.152 0.274

StAR‡ 0.321 0.192 0.381 0.576 0.163 0.092 0.176 0.309

StATIK 0.516 0.425 0.558 0.690 0.224 0.143 0.248 0.381

Improvement 60.7% 121.3% 54.6% 19.8% 14.9% 26.5% 16.4% 5.0%

Table 3: Inductive Link Prediction results on WN18RR and FB15k-237 in the dynamic setting. **Results of running
(Malaviya et al., 2020) on our inductive data splits. *Baselines used in (Daza et al., 2021), † results of (Daza et al.,
2021), ‡ Results of running (Wang et al., 2021) on our inductive data splits.

graphs given by the union Eval ∪ Etrain or Etest ∪
Eval ∪ Etrain respectively, and all triples contained
within. The evaluation triples are those triples that
were not present in the training data (nor in the
validation set for the test triples). This is evaluation
for the dynamic setting.

The third benchmark is Wikidata5M, curated
and published by Wang et al. (2019b). Wikidata5M
contains close to 5 million entities and 20 million
triples. We use the inductive split intended by the
authors of (Wang et al., 2019b), in which neither
head nor tail in the validation or test triples have
been seen during training. This is evaluation for
the transfer setting. See Table 2 for an overview of
the datasets.

5.3 Baselines
Since we are focused on the task of link predic-
tion in the inductive setting, our main baselines
are BERT for Link Prediction (BLP) (Daza et al.,
2021) and StAR (Wang et al., 2021). Both recently
proposed models that also seek to leverage textual
information. For completeness, we also include
the other baselines from Daza et al. (2021). These
are a DKRL (Xie et al., 2016) implementation and
a bag-of-words (BOW) model that represents an
entity as the average of all its word embeddings.
For these models, entity and relation features are
created using GloVe embeddings as well as context
free BERT embeddings. On Wikidata5M, we also
compare against KEPLER (Wang et al., 2019b),
the work that curated the dataset. To the best of our
knowledge, these are the only inductive, embed-

Wikidata-5M

Model MRR H@1 H@3 H@10

KEPLER* 0.402 0.222 0.514 0.730

BLP-ComplEx† 0.489 0.262 0.664 0.877
BLP-SimpleE† 0.493 0.289 0.639 0.866

StATIK 0.770 0.765 0.771 0.779

Improvement 56.1% 164.7% 16.1% -12.5%

Table 4: Inductive Link Prediction results on Wikidata-
5M in the transfer setting. *Results of (Wang et al.,
2019b), †Model variants that perform the best on
Wikidata-5M from (Daza et al., 2021).

ding free, link prediction models, that also seek to
jointly leverage structural and textual information.

5.4 Results

We present three sets of results: (1) The main re-
sults, which comprise the performance of StATIK
on the three benchmark datasets; (2) Ablation stud-
ies to understand how different choices in our
model affect the overall performance; (3) Infer-
ence speed results to demonstrate utility. Results
on FB15k-237 and WN18RR are averaged over 5
runs, while results on Wikidata-5M are averages
over 2 runs.

5.4.1 Main Results
Tables 3 and 4 summarize the performance of
StATIK in comparison to other state of the art
baselines in the dynamic and transfer settings.
StATIK sets a new state-of-the-art on MRR,

610

Model Variant WN18RR FB15k-237

Use MPNN Finetune LM MRR H@1 H@10 MRR H@1 H@10

✗ ✗ 0.082 0.032 0.176 0.129 0.079 0.224

✗ 0.307 0.213 0.500 0.211 0.132 0.362

✗ 0.488 0.365 0.629 0.179 0.105 0.328

Table 5: Analyzing the importance of each component of the model to overall performance. As a reference, the
model variant used to obtain results in table 3 uses the MPNN as well as finetunes the language model.

Dataset

Model WN18RR FB15k-237

KGBert 46000 87000
STAR 434 321
BLP 14 21
StATIK (ours) 9.5 4

Table 6: Inference time per query in milliseconds per
Query (ms / q) comparison between inductive models.
Lower is better.

Hits@1 and Hits@3 on all datasets, sometimes by
a remarkably large margin and only underperforms
on Hits@10 on Wikidata-5M. In general we no-
tice diminishing benefits as we go from Hits@1 to
Hits@10. As noted in Wang et al. (2021), Hits@1
is a weakness for textual encoding based paradigms.
StAR and BLP include a structural objective to at-
tempt to remedy this but are outperformed by our
GNN based model. Hence it is not only important
to incorporate structure but also do so effectively.

5.4.2 Ablation Studies
In addition to the main results we run two sets
of ablation experiments. The first of these is to
understand the influence each model component
(MPNN or Language Model) has on the overall
model performanc. These results are summarized
in Table 5. The second set of ablation experiments
demonstrate the effect maximum number of words
allowed in the entity description has on StATIK.

6 Discussion

6.1 Inductivity

StATIK shows much greater ability to generalize
to entirely new entities that are added to the knowl-
edge graph as evidenced by the much superior per-
formance compared to baselines i n both dynamic
(Table 3) and transfer settings (Table 4). We hy-
pothesize that this is due to the power of MPNNs

to generalize to new nodes added to a graph as
well as entirely new graphs (Hamilton et al., 2017a;
Velickovic et al., 2018; Wang et al., 2020b). We
also note the effectiveness of our model at Hits@1
in the transfer setting, with less drop from Hits@3
and Hits@10 than in the dynamic setting. This
phenomenon remains to be more deeply explored
but possible factors include the quantity of data,
repeated structural patterns in the test set, or other
peculiarities of this dataset, such as how the trans-
fer graph was constructed.

6.2 Influence of Model Components
As shown in table 5, we find that while both the
language model and MPNN are important to model
performance, which matters more depends on the
dataset being evaluated on due to differing graph
structure. On Wordnet, the MPNN influences over-
all model performance more, possibly because the
graph has more repeated structure. On Freebase,
with richer text descriptions, the language model
influences the overall model performance more.

6.3 Effects of Description Length
Unsurprisingly, more input data means better per-
formance. However, there are diminishing returns
to description length. This is consistent with both
Wordnet and Freebase as demonstrated in Figure
3. Since increasing the max word length can in-
crease the computational demand as a result of the
lamguage model, there is a need to trade off be-
tween model and computational performance.

6.4 Inference Scalability
Inference scalability is paramount in any poten-
tially useful knowledge graph completion model,
especially when the link prediction task involves
a large number of target entities. Our comparison
with other state of the art, inductive knowledge
graph completion models in Table 6 demonstrates
that StATIK is much quicker at inference time

611

0.2

0.4

0.6

M
RR

H@
1

4 8 16 24
of words

0.2

0.4

0.6

H@
3

4 8 16 24
of words

H@
10

FB15k-237
WN18RR

Figure 3: Max word length effect on performance.

than other competing models. These results are
consistent with the theoretical computational com-
plexity of each model (Table 1).

7 Conclusion and Future Work

Our work introduces and explores a new model for
inductive knowledge graph completion that utilizes
structural and textual information, and sets state-
of-the-art on multiple benchmarks.

Ideas for future work include (i) testing this
model with other types of graph neural networks
that have already proved effective on KGs; (ii) test-
ing alternative neighborhood sampling techniques
beyond uniform random sampling; and (iii) extend-
ing this work to domains beyond text-based KGs.

Acknowledgements

This material is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001117C0053,
NSF MLWINS-2002874, USC-Meta Research
Center, USC-ISI MINDS Group, and a gift from
the Intel PrivateAI institute. The views, opinions,
and/or findings expressed are those of the author(s)
and should not be interpreted as representing the
official views or policies of the Department of De-
fense or the U.S. Government. We would also like
to acknowledge the reviewers who helped improve
this work.

References

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2018. Hypernetwork knowledge graph
embeddings. CoRR, abs/1808.07018.

Lisa Bauer. 2021. Identify, align, and integrate: Match-
ing knowledge graphs to commonsense reasoning
tasks. In EACL.

Rajarshi Bhowmik and Gerard de Melo. 2020. Explain-
able link prediction for emerging entities in knowl-
edge graphs. In SEMWEB.

Wen bing Huang, Tong Zhang, Yu Rong, and J. Huang.
2018. Adaptive sampling towards fast graph repre-
sentation learning. ArXiv, abs/1809.05343.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, J. Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. In NIPS.

Jian Jhen Chen, Tengfei Ma, and Cao Xiao. 2018. Fast-
gcn: Fast learning with graph convolutional networks
via importance sampling. ArXiv, abs/1801.10247.

Philipp Christmann, Rishiraj Saha Roy, Abdalghani
Abujabal, Jyotsna Singh, and Gerhard Weikum. 2019.
Look before you hop: Conversational question an-
swering over knowledge graphs using judicious con-
text expansion. Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge
Management.

Damai Dai, Hua Zheng, Fuli Luo, Pengcheng Yang,
Baobao Chang, and Zhifang Sui. 2021. Inductively
representing out-of-knowledge-graph entities by op-
timal estimation under translational assumptions.
ArXiv, abs/2009.12765.

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2018.
Building dynamic knowledge graphs from text
using machine reading comprehension. CoRR,
abs/1810.05682.

Daniel Daza, Michael Cochez, and Paul T. Groth. 2021.
Inductive entity representations from text via link
prediction. Proceedings of the Web Conference 2021.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2017. Convolutional 2d knowl-
edge graph embeddings. CoRR, abs/1707.01476.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable multi-
hop relational reasoning for knowledge-aware ques-
tion answering. In EMNLP.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari,
Ricardo Usbeck, and Jens Lehmann. 2020. Message
passing for hyper-relational knowledge graphs. In
EMNLP.

612

http://arxiv.org/abs/1808.07018
http://arxiv.org/abs/1808.07018
http://arxiv.org/abs/1810.05682
http://arxiv.org/abs/1810.05682
http://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1707.01476

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Ri-
ley, Oriol Vinyals, and George E. Dahl. 2017. Neu-
ral message passing for quantum chemistry. CoRR,
abs/1704.01212.

Liyu Gong and Qiang Cheng. 2019. Exploiting edge
features for graph neural networks. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 9203–9211.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu,
Xing Xie, Hui Xiong, and Qing He. 2020. A survey
on knowledge graph-based recommender systems.
ArXiv, abs/2003.00911.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017a. Inductive representation learning on large
graphs. CoRR, abs/1706.02216.

William L. Hamilton, Zhitao Ying, and J. Leskovec.
2017b. Inductive representation learning on large
graphs. In NIPS.

Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. 2015.
Learning knowledge graphs for question answering
through conversational dialog. In NAACL.

A. Hogan, E. Blomqvist, Michael Cochez, C. d’Amato,
Gerard de Melo, C. Gutierrez, J. E. L. Gayo, S. Kir-
rane, S. Neumaier, A. Polleres, R. Navigli, A. N.
Ngomo, S. M. Rashid, A. Rula, Lukas Schmelzeisen,
Juan Sequeda, Steffen Staab, and A. Zimmermann.
2021. Knowledge graphs. Communications of the
ACM, 64:96 – 104.

Jin Huang, Wayne Xin Zhao, Hong-Jian Dou, Ji rong
Wen, and Edward Y. Chang. 2018. Improving se-
quential recommendation with knowledge-enhanced
memory networks. The 41st International ACM SI-
GIR Conference on Research & Development in In-
formation Retrieval.

Seyed Mehran Kazemi and D. Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In NeurIPS.

Thomas Kipf and M. Welling. 2017. Semi-supervised
classification with graph convolutional networks.
ArXiv, abs/1609.02907.

Siyuan Liao, Shangsong Liang, Zaiqiao Meng, and
Qiang Zhang. 2021. Learning dynamic embeddings
for temporal knowledge graphs. WSDM ’21, page
535–543, New York, NY, USA. Association for Com-
puting Machinery.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and
Xiang Ren. 2019. Kagnet: Knowledge-aware
graph networks for commonsense reasoning. ArXiv,
abs/1909.02151.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. Proceedings of the 34th AAAI Con-
ference on Artificial Intelligence.

Elan Markowitz, Keshav Balasubramanian, Mehrnoosh
Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, G. V.
Steeg, and A. Galstyan. 2021. Graph traversal with
tensor functionals: A meta-algorithm for scalable
learning. ArXiv, abs/2102.04350.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. CoRR, abs/1912.01703.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Apoorv Saxena, Soumen Chakrabarti, and Partha P.
Talukdar. 2021. Question answering over temporal
knowledge graphs. In ACL.

M. Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and M. Welling. 2018.
Modeling relational data with graph convolutional
networks. ArXiv, abs/1703.06103.

Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich
Schwanecke, and Faisal Shafait. 2019. An open-
world extension to knowledge graph completion mod-
els. ArXiv, abs/1906.08382.

Baoxu Shi and Tim Weninger. 2018. Open-world knowl-
edge graph completion. In AAAI.

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. ArXiv,
abs/1902.10197.

Komal K. Teru, E. Denis, and William L. Hamilton.
2020. Inductive relation prediction by subgraph rea-
soning. In ICML.

Théo Trouillon, Johannes Welbl, S. Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML.

Shikhar Vashishth, Soumya Sanyal, V. Nitin, and
P. Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. ArXiv,
abs/1911.03082.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, A. Casanova, Adri-
ana Romero, P. Lio’, and Yoshua Bengio. 2018.
Graph attention networks. ArXiv, abs/1710.10903.

613

http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://doi.org/10.1145/3437963.3441741
https://doi.org/10.1145/3437963.3441741
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

Baocheng Wang and Wentao Cai. 2020. Knowledge-
enhanced graph neural networks for sequential rec-
ommendation. Inf., 11:388.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, pages 1737–1748.

Hongwei Wang, Hongyu Ren, and Jure Leskovec.
2020a. Entity context and relational paths for knowl-
edge graph completion. CoRR, abs/2002.06757.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. Dkn: Deep knowledge-aware network
for news recommendation. Proceedings of the 2018
World Wide Web Conference.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong
Pan. 2019a. Logic attention based neighborhood ag-
gregation for inductive knowledge graph embedding.
In AAAI.

Rui Wang, Bicheng Li, Shengwei Hu, Wenqian Du, and
Min Zhang. 2020b. Knowledge graph embedding via
graph attenuated attention networks. IEEE Access,
8:5212–5224.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2019b. KE-
PLER: A unified model for knowledge embedding
and pre-trained language representation. CoRR,
abs/1911.06136.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
M. Sun. 2016. Representation learning of knowledge
graphs with entity descriptions. In AAAI.

Jun Yan, Mrigank Raman, Tianyu Zhang, Ryan A. Rossi,
Handong Zhao, Sungchul Kim, Nedim Lipka, and
Xiang Ren. 2021. Learning contextualized knowl-
edge structures for commonsense reasoning. ArXiv,
abs/2010.12873.

B. Yang, Wen tau Yih, X. He, Jianfeng Gao, and
L. Deng. 2015. Embedding entities and relations for
learning and inference in knowledge bases. CoRR,
abs/1412.6575.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. ArXiv,
abs/1909.03193.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-
soning with language models and knowledge graphs
for question answering. ArXiv, abs/2104.06378.

Houyu Zhang, Zhenghao Liu, Chenyan Xiong, and
Zhiyuan Liu. 2020. Grounded conversation genera-
tion as guided traverses in commonsense knowledge
graphs. In ACL.

A Appendix

B Ethical Impact Statement

This work is designed for knowledge graph com-
pletion and thus may amplify the ethical ramifi-
cations of any work that utilizes such knowledge
graphs. In addition, this work is designed to help
automate the KG completion process. As a result,
this may reduce the number of required employed
maintainers of such knowledge bases. However,
it also provides tools to increase the effectiveness
of volunteer knowledge base maintainers. While
impossible to predict the long term effects, we see
many more clear positive near term effects than
negative ones.

C Data Format

The datasets are structured as tab seperated files.
The triple splits (ind-train.tsv, ind-valid.tsv, ind-

test.tsv) are formatted as
head_entity<tab>relation<tab>tail_entity

The entity description files (entity2text.txt, en-
tity2textlong.tsv) are formatted as
head_entity<tab>description

The relation description files (relation2text.txt)
are formatted as
relation<tab>description

D Reproducibility

D.1 Infrastructure
Experiments were conducted on a single GPU
server equipped with 8 Nvidia RTX 5000 GPUs
and an AMD EPYC 7502 32-Core Processor. All
models are written using PyTorch (Paszke et al.,
2019), and are trained using the GPUs in a data
parallel fashion.

The GPU budget per run is 16 GPU-hrs for
WN18RR, 24 GPU-hrs for FB15k-237, 480 GPU-
hrs for Wikidata5M.

D.2 Hyperparameters
Minimal hyperparameter optimization was per-
formed, instead, hyperparameters were copied

614

http://arxiv.org/abs/2002.06757
http://arxiv.org/abs/2002.06757
http://arxiv.org/abs/1911.06136
http://arxiv.org/abs/1911.06136
http://arxiv.org/abs/1911.06136
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

from those used in BLP (Daza et al., 2021). How-
ever, to take full advantage of the GPU’s available,
we increased the batch size to 32 training triples
(64 training queries) per GPU and increased the
learning rate from 2e-5 to 2e-4 to roughly compen-
sate. We keep the epochs the same as in BLP (40
epochs for WN18RR/FB15k-237 and 5 epochs for
Wikidata5M). Optimizer was AdamW with betas
(.9, .98) and linear schedule with warmup of 20%
of training steps.

Sampled neighbors per entity was set to 10 for
WN18RR and Wikidata5M, and tuned to 20 for
FB15k-237 due to it’s higher average degree.

We use the bert-base-cased version of
BERT from HuggingFace (Wolf et al., 2020) as
the language model for both feature extraction and
training. This model has 110 million parameters,
bringing the total number of parameters to 113 mil-
lion.

LayerNorm is also used for the initial entity and
relation representations as well as for each edge
and entity updates in the MPNN.

We use 24 words of text for each input and hard-
cap the number of tokens at 64. As per standard
practice, special token [CLS] is used at the begin-
ning of text, and [CLS] is used to separate entity
and relation text as well as at the end of the tok-
enization.

E Limitations

The main limitation of the model is that it requires
textual data for entities in order to run. It also does
not work on graphs that constantly change the set
of relation types.

Another limitation is that because it uses a trans-
former language model, it requires GPUs with
good memory. The language model component
contributes that vast majority of the weight of the
model.

615

