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Abstract

Recently, prompt learning has received signif-
icant attention, where the downstream tasks
are reformulated to the mask-filling task with
the help of a textual prompt. The key point of
prompt learning is finding the most appropriate
prompt. This paper proposes a novel model
PromptGen, which can automatically gener-
ate prompts conditional on the input sentence.
PromptGen is the first work considering dy-
namic prompt generation for knowledge prob-
ing, based on a pre-trained generative model.
To mitigate any label information leaking from
the pre-trained generative model, when given a
generated prompt, we replace the query input
with “None”. We pursue that this perturbed
context-free prompt cannot trigger the correct
label. We evaluate our model on the knowl-
edge probing LAMA benchmark, and show
that PromptGen significantly outperforms other
baselines.

1 Introduction

Prompt learning (Petroni et al., 2019; Kassner et al.,
2021) is a new learning paradigm for utilizing pre-
trained language models (LM), where downstream
tasks are reformulated as a mask filling task with
the help of a textual prompt in the original pre-
trained LM. Recently, prompt learning has been
used in applications such as knowledge probing
(Petroni et al., 2019; Zhong et al., 2021; Jiang et al.,
2021), text classification (Gao et al., 2021; Han
et al., 2021; Chen et al., 2021; Chai et al., 2020),
natural language inference (Shin et al., 2020; Gao
et al., 2021). Furthermore, prompt learning has
shown its utility in solving few-shot learning prob-
lems (Schick and Schütze, 2021; Gao et al., 2021).

The essence of prompt learning is designing the
most appropriate prompts to trigger the correct tar-
get text for downstream tasks from an LM. The lat-
est methods to construct prompts include: i) hand-
written prompts (Petroni et al., 2019), where users

manually create intuitive templates based on hu-
man introspection, and ii) automatically searched
prompts (Shin et al., 2020; Zhong et al., 2021;
Gao et al., 2021; Qin and Eisner, 2021), where
researchers search over the space of input tokens
or embeddings for prompts that elicit correct pre-
dictions in the dev set. Although manually writ-
ten prompts are interpretable, they are limited by
the manual effort, and might not be optimal for
eliciting correct predictions. The automated ap-
proaches (Shin et al., 2020; Zhong et al., 2021; Gao
et al., 2021) can overcome the limitations of man-
ual prompts by training a model, but they learn a
universal prompt for each task (e.g., factual probing
for one relation), regardless of different inputs. But
such a setting may result in sub-optimal prompts.
For example in factual probing, different subjects
might have a different context when describing the
same relation in an open-domain corpus. Similarly,
for sentiment analysis, different query sentences
might have different syntax or semantics.

We hypothesize that learning different prompts
conditioned on inputs can benefit the overall
masked filling accuracy in prompt learning. To-
wards that end, we propose a dynamic prompt gen-
eration model, named as promptGen, to automat-
ically generate prompts based on inputs by leverag-
ing the pre-trained generative model BART (Lewis
et al., 2020). Generally, PromptGen consists of
an encoder and an autoregressive decoder based
on Transformer (Vaswani et al., 2017). We
show the overall architecture of PromptGen ap-
plied on factual probing task in Figure 1. A
knowledge fact is defined as a triplet: <sub,
rel, obj>. The encoder produces a latent rep-
resentation from input <sub, rel>, and the de-
coder autoregressively generates prompt in the
form of [sub][D1]...[MASK]..., [Dm+n]. Generated
prompts are then passed to a fixed pretrained LM
(e.g., BERT) to fill <MASK> as [obj]. A cross-
entropy loss will be calculated based on the pre-
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Masked Language 

Model
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Figure 1: The overall architecture of our model PromptGen. PromptGen consists of an encoder and an
autoregressive decoder. The downstream MLM is fixed and without fine-tuning. We will fine-tune the encoder and
decoder to generate optimal prompts. Note that [sub] and <MASK> are directly copied in the decoding stage.

dicted [obj] v.s. ground-truth and backpropagated
to update BART’s weights. Compared to previ-
ous search models, although PromptGen has a
higher computation cost, we find more appropriate
and contextualized prompts, which is especially
important for knowledge probing.

However, it is nontrivial to adopt a generative
model for prompt generation. First, to make our
model end-to-end trainable, at each decoding step,
our decoder outputs a multinomial distribution over
predefined vocabulary. Hence we finally get a se-
quence of distributions as our prompt, instead of a
sequence of tokens. The token embedding of each
[Di] is a linear combination of the embedding of all
tokens in the vocabulary. We then pass the gener-
ated prompts into an LM to fill the mask. Moreover,
we should avoid any label information leaking from
the pre-trained generative model. With pretraining,
generative models can store related knowledge re-
garding input subjects, but we want to generate
context-aware (i.e., <sub, rel>) prompts without
leaking label information (i.e., object). Without
any constraint, after generative model fine-tuning,
the generated prompts could be trivial. For exam-
ple, for input <Obama, place of birth>, the prompts
could be “Obama...Hawaii...[MASK]...”. It is triv-
ial since it leaks the object label “Hawaii”. To miti-
gate label leaking, we replace [sub] of a generated
prompt with “None” and pass the perturbed prompt
to LM. We pursue that the perturbed prompt cannot
trigger the corresponding [obj] from a downstream
MLM. Such a perturbation strategy was previously
used for calibration (Zhao et al., 2021) and robust-
ness improvement (Wang et al., 2021), and we are
the first to use this strategy for the prompt genera-
tion.

Our contributions are as follows: i) We propose
the first generative model based prompt generation
method for knowledge probing. Meanwhile, we de-
velop effective strategies to make the whole frame-
work end-to-end trainable and avoid label leaking,

ii) We evaluate our model on the factual probing
benchmark LAMA (Petroni et al., 2019) and show
that our model can significantly outperform other
baselines. Detailed comparison and analysis justify
our modeling choice.

2 Related Work

Factual Probing The factual probing setting was
introduced by the LAMA benchmark (Petroni et al.,
2019; Jiang et al., 2020; Shin et al., 2020), where
given subject and relation, we want to infer the
object by querying a pre-trained MLM. In contrast
to previous knowledge graph completion models
(Zhang et al., 2022b; Huang et al., 2019; Zhang
et al., 2020; Liu et al., 2020; Yu et al., 2021) and
information extraction models (Zhang et al., 2021,
2022a), where they need to fine-tune a pre-trained
MLM. Here, we convert the knowledge graph com-
pletion task into a mask filling task, without MLM
fine-tuning.

Pre-trained Generative Models. Our work is
based on generative models, hence recent pre-
trained generative models are related, including
GPT-3 (Brown et al., 2020), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020), all of which
are capable of filling in missing spans in the in-
put. Among all prompt search methods, Gao et al.
(2021) is the most similar to ours since they used
T5 to construct prompts. Compared with our work,
Gao et al. (2021) uses T5 without fine-tuning, and
they learn one prompt for all inputs. In our work,
we learn dynamic prompts conditional on the given
input and fine-tune on the generative model.

Instance-level Prompt Learning. Concurrently,
couple instance-level prompt learning methods are
developed, where given different query input, they
utilize different prompts. Jin et al. (2022) learns
instance-level prompts through calculating the rele-
vance scores between token embedding in a univer-
sal prompt and token embedding in a given query,
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then the relevance scores are used to map the uni-
versal prompt into an instance-level prompt. IDPG
(Wu et al., 2022) leans a light-weight generator to
generate prompts, which are similar to our Prompt-
Gen. However, for downstream tasks, IDPG ex-
tracts the representation of [CLS] token to make
the final predictions. So, IDPG has to fine-tune the
pre-trained MLM, while we keep the downstream
MLM frozen.

3 Methodology

We elaborate our method on the application of the
LAMA task, in which the downstream MLM is
BERT (Devlin et al., 2019). Our generative model
adopts pre-trained BART (Lewis et al., 2020).

Given a subject s, relation r, a generated prompt
T<r,s>, and an MLM, we can identify the word
ô ∈ V to which the MLM assigns the highest prob-
ability of P ([MASK] = ô|T<r,s>), where T<r,s>

represents the generated prompt conditional on re-
lation r and subject s; V represents the predefined
vocabulary. If the MLM can fill in the mask with
the correct object, we conclude that the MLM en-
codes information about the fact. In this work, we
will fine-tune BART using our novel approach to
generate the optimal prompts.

3.1 Conditionally Generate Prompts
3.1.1 Input and Output Format
The input of our generative model is the manual
prompt provided by the LAMA dataset. For in-
stances: for relation “place of birth”, our input is
“[sub] was born in [MASK]”; for relation “occupa-
tion”, our input is “[sub] is a [MASK] by profes-
sion”. Here, [sub] will be replaced by a concrete
subject name, e.g., “Obama”, “Dante”.

The prompt is generated from the decoder. Our
prompt is in the following form:

[sub] [D]1 [D]2...[D]m [MASK] [D]m+1...[D]m+n

where m is pre-defined maximal number of triggers
between [sub] and [MASK]; n is the maximal num-
ber of triggers after [MASK]; each [D]i represents
a multinomial distribution over vocabulary Vcommon.
Since the vocabulary of the generative model and
the vocabulary of MLM could be different, we con-
sider the intersection of their vocabularies, which
is represented as Vcommon.

3.1.2 Generating Procedure
Generative models usually are trained under the
sequence-to-sequence framework. While, in our

work, the target sequence (i.e., prompt) is un-
known, our model will generate the optimal target
sequence through exploration. Also, in the classic
sequence-to-sequence framework, people consider
the teacher forcing training strategy, where during
training, the model uses the ground truth as de-
coder input. Since we have no ground truth target
sequence, at each decoding step, we use the model
output from a prior time as the current input.

At each decoