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Abstract

We present BEEP (Biomedical Evidence-
Enhanced Predictions), a novel approach
for clinical outcome prediction that retrieves
patient-specific medical literature and incorpo-
rates it into predictive models.! Based on each
individual patient’s clinical notes, we train lan-
guage models (LMs) to find relevant papers
and fuse them with information from notes
to predict outcomes such as in-hospital mor-
tality. We develop methods to retrieve liter-
ature based on noisy, information-dense pa-
tient notes, and to augment existing outcome
prediction models with retrieved papers in a
manner that maximizes predictive accuracy.
Our approach boosts predictive performance
on three important clinical tasks in compari-
son to strong recent LM baselines, increasing
F1 by up to 5 points and precision@Top-K by
a large margin of over 25%.

1 Introduction

Predicting the medical outcomes of hospitalized
patients holds the promise of enhancing clinical de-
cision making. With the advent of electronic health
records (EHRs), more clinical data has become
available to train Al models for outcome predic-
tion (Rajkomar et al., 2018; Hashir and Sawhney,
2020). In particular, language models pretrained on
biomedical and/or clinical text are demonstrating
increasing proficiency when fine-tuned for the task
of predicting outcomes such as in-hospital mortal-
ity or length of stay (van Aken et al., 2021).

In this work, we explore a novel approach for
improving clinical outcome prediction by dynam-
ically retrieving relevant medical literature for
each patient, and incorporating this literature into
language models (LMs) trained for outcome pre-
diction from clinical notes. This is in contrast
to existing outcome prediction work that uses

*Work done during internship at AI2.
'Our code is available at https://github.com/allenai/BEEP.
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Figure 1: Overview of BEEP. We retrieve literature rel-
evant to the patient description and an outcome of inter-
est, in-hospital mortality in this example. We combine
both sources of information to train a model to predict
the outcome with better accuracy.

only clinical notes (Boag et al., 2018; Hashir and
Sawhney, 2020). Recent LM-based approaches
van Aken et al. (2021) have designed pretraining
schemes over corpora of clinical notes and general
biomedical literature. This is in contrast to our
work, where we directly incorporate a literature
retrieval mechanism into our outcome prediction
model, by finding papers relevant to specific pa-
tient cases. Our approach, named BEEP (Biomed-
ical Evidence-Enhanced Predictions), is broadly
inspired by Evidence Based Medicine (EBM)—
a leading paradigm in modern medical practice
which calls for finding the “current best evidence”
to support optimal clinical decisions for each indi-
vidual patient (Sackett et al., 1996).

Our setting presents unique challenges. First,
our approach requires retrieving literature based on
noisy EHR notes containing multitudes of infor-
mation (e.g., medical history, ongoing treatments),
unlike orthogonal efforts on extracting and summa-
rizing scholarly information related to well-formed
questions (e.g., the efficacy of ACE inhibitors in
adult patients with type-2 diabetes) (Wallace, 2019;
Lehman et al., 2019; DeYoung et al., 2020, 2021).
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In addition, as our end task is predicting patient
outcomes, another challenge lies in aggregating the
retrieved literature in a way that maximizes predic-
tion accuracy. Toward these challenges, we make
the following key contributions:

* Literature-Augmented Model. As illustrated
in Figure 1, for each ICU patient and each target
outcome to be predicted (e.g., mortality), our
model retrieves papers from PubMed, encoded
and fused together with the ICU admission note
for making a final prediction. We present sev-
eral architectures for retrieving papers and for
aggregating and combining them with clinical
notes. We make our code, cohort selection, paper
identifiers and models publicly available.

* Adding Literature Boosts Results. For evalua-
tion, we measure both overall performance and
precision/recall @ Top-K, to account for the real-
world scenario where “alarms” are only raised
for high-confidence predictions to avoid alarm fa-
tigue (Sendelbach and Funk, 2013). BEEP pro-
vides substantial improvements over baselines,
with strong gains in overall classification perfor-
mance and precision@ Top-K. For example, we
improve F1 by up to 5 points and precision @ Top-
K by a large margin of over 25%.

* Exploring Patient-Specific Retrieval. We ex-
plore a range of sparse and dense retrieval ap-
proaches, including language models, for the
complex and underexplored task of retrieving
relevant literature based on a patient’s noisy,
information-dense clinical note. Our final re-
trieval module employs a retrieve-rerank ap-
proach that effectively retrieves helpful literature,
as shown in our analysis (section 5).

We hope our work opens new research directions
for automatically scanning literature for patient-
specific evidence, and combining it with EHR in-
formation to boost accuracy of medical predictive
models. Finally, our work raises the more general
prospect of building predictive models that can dy-
namically learn to retrieve literature for optimizing
task accuracy, in medicine and other related areas.

2 Related Work

Patient-Specific Literature Retrieval. Since
2014, the Text REtrieval Conference (TREC) has
organized a series of challenges to advance research
in this area. The TREC Clinical Decision Support
(CDS) tracks focused on evaluating systems on the

task of retrieving biomedical articles relevant for
answering generic clinical questions about patient
medical records (e.g., identifying potential diag-
noses, treatments, and tests) (Simpson et al., 2014;
Roberts et al., 2015, 2016). TREC CDS 2014 and
2015 used short case reports as idealized representa-
tions of medical records due to the lack of available
de-identified records. TREC 2016 shifted to using
real-world medical records from the Medical Infor-
mation Mart for Intensive Care (MIMIC) database
(Johnson et al., 2016).2 In our work, our focus is on
predicting clinical outcomes using ICU admission
notes and patient-specific retrieved literature.
Ueda et al. (2021) use contextualized rep-
resentations on more structured retrieval tasks
not involving clinical notes (Voorhees et al.,
2021), leaving open the question of how large
pretrained language models (LMs) would fare on
long, noisy EHR text. We explore this by exper-
imenting with LMs for retrieval based on EHR text.

Clinical Outcome Prediction. The idea of using
automated outcome prediction for assisting clin-
ical triage, workflow optimization, and hospital
resource management has received much interest
recently, especially given the conditions of the
COVID-19 pandemic (Li et al., 2020). Predictive
models based on structured (e.g., lab results) and
unstructured (e.g., nursing notes) information have
been built for key clinical outcomes including mor-
tality (Jain et al., 2019; Feng et al., 2020), length of
hospital stay (van Aken et al., 2021), readmission
(Jain et al., 2019), sepsis (Feng et al., 2020), pro-
longed mechanical ventilation (Huang et al., 2020),
and diagnostic coding (Jain et al., 2019; van Aken
et al., 2021). Increasingly, models have leveraged
unstructured text from notes since they can con-
tain key information for outcome prediction (Boag
et al., 2018; Jin et al., 2018). Most recently, van
Aken et al. (2021) attempted this using large pre-
trained LMs. Our work compares the performance
of a broader range of state-of-the-art pretrained
language models on outcome prediction tasks.

3 BEEP: Literature-Enhanced Clinical
Predictive System

Task & Approach Overview. Our goal is to
improve models for clinical outcome prediction

%Since 2017, the focus has switched to TREC-PM (pre-
cision medicine) tracks where articles are retrieved based on
short structured queries with attributes such as patient condi-
tion and demographics, a less realistic scenario.
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Figure 2: Complete system pipeline, unpacking the high-level overview seen in Figure 1. For a given patient
ICU admission note, the literature retrieval module first retrieves relevant biomedical abstracts from a clinical
outcome-specific index, then reranks a top-ranked subset of abstracts. The outcome prediction module aggregates
information from these reranked abstracts and fuses it with the admission note to make the final prediction

from EHR notes by augmenting them with relevant
biomedical literature. BEEP consists of two main
stages: (i) literature retrieval, and (ii) outcome pre-
diction. We also briefly experiment with a formu-
lation that trains both jointly (details in section 4).
Given a patient EHR note () and a clinical out-
come of interest y, the first stage is to identify a set
of biomedical abstracts Docs(Q) = {D1, ..., Dy, }
from PubMed? that may be helpful in assessing the
likelihood of the patient having that outcome. The
next stage is to augment the input to an EHR-based
outcome prediction model with these retrieved ab-
stracts (@ U Docs(Q)) and predict the final out-
come. Figure 1 provides a high-level illustration of
BEEP, and Figure 2 unpacks it with more detail.
Next, we describe our system’s main components.

3.1 Literature Retrieval Module

Our literature retrieval module consists of three
components: (i) an index of biomedical abstracts
pertaining to the outcome of interest, (ii) a retriever
that retrieves a ranked list of abstracts relevant to
the patient note from the index, and (iii) a reranker
that reranks retrieved abstracts using a stronger
document similarity computation model. For the
retriever, we experiment with both sparse and dense
models. We follow the standard retrieve-rerank ap-
proach, which has been shown to achieve good bal-
ance between efficiency and retrieval performance
(Dang et al., 2013), and has recently also proved
useful for large-scale biomedical literature search
(Wang et al., 2021). In the retrieval step, we priori-
tize efficiency, using models that scale well to large
document collections but are not as accurate, to re-
turn a set of top documents. In the reranker step, we
prioritize retrieval performance by running a com-
putationally expensive but more accurate model on
the smaller set of retrieved documents.

3https://pubmed.ncbi.nlm.nih.gov

3.1.1 Outcome-Specific Index Construction

Since we are interested in identifying information
related to a specific outcome for a patient, we be-
gin by constructing an index of all abstracts from
PubMed relevant to that outcome to limit search
scope. To gather all abstracts relevant to a clinical
outcome, we first identify MeSH (Medical Subject
Heading) terms associated with the outcome by
performing MeSH linking on the outcome descrip-
tions using scispaCy (Neumann et al., 2019). These
associated MeSH terms are then used as queries to
retrieve abstracts.* For some MeSH terms that are
too broad (e.g., “mortality”), we include additional
qualifiers (e.g., “human”) to make sure we do not
gather articles that are not relevant to our overall
patient cohort. Appendix A lists the final set of
queries used for all clinical outcomes considered
in this work. Abstracts retrieved via this process
are used to construct the outcome-specific index.

3.1.2 Sparse Retrieval Model

The sparse retrieval model returns top-ranked ab-
stracts based on cosine similarity between TF-IDF
vectors of MeSH terms for the query (clinical note)
and the documents (outcome-specific abstracts).
MeSH terms from abstracts are extracted by run-
ning scispaCy MeSH linking over the abstract text.
PubMed MeSH tagging is done only at the abstract
level, and does not reflect actual term frequency in
the text, requiring our extraction step. However,
extracting MeSH terms from clinical notes requires
a more elaborate pipeline, due to two major issues:

e Entity type and boundary issues: Off-
the-shelf entity extractors like scispaCy and
cTAKES (Savova et al., 2010) extract some en-
tity types that are uninformative for relevant lit-
erature retrieval, e.g., hospital names, references

*https://www.ncbi.nlm.nih.gov/books/NBK25499/
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to family members, etc. They also have a ten-
dency to ignore important qualifiers. For exam-
ple, given a sentence containing the entity “right
lower extremity pain”, both extractors returned
“extremity” and “pain” as separate entities.

* Negated entities: Clinical notes have a high
density of negated entities (up to 50% of (Chap-
man et al., 2001)). These entities must be iden-
tified and discarded prior to literature retrieval
to avoid retrieving articles about symptoms and
conditions that are not exhibited by the patient.

To handle these issues, we train an entity ex-
traction model that focuses on problems, tests,
and treatments with empirically good coverage
of important qualifiers (Uzuner et al., 2011). We
then filter negated entities with negation detection
(Harkema et al., 2009) and perform entity linking
to MeSH terms. For more information and imple-
mentation details see Appendix B.

3.1.3 Dense Retrieval Model

We add a dense retrieval model to complement
the sparse retriever, an approach that has shown
promise in recent work (Gao et al., 2021). Our
dense retrieval model maps clinical notes (queries)
and biomedical abstracts (documents) to a shared
dense low-dimensional embedding space. Comput-
ing similarity between these encoded vectors al-
lows for softer matching beyond surface form. For
dense retrieval, we use a BERT-based bi-encoder
model. We use a bi-encoder to support scaling to
large document collections, as opposed to cross-
encoder models which are much slower (e.g., (Gu
et al., 2021)). We use PubmedBERT (Gu et al.,
2021) as the encoder and train our bi-encoder using
the dataset from the TREC 2016 clinical decision
support task (Roberts et al., 2016). For more de-
tails, see Appendix B. Our bi-encoder achieves
mean precision@ 10 score of 45.67 on TREC 2016
data in 5-fold cross-validation, comparable to state-
of-the-art results (Das et al., 2020).

3.1.4 Reranker Model

The reranker model takes a subset of top-ranked
documents from both the sparse and dense retrieval
models and rescores them. We use a BERT-based
cross-encoder model for reranking, prioritizing
ranking performance over efficiency on this smaller
subset. Given a query clinical note () and an ab-
stract document D;, we run a PubmedBERT-based
encoder over the concatenation of both ([CLS]

@ [SEP] D; [SEP]) to compute an embedding

Egp,. This embedding is run through a linear layer
to produce a relevance score, trained using cross-
entropy loss with respect to document relevance
labels from the TREC 2016 dataset. Our cross-
encoder achieves a mean precision@ 10 score of
48.33 on TREC 2016 in 5-fold cross-validation,
which is also comparable to state-of-the-art perfor-
mance on TREC CDS 2016 (Das et al., 2020).

From the top-ranked documents returned by the
reranker, the top k are selected” to be passed along-
side the patient clinical note to the outcome predic-
tion module, which we describe next.

3.2 Outcome Prediction Module

The goal of this module is to compute an aggre-
gate representation from the set of top & abstracts
relevant to the clinical note, and then predict the
outcome of interest using this aggregate represen-
tation and the note representation.

3.2.1 Aggregation Strategies

Let Docs(Q) = D;,..., Dy be the set of rele-
vant abstracts retrieved for clinical note () and
BERT(X) be the encoder function that returns
an embedding E'x given a document X. We
experiment with four different strategies to
compute an aggregate literature representation for
Docs(Q), which we denote by LR(Q).

Averaging. Averaging encoder representations:

k
LR(Q) = % >  BERT(D;) 1)
i=1

Weighted Averaging. Weighted average of en-
coder representations:

k
LR(Q) = ——— Y wi - BERT(D) ()
i1 Wi i
where weights w; are the relevance scores com-
puted by the reranker. The final outcome is
computed by concatenating note representation
BERT(Q) with LR(Q) and running this through
a linear layer.

We also concatenate the note embedding with
each abstract (Egp, = [BERT(Q); BERT(D;)]),
run outcome prediction and aggregate output prob-
abilities as follows.

Soft Voting. Averaging per-class probabilities
from k outcome prediction runs:

k
1
ply=c)= Z E ply =clEgp,) ()
=1

SWe treat k as a hyperparameter, see appendix C.
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Outcome 0 1 2 3
PMV 3,776 3,335 - -
MOR 43,609 5,136 - -
LOS 5,596 16,134 13,391 8,488

(a) Class distribution for all outcomes. For PMYV, classes 0
and 1 refer to cases that don’t/do require prolonged ventilation.
For MOR, classes 0 and 1 refer to patients that don’t/do die
in admission. For LOS, classes 0-3 refer to stay lengths of <3
days, 3-7 days, 1-2 weeks, and >2 weeks respectively.

Outcome Train Dev Test #Articles
PMV 5,691 712 708 81,311
MOR 33,997 4918 9,830 90,125

LOS 30,421 4,391 8,797 93,594

(b) Training, development and test splits, and total number
of PubMed articles in our outcome-specific index for each
clinical outcome.

Table 1: Data statistics per outcome

Weighted Voting. Weighted average of per-class
probabilities from %k outcome predictions runs:

k
1
ply=c)=——— > wi ply=-clEgp,)
Z;C:l Wi ; Y
“4)

4 Experiments & Results

We test our system on the task of predicting clinical
outcomes from patient admission notes. Predicting
outcomes from admission notes can help with early
identification of at-risk patients and assist hospi-
tals in resource planning by indicating how long
patients may require hospital/ICU beds, ventilators
etc. (van Aken et al., 2021).

4.1 Clinical Outcomes

We evaluate our system on three clinical outcomes:

* PMYV: Prolonged mechanical ventilation predic-
tion, identifying whether a patient will require
ventilation for >7 days (Huang et al., 2020).

* MOR: In-hospital mortality prediction, identify-
ing whether a patient will survive their current
admission (van Aken et al., 2021).

¢ LOS: Length of stay prediction is the task of
identifying how long a patient will need to stay
in the hospital. We follow van Aken et al. (2021)
and group patients into four major categories
based on clinician recommendations: <3 days,
3-7 days, 1-2 weeks, and >2 weeks.

PMYV and MOR are binary classification tasks,
while LOS is a multi-class classification task. We

predict these outcomes from patient admission
notes extracted from the MIMIC III v1.4 database
(Johnson et al., 2016), which contains de-identified
EHR data including clinical notes in English from
the Intensive Care Unit (ICU) of the Beth Israel
Deaconess Medical Center in Massachusetts be-
tween 2001 and 2012. Admission notes are con-
structed by filtering discharge summary documents
from MIMIC to only retain the following sections
typically known at admission: Chief complaint,
(History of) Present illness, Medical history, Ad-
mission medications, Allergies, Physical exam,
Family history and Social history. Notes that do
not contain any of these sections are excluded. For
PMYV, we follow the cohort selection process from
Huang et al. (2020), and include all patients who
were above 18 years of age and were on mechan-
ical ventilation for at least 2 days with more than
6 hours each day. Patients transferred from other
hospitals, organ donors, and patients with neuro-
muscular disease, head and neck cancer, and ex-
tensive burns, which always lead to PMV and may
act as confounds, were excluded. For MOR and
LOS, we follow the same cohort selection process
as van Aken et al. (2021), and include all patients
except newborns and remove duplicate admissions.
Following these cohort selection processes results
in the data splits shown in Table 1b. Table 1b also
shows the numbers of relevant PubMed articles for
all three clinical outcomes.

4.2 Selecting the Encoder Language Model

Since the encoder used for outcome prediction
needs to produce representations for both clinical
notes and relevant abstracts, we choose language
models that have been pretrained on both biomed-
ical and clinical text. We evaluate the following
models on outcome prediction (without literature
augmentation) to choose a suitable encoder:

¢ ClinicalBERT (Alsentzer et al., 2019): Clini-
calBERT further pretrains BioBERT (Lee et al.,
2020), a biomedical language model, on EHR
notes from MIMIC III. We evaluate both ver-
sions: one trained on discharge summary notes
only, and one trained on both discharge sum-
maries and nursing notes.

¢ CORe (van Aken et al., 2021): CORe further
pretrains BioBERT with a next sentence predic-
tion objective on sentences describing admis-
sions and outcomes. CORe jointly trains on EHR
notes and biomedical articles.
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PMV MOR LOS

Model AUROC Micro F1 Macro F1 AUROC MicroF1 Macro F1 AUROC Micro F1 Macro F1

BLUEBERT 54.27 53.25 51.64 81.49 89.11 62.69 73.22 45.66 44.18
+Avg 57.21 54.66 52.32 83.90 90.52 61.62 71.66 45.22 40.66
+SVote 58.16 56.07 52.63 84.21 90.60 61.00 72.54 46.02 42.46
+WVote 57.71 5791 56.67 84.00 90.45 61.02 71.49 44.82 39.55
+WAvg 57.59 55.65 52.21 84.26 90.44 60.49 72.58 45.90 42.39

UMLSBERT 56.44 56.07 54.97 83.34 87.93 66.93 72.19 43.12 42.20
+Avg 58.36 56.50 54.62 84.02 90.41 60.28 72.25 45.61 41.58
+SVote 55.92 54.66 50.94 83.30 84.82 67.23 72.14 45.55 42.12
+WVote  59.43 56.07 54.26 84.65 90.62 62.93 72.71 46.44 42.71
+WAvg 59.30 56.50 53.70 83.59 90.35 59.61 71.02 44.58 39.95

Table 2: Performance of baseline and literature-augmented outcome prediction models on all clinical outcomes. We
note that LOS is a multiclass target; we observe substantial gains in 2/4 of the classes (Table 10 in the Appendix).

* BLUEBERT (Peng et al., 2019): BLUEBERT
further pretrains BERT (Devlin et al., 2019)
jointly on EHR notes and PubMed abstracts.

e UMLSBERT (Michalopoulos et al., 2021):
UMLSBERT further pretrains ClinicalBERT on
EHR notes from MIMIC, with tweaks to the
architecture and pretraining objective to incor-
porate conceptual knowledge from the Unified
Medical Language System (UMLS) Metathe-
saurus (Schuyler et al., 1993).

Note that in this experiment, we predict clinical
outcomes from patient admission notes only, with-
out incorporating literature. We also use weighted
cross-entropy loss to manage class imbalance (see
Appendix B). Table 5 in the Appendix shows the
performance of the above language models on the
validation sets for all clinical outcomes. We select
the top-performing language models BLUEBERT
and UMLSBERT for our remaining experiments.°

4.3 Literature Augmentation Results

We provide two sets of results: for overall perfor-
mance, and for high-confidence predictions.

Overall Performance. Table 2 shows the overall
performance of our literature-augmented outcome
prediction system on all three clinical outcomes.
We test our system using both UMLSBERT and
BLUEBERT as encoders, as well as all four litera-
ture aggregation strategies. We report three metrics
for each setting: (i) area under the receiver oper-
ating characteristic (AUROC), (ii) micro-averaged
F1 score, and (iii) macro-averaged F1 score. From
Table 2, we observe that incorporating literature
leads to performance improvements on two of three

SWe also experiment with CORe but observe consistently
lower scores (Table 8 in Appendix F).

No PMV PMV
Model Prec@10 Rec@10 Prec@10 Rec@10
BLUEBERT 52.86 9.95 55.71 11.61
+Avg 64.29 12.1 60.0 12.5
+SVote 61.43 11.56 64.29 13.39
+WVote 62.86 11.83 52.86 11.01
+WAvg 58.57 11.02 52.86 11.01
UMLSBERT 58.57 11.02 57.14 11.90
+Avg 67.14 12.63 64.29 13.39
+SVote 61.43 11.56 62.86 13.1
+WVote 64.29 12.1 64.29 13.39
+WAvg 68.57 129 62.86 13.1
(a) For PMV
No MOR MOR
Model Prec@10 Rec@10 Prec@10 Rec@10
BLUEBERT 99.8 11.15 46.39 23.62
+Avg 99.59 11.13 68.91 17.81
+SVote 99.69 11.14 73.39 16.55
+WVote 99.59 11.13 68.36 16.94
+WAvg 99.8 11.15 69.46 16.07
UMLSBERT 99.8 11.15 42.06 39.21
+Avg 99.59 11.13 69.07 15.78
+SVote 99.8 11.15 40.69 38.72
+WVote 99.49 11.12 68.44 19.94
+WAvg 100.0 11.17 68.92 14.81
(b) For MOR

Table 3: Precision and recall scores for top 10% high-
confidence predictions per class.

clinical outcomes, PMV and mortality. On LOS
prediction, results are more mixed, with minor im-
provements on micro F1 but no improvements on
other metrics. Comparing BLUEBERT and UMLS-
BERT, variants that use UMLSBERT do slightly
better on PMV and mortality, while results on LOS
are more mixed. Comparing across literature aggre-
gation strategies, there is no clear winner, though
voting-based strategies seem to have a slight advan-
tage, especially on UMLSBERT.

Evaluating High-Confidence Predictions. In
addition to standard evaluation, we evaluate the
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top 10% high-confidence predictions per class for
all models (precision/recall@ TOP-K), informative
for two key reasons. First, when using automated
outcome prediction systems in a clinical setting,
it is reasonable to only consider raising alarms
for high-confidence positive predictions to avoid
alarm fatigue (Sendelbach and Funk, 2013). Sec-
ond, high-confidence predictions for both positive
and negative classes can be used to reliably assist
with hospital resource management (e.g., predict-
ing future ventilation and hospital bed needs).
Tables 3a and 10 show the precision/recall-
@TOP-K scores for all models on prolonged me-
chanical ventilation, mortality, and length of stay
prediction. In Table 3a, we see that our literature-
augmented models achieve much higher precision
scores than the baseline (~9-12 points higher in
most cases) for the PMV negative class. We also
see higher precision scores than the baseline for
the positive class (~5-9 points higher in most
cases). This is a strong indicator that our literature-
augmented pipeline might offer more utility for
PMYV detection in a clinical setting than using EHR
notes only. Table 3b shows similarly encourag-
ing trends for mortality prediction. The mortality
prediction dataset is the most skewed of the three
datasets, and therefore we do not see much perfor-
mance difference across models on the negative
class. However, on the positive class, our literature-
augmented models show dramatic increase in pre-
cision. In particular, BLUEBERT-based literature
models show an increase in precision of ~22-27
points, at the expense of only ~6-7 point drop in
recall relatively to non-literature models.” This
also indicates that literature-augmented mortality
prediction might be more precise and reliable in
a clinical setting than using clinical notes alone.
From Table 10 (Appendix H), we can see that for
LOS prediction, our models show clear gains (~2-
5 points) on classes 1 and 2 (i.e., 3-7 days and
1-2 weeks), and minor gains for some variants on
class 3 (>2 weeks). We also perform an alternate
evaluation in which we only score predictions from
our literature-augmented models that show a rela-
tive confidence increase of at least 10% over the
baseline prediction, presented in Appendix H.

Learning To Retrieve Using Outcomes. BEEP
trains separate models for literature retrieval and
outcome prediction. Inspired by Lee et al. (2019),

"Note that since the MOR class is rare, a larger recall drop
could still translate to a small number of incorrect cases only

we develop a learning-to-retrieve (L2R) formula-
tion that trains both jointly to ensure that the re-
triever can learn from outcome feedback. However,
our L2R model does not improve performance over
BEEP (results in Table 7 in Appendix E). We pro-
vide discussion for potential reasons in Appendix E.
This is an interesting direction for future work.

5 Analysis and Discussion

Given BEEP’s improved performance, we further
assess the utility of retrieved literature and cases
where adding literature is particularly helpful.

Diversity of retrieved literature. As a prelimi-
nary analysis, we evaluate the diversity of the ab-
stracts retrieved for admission notes in our datasets,
as a proxy for the degree to which literature is per-
sonalized to specific patient cases. For the 100
most frequently retrieved abstracts for each clinical
outcome, Figures 4a, 4b, and 4c in Appendix H
show proportions of patient notes for which these
abstracts are judged as relevant by our retrieve-
rerank pipeline. From these histograms, we see
a stark difference for LOS which is much less di-
verse than both PMV and MOR, indicating that
the literature retrieved for length of stay prediction
may be less personalized to patient cases than the
literature retrieved for other outcomes. We leave
to future work exploration of diversifying retrieved
papers across patients and examining the effect on
outcome prediction performance.®

Qualitative examination of retrieved literature.
We qualitatively examine literature retrieved for
cases in which our model shows large confidence
increases over the baseline to determine its utility
in making the right prediction. We study increases
in both directions, i.e. cases in which adding litera-
ture resulted in a confidence increase in either the
correct outcome label (good) or incorrect outcome
label (bad). For each clinical outcome, a bio-NLP
expert looked at the top 5 cases from each category
based on the magnitude of confidence increase (to-
tal 10 cases per outcome). For each case, the expert
looks at the top 5 abstracts retrieved for the case
(total 50 abstracts per outcome) and assigns each
abstract to one of 8 categories we define for cate-
gorizing degree of relevance and type of evidence
provided, including retrievals considered helpful

8We perform an ablation in which we use only the retrieved
literature for prediction, showing quantitative evidence for the
utility of retrieved literature (see Appendix G).
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Patient EHR Retrieved Abstract Evidence Type Outcome
CHIEF COMPLAINT: liver tranplant Retrospective review of data of 73 con- Patient condition = No PMV
PRESENT ILLNESS: ..s/p liver tran- secutive patients with cirrhosis requir- and outcome
plant..Dx: ESLD secondary to alcoholic  ing MV..majority of patients, 51/64 directly related
cirrhosis. (79.7%), dying in the first 48 hours of
MEDICAL HISTORY: EtOH Cirrhosis intubation...
CHIEF COMPLAINT: Aortic dissection Acute type A aortic dissection presents Known outcome No MOR
PRESENT  ILLNESS:  ..72-year-old a formidable challenge...the most im- indicators not
woman...chest pain..had type A aortic  portant variables associated with in- present in
dissection...an intramural hematoma...proceed  hospital mortality in patients undergo- patient
with surgery... ing surgery for this condition...suggests
MEDICAL HISTORY: HTN Renal failure that CPB time, diabetes mellitus and

postoperative bleeding are the main de-

terminants of in-hospital death.
CHIEF COMPLAINT: Dyspnea, fever ...study identifies specific predictors of in-  Ongoing LOS >2
PRESENT ILLNESS: 58F w/ HCV cir- creased mortality and resource utilization ~ treatment and weeks

rhosis...requiring BiPAP, ultimately ur-
gent intubation... extubated ... short of
breath...

in cirrhotic patients...Increased LOS in  outcome related
the MICU was associated with mechan-

ical ventilation...

MEDICAL HISTORY: HCV cirrhosis

Table 4: Qualitative examples of retrieved literature that is helpful for increasing prediction confidence of the
correct outcome. Case 1 shows an example of retrieved literature that strongly matches patient condition and
provides direct evidence linking it to the outcome of interest. Case 2 shows an example with indirect evidence,
in which retrieved literature lists outcome indicators not present in the patient. Case 3 shows an example of
retrieved literature describing a link between patient’s ongoing treatment and outcome of interest. green: patient
characteristics; blue: outcome of interest; red: known indicators of the outcome measure not present in the patient.

= Unhelpful * Helpful
100% .
50%
25%
0% — — — — — — —
PMV PMV  MOR MOR LOS LOS

Correct Incorrect Correct Incorrect Correct Incorrect

Figure 3: Literature categorization for both correct and
incorrect outcome cases. For PMV and MOR, retrieved
literature for correct cases is more often categorized as
helpful, and unhelpful literature dominates for incor-
rect cases. For LOS, literature for both categories is
more often categorized as unhelpful.

and unhelpful. For example, see Table 4 (evidence
type column; more in Appendix).

As seen in Table 4, for helpful categories, re-
trieved literature matches patient characteristics
(especially current condition) and includes eviden-
tial links between outcome of interest and patient
conditions/treatment. In the first case, the retrieved
abstract provides evidence that patients with cirrho-
sis have high mortality in the first 48 hours of in-
tubation, entails the patient might not undergo pro-
longed ventilation. In the second case, the abstract

lists comorbidities associated with in-hospital mor-
tality (outcome of interest), but none are present in
the patient under consideration, which can be taken
as weak indication that the patient may survive.
Similarly, for the third case, the retrieved abstract
mentions that cirrhotic patients may have longer
hospital stays if they are on mechanical ventilation.
This matches our patient’s treatment history since
she has cirrhosis and was briefly intubated and ex-
tubated, before experiencing shortness of breath
again. Given this, the patient might have a longer
length of stay. Conversely, unhelpful retrieved liter-
ature often does not match patient characteristics or
may not contain evidence relevant to the outcome.
See more example explanations in Appendix I.

Figure 3 presents the distribution of helpful and
unhelpful categories for both kinds of cases for all
outcomes. We can see that for correct outcome
cases from both PMV and mortality, retrieved liter-
ature is more frequently assigned to one of the help-
ful categories, while for incorrect outcome cases,
retrieved literature is more frequently assigned to
one of the unhelpful categories. For LOS, unhelp-
ful categories dominate both types of cases, espe-
cially prevalent in incorrect outcomes.
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6 Conclusion

In this paper, we introduced BEEP, a system that
automatically retrieves patient-specific literature
based on intensive care (ICU) EHR notes and uses
the literature to enhance clinical outcome predic-
tion. On three challenging tasks, we obtain sub-
stantial improvements over strong recent baselines,
seeing dramatic gains in top-10% precision for mor-
tality prediction with a boost of over 25%.

Our hope is that this work will open new research
directions into bridging the gap between Al-based
clinical models and the Evidence Based Medicine
(EBM) paradigm in which medical decisions are
based on explicit evidence from the literature. An
interesting direction is to incorporate evidence iden-
tification and inference (Wallace, 2019; De Young
et al., 2020) directly into our retrieval and predic-
tive models. Another important question to explore
relates to the implications our approach has on in-
creasing the interpretability of clinical Al models.
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Ethical Concerns

Incorporating outcome prediction models into a

medical decision-making pipeline effectively will

require these technologies to adhere to standards
set by the core principles of medical ethics: benef-
icence, non-maleficence, autonomy, and justice

(Beauchamp et al., 2001). These requirements may

raise the following concerns when deploying out-

come prediction models in clinical settings:

* Out-of-Cohort Generalization: The extent to
which outcome prediction models generalize to
patient cohorts that may not have been present
in their training data is unclear. If model ac-
curacy is significantly lower on “out-of-cohort”
patients, using inaccurate/uncertain predictions
during decision making may violate the require-
ment that any application of technology must
be beneficent and non-maleficent to individual
patients. Our proposed technique can partly miti-
gate the generalization issue by identifying addi-
tional supporting evidence from literature, which
may be better tailored to individual patient char-

acteristics, instead of using only cohort-level evi-
dence. However, biomedical literature can also
have blind spots, with certain cohorts and dis-
ease combinations being under-studied, and even
literature-augmented prediction may not be suffi-
ciently accurate.

* Algorithmic Biases: Since outcome prediction
models are trained on historical health data, ex-
isting inequities in healthcare access may trans-
late into models continuing to perpetuate unin-
tentional discrimination against patients from
under-served demographics. For example, mod-
els might predict poorer outcomes (e.g., high
mortality, poor response to treatment, etc.) for
specific demographics that have historically had
worse outcomes due to poor access to care. Such
issues are a clear violation of the justice require-
ment, and must be tackled before deployment.

* Informed Consent: Lastly, if outcome predic-
tion models are used in clinical settings, patients
and their caregivers must be made aware of their
use, since the principle of autonomy emphasizes
that patients must be provided all relevant medi-
cal information to support autonomous decision
making. The black-box nature of these mod-
els raises another issue: how can we help pa-
tients/caregivers understand and interpret out-
come predictions to further support their auton-
omy in decision making? We hope that literature-
augmented prediction techniques can partly ease
this by using evidence snippets from literature
that contributed to the model’s prediction as ex-
planations.
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A  PubMed Queries Per Outcome

Following are the MeSH terms that we use to
retrieve literature from PubMed to construct the
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outcome-specific index for each clinical outcome
under consideration:

¢ Prolonged Mechanical Ventilation (PMV):
“Respiration, Artificial”’. We also query us-
ing the terms “Ventilation, Mechanical” and
“Ventilator Weaning” but do not find any new
results.

* In-Hospital Mortality (MOR): “Hospital
Mortality”, “Mortality+Humans+Risk Fac-
tors”. Note that the “+” operator is interpreted
as AND by PubMed search.

* Length of Stay (LOS): “Length of Stay”. All
other MeSH terms from the tagger are aliases
of this term.

B Implementation Details

Entity Extraction. First, we extract entities from
clinical notes using a model trained on the i2b2
2010 concept extraction dataset (Uzuner et al.,
2011). This dataset consists of clinical notes
annotated with three types of entities: problems,
tests, and treatments. These entity types cover the
pertinent medical information that can be used
to retrieve abstracts relevant to a clinical note.
Moreover, the i2b2 guidelines require annotators
to include all qualifiers within an entity span, so
training a model on these annotations should bias
it towards including pertinent entity qualifiers.
Our entity extraction model uses a BERT-based
language model to compute token representations,
followed by a linear layer to predict entity labels.

We use ClinicalBERT (Alsentzer et al., 2019)

as the the language model to train our i2b2 entity
extractor. Table 6 shows the performance of our
model on the i2b2 2010 test set. These numbers are
close to the exact F1 scores reported by Alsentzer
et al. (2019) on i2b2 2010 (87.8).
Entity Filtering. After extracting entities, we
filter out all negated entities. Negated entities are
detected using the ConText algorithm for negation
detection from clinical text (Harkema et al., 2009).
We use the implementation of ConText negated
entity detection algorithm provided by medspaCy
(Eyre et al., 2021).

MeSH Linking. Finally, the set of filtered entities
is linked to MeSH terms using scispaCy. Entities
not linked to MeSH terms are discarded. MeSH
terms linked in clinical notes and abstracts are used

to compute TF-IDF vectors for the sparse retrieval
model.

Bi-Encoder Given a query clinical note () and an
abstract document D;, a BERT-based encoder is
used to compute dense embedding representations
Eg and Ep,. A scoring function S is defined as the
Euclidean distance between query and document
embeddings:

S(Q, Di) = |[Eq — Ep, |2 o)

Documents closest to the query vector in the em-
bedding space are returned as top-ranked results.
The bi-encoder is trained using a triplet loss func-
tion defined as follows:

L(Q,Df, D) =
max(S(Q, D) — S(Q, D;") +m,0) (6)

Here Dj is an abstract more relevant to the clin-
ical note ) than D; and m is a margin value.
We use PubmedBERT (Gu et al., 2021) as the en-
coder and train our bi-encoder using the dataset
from the TREC 2016 clinical decision support task
(Roberts et al., 2016).° This dataset consists of
30 de-identified EHR notes, along with ~1000
PubMed abstracts per note marked for relevance.
We select relevant abstracts per note as positive
candidates (D;"), and irrelevant abstracts for the
same note as negative candidates (D,").

Outcome prediction module training. We use
a weighted cross-entropy loss function to handle
class imbalance. Given a dataset with NV total ex-
amples, c classes and n; examples in class ¢, class
weights are computed as follows:

N

C- Ny

wi = (N
We use Adam optimizer, treating initial learning
rate as a hyperparameter. All models are imple-
mented in PyTorch, and we use Huggingface im-
plementations for all pretrained language models.

C Hyperparameter Tuning

We do a grid search over the following hyperpa-
rameter values for each aggregation:

Learning Rate (LR): [Se-4, 1e-5, 5e-5, le-6,5¢e-6]
Number of top abstracts (k): [1, 5, 10]

“We do not use data from TREC 2014 and 2015 since
they use idealized case reports instead of actual EHR notes.
Combining all three datasets degraded performance, likely due
to differences in language between case reports and EHRs.
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PMV MOR LOS
LM AUROC MicroF1 AUROC MicroF1 AUROC MicroF1
ClinicalBERT (Full) 54.66 53.93 81.78 86.34 70.94 40.00
ClinicalBERT (Disc.) 5491 54.21 81.78 86.34 71.44 40.36
CORe 54.98 54.35 81.58 84.85 69.15 37.94
BLUEBERT 56.60 55.34 82.40 84.75 71.87 41.93
UMLSBERT 57.42 55.48 83.31 87.29 71.60 41.84

Table 5: Performance of various language models trained on clinical and biomedical text on all clinical outcomes.
For ClinicalBERT, Disc. and Full refer respectively to variants trained on discharge summaries only and both

discharge summaries and nursing notes.

Category ExactF1

Overall 86.66
Test 87.48
Problem 86.53
Treatment 86.03

Table 6: Entity extraction model performance on i2b2
2010 test set

Gradient accumulation steps (GA): [10, 20]
This hyperparameter grid stays consistent across
all outcome prediction experiments. For all experi-
ments, we currently report the outcome of a single
run.

D Computing Infrastructure

Our experiments were carried out on 2 AWS
p3.16xlarge instances, which are 8-GPU machines
with 16 GB RAM per GPU. All our experiments
can be run on a single 16 GB GPU.

E Results from Learning To Retrieve
Model

Given a note (), we first obtain a set of top 100 rel-
evant abstracts (Docs(Q) = { D1, ..., D1oo}) from
the BEEP retrieve-rerank pipeline. The retriever
component is then defined as follows:

Eq = BERT,H(Q) )
Ep, = BERTD(DZ-) 9
Sretr(Q, D) = cosine(Eq, Ep,) (10)

BERTG(X) and BERTp(X) are the query and
document encoder functions. Based on retriever

scores Syetr, We select the top k abstracts and per-
form outcome prediction using the same structure
as the BEEP outcome prediction module. We also
add the following early update loss term to the

outcome loss for the retriever component:

Peoriy(D; = ewp(SretT(Q’ DZ))
ly( |Q) ZDjEDocs(Q) exp(sretr(Q, DJ))

(a1
2

- 10g yjPearly(Dj|Q)
Dj€eDocs(Q)

Learly =

(12)

where y; is set to 1 if using document D; alongside
(@ results in a confidence increase in the correct out-
come (as per BEEP) and O otherwise. Our L2R
model does not improve performance over BEEP
(results in Table 7). We speculate that this may
partly be due to the fact that the heuristic we use to
assign y; values in early update loss is not as accu-
rate as the one used by Lee et al. (2019) (directly
checking for presence of the answer in a document,
for the reading comprehension task).

Table 7 presents results for the learning-to-
retrieve model on all clinical outcomes using
UMLSBERT as the encoder. From the table, we
can see that while L2R improves performance over
a notes-only baseline, its performance is compara-
ble to BEEP. As mentioned earlier, we speculate
that this may partly be attributed to the fact that the
heuristic we use to assign y; values in early update
loss is not as accurate as the one used by Lee et al.
(2019) (directly checking for presence of answer
in document, for the reading comprehension task).
We believe that experimenting with other sources
of supervision to generate y; values and weighting
mechanisms to better combine outcome and early
update losses might lead to larger improvements,
but we leave those to future work.

F Literature-Augmented Outcome
Prediction with CORe

Table 8 shows the overall performance of our
literature-augmented outcome prediction system
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PMV MOR LOS

Model AUROC MicroF1 MacroF1 AUROC MicroF1 MacroF1 AUROC MicroF1 Macro F1

UMLSBERT  56.44 56.07 54.97 83.34 87.93 66.93 72.19 43.12 42.20
+Avg 54.17 53.53 41.51 84.54 90.47 60.53 71.90 44.88 41.26
+SVote 54.29 52.82 39.93 84.50 90.51 61.10 72.17 45.56 41.68
+WVote 57.60 56.50 55.93 83.92 90.54 61.20 72.72 46.46 42.17
+WAvg 58.65 55.79 53.68 84.68 90.59 62.78 72.16 45.04 40.87

Table 7: Performance of learning to retrieve (L2R) model on all clinical outcomes using the UMLSBERT language
model

PMV MOR LOS
Model AUROC MicroF1 MacroF1 AUROC MicroF1 MacroF1 AUROC MicroF1 Macro F1
CORe 55.91 53.96 53.71 79.96 78.92 62.46 71.52 42.59 42.33
+Avg 58.76 55.51 55.43 82.41 84.67 66.06 71.99 40.54 40.39
+SVote 58.40 58.62 55.23 81.90 89.90 55.76 71.35 45.07 40.16
+WVote  58.03 56.92 53.14 82.81 89.87 53.16 70.96 44.74 39.73
+WAvg 57.53 55.51 55.49 81.98 81.86 64.63 71.17 39.48 39.67

Table 8: Performance of baseline and literature-augmented outcome prediction models on all clinical outcomes
using the CORe language model

PMV MOR LOS

Model AUROC MicroF1 MacroF1 AUROC MicroF1 MacroF1 AUROC MicroF1 Macro F1

BLUEBERT - - - - - - - - -
+Avg 55.72 54.38 46.95 68.72 89.49 47.23 63.40 39.40 29.15
+SVote 57.11 56.50 52.21 71.04 89.49 48.73 63.46 39.41 28.90
+WVote 55.83 53.25 43.43 71.00 89.50 48.73 63.40 39.56 27.52
+WAvg 56.99 55.65 47.97 71.39 89.48 49.26 63.46 39.34 27.99

UMLSBERT - - - - - - - - -
+Avg 59.15 55.37 50.79 71.22 89.49 48.54 63.84 39.49 30.30
+SVote 56.53 55.09 51.76 69.31 89.50 47.71 63.14 38.95 27.12
+WVote 57.06 54.38 53.77 70.54 89.46 49.34 63.46 39.40 27.55
+WAvg 56.99 54.94 54.29 70.04 89.46 49.16 63.51 39.51 28.32

Table 9: Performance of models that only use retrieved literature for outcome prediction on all clinical outcomes

<3 days >=3 and <=7 days >7 and <=14 days >14 days
Model Prec@10 Rec@10 Prec@10 Rec@10 Prec@10 Rec@10 Prec@10 Rec@10
BLUEBERT 47.6 37.11 61.09 16.14 44.98 14.15 50.74 26.93
+Avg 54.23 24.0 60.64 16.02 45.45 14.49 49.48 25.66
+SVote 54.48 27.12 62.12 16.41 46.38 14.97 51.33 26.87
+WVote 55.73 21.68 61.66 16.29 46.68 12.78 47.99 25.18
+WAvg 52.48 28.28 60.75 16.05 47.33 15.12 51.03 26.99
UMLSBERT 47.33 37.11 59.95 15.84 44.83 13.04 48.92 25.97
+Avg 53.08 26.14 60.41 15.96 48.3 15.27 49.6 26.03
+SVote 52.37 28.55 59.5 15.72 44.38 14.38 49.36 25.72
+WVote 57.22 27.21 64.28 16.98 45.43 14.78 50.4 26.33
+WAvg 52.86 20.61 59.84 15.81 449 14.38 48.44 25.24

Table 10: Precision and recall scores for top 10% high-confidence predictions per class (precision/recall@TOP-K)
for LOS.
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Model No PMV PMV
BLUEBERT+Avg 55.47 57.48
BLUEBERT+SVote 56.82 55.56
BLUEBERT+W Vote 62.50 62.67
BLUEBERT+WAvg 56.34 61.29
UMLSBERT+Avg 63.71 60.71
UMLSBERT+SVote 50.39 65.62
UMLSBERT+W Vote 61.83 59.09
UMLSBERT+WAvg 57.80 63.33

(a) Precision on PMV, when considering cases for which
literature-augmented models achieve >10% increase in predic-
tion confidence over baseline.

Model No MOR MOR
BLUEBERT+Avg 87.91 69.77
BLUEBERT+S Vote 87.49 75.00
BLUEBERT+W Vote 86.99 76.09
BLUEBERT+WAvg 87.29 77.68
UMLSBERT+Avg 85.33 83.33
UMLSBERT+SVote 90.33 31.01
UMLSBERT+W Vote 86.66 52.17
UMLSBERT+WAvg 85.29 60.00

(b) Precision on MOR, when considering cases for which
literature-augmented models achieve >10% increase in predic-
tion confidence over baseline.

on all three clinical outcomes when the CORe lan-
guage model is used as an encoder. From this
table, we can see that adding literature improves
performance in this setting as well (with the ex-
ception of macro F1 on length of stay). However
the overall scores are lower than the settings in
which UMLSBERT and BLUEBERT are used as
encoders (Table 2).

G Literature-Only Outcome Prediction

To quantitatively test the quality of the retrieved
literature, we run an ablation study in which we
predict the clinical outcome using only the litera-
ture retrieved for a specific patient case, without
incorporating any information from the patient clin-
ical note. Table 9 shows the results for this ablation
study, using both BLUEBERT and UMLSBERT
encoders. From this table, we can see that while
removing the clinical note leads to performance
drops, especially on mortality and length of stay,
the retrieved literature does have some predictive
ability. We take this as indication that the retrieved
literature contains some clinical indicators associ-
ated with the outcome, that are also present in the
patient’s clinical note.

H Analyzing High Confidence Increases
Over Baseline

Finally, we also examine an alternate way of us-
ing high-confidence predictions made by our mod-

els. We run both baseline and literature-augmented
systems, and only consider predictions from the
literature-augmented system that show a high in-
crease in confidence, such as > 10% increase rela-
tive to the baseline predictions for the same cases.
Tables 11a and 11b show the precision scores of all
models on prolonged mechanical ventilation and
mortality in this setting. We can see that precision
scores in this setting are fairly high, especially for
the negative class in mortality prediction. Most av-
eraging variants also do well on the positive class
in mortality prediction.

I Examples of Literature For Incorrect
Outcome Cases

We categorize examples into the following:

Patient condition and outcome directly related
Patient history and outcome related

Known outcome indicators not present in patient
Ongoing treatment and outcome related

No cohort match

No/weak condition match

Condition-outcome pair not studied

No evidence for outcome/Weak evidence for di-
rect relationship between patient condition and
outcome

NI B W=

From table 12, we can see that retrieved literature
from unhelpful categories often does not match
patient characteristics. The first case discusses a
patient who has had an ICD firing incident, but
the retrieved literature discusses ICD implantation
therapy. While related, there is no discussion of the
impact of ICD firing on various clinical outcomes.

For the second case, we see that the retrieved
article discusses strokes in general, without match-
ing any of the patient’s indications or demographic
characteristics. Moreover, the outcome of interest
(mortality) is mentioned briefly, but links between
the outcome and patient conditions are not studied.
Finally, the third case provides an example of a
common phenomenon we observe. There are a fair
number of review articles retrieved that do not have
strong evidential statements in the abstract. For
the third case, the retrieved abstract discusses the
need for early triage/transfer (which could lead to
low length of stay), but then do not provide any
conclusive evidence.
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Patient EHR

Retrieved Abstract

CHIEF COMPLAINT: ICD firing
PRESENT ILLNESS: 57 yo M pre-
senting s/p ICD discharges...shocks pre-
ceded by prodrome of dizziness,...and
was shocked once...Has not had ICD fir-
ing prior to these events since implant
MEDICAL HISTORY: Heart failure...

...assess if selected clinical markers
of organ dysfunction were associ-
ated with increased 1-year mortality
despite ICD therapy...Clinical mark-
ers of liver dysfunction, recent me-
chanical ventilation, and renal im-
pairment were independently asso-
ciated with increased 1 year mortal-

ity...

CHIEF COMPLAINT: acute onset
right hemiplegia and aphasia
PRESENT ILLNESS: 84yo M...acute
onset of inability to speak and right
hemiplegia...head CT showed dense L
MCA and hypodensities in left inferior
frontal lobe and left corona radiata.
MEDICAL HISTORY: HTN Afib, off
coumadin...

Stroke is indicated by an abrupt
manifestation of neurologic deficits
secondary to an ischemic or hem-
orrhagic insult to a region of the
brain...ranked as the third lead-
ing cause of death in the United
States...report shows that despite
the use of antithrombotic and/or an-
tiplatelet aggregating drugs, the key
to stroke management is primary
prevention.

CHIEF COMPLAINT: Substernal
chest pain

PRESENT ILLNESS: ..62 yo M...
no prior cardiac history... substernal
CP... mild SOB, nausea, diaphoresis and
numbness in left arm...

MEDICAL HISTORY: foot surgery 2
weeks ago 7COPD ?gastritis?

..rising health care costs have cre-
ated pressures to increase efficiency
of coronary care units. Possible
strategies seek to decrease resource
use by identifying low-risk patients
for initial triage or early transfer to
lower levels of care...

Evidence Type Outcome
Weak condition match, PMV
condition-outcome pair

not studied

No cohort match, MOR
condition-outcome pair

not studied

No cohort match, no ev- LOS <3
idence for outcome days

Table 12: Qualitative examples of retrieved literature that is categorized as unhelpful for cases where adding
literature increases confidence in incorrect outcome. Case 1 shows an example of retrieved literature that has a
weak match with patient condition, but no evidence linking condition to outcome. Case 2 shows an example in
which retrieved literature does not match patient case or contain evidence for outcome. Case 3 shows an example
of a review article that again does not match patient case or provide outcome evidence.
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Figure 4: Proportion of admission notes associated with the 100 most highly retrieved abstracts for each clinical
outcome. From these graphs, we can see that frequently-retrieved abstracts for LOS are associated with a larger

proportion of cases from the dataset, than frequently retrieved abstracts for PMV and MOR (indicative of lower
literature diversity in LOS).
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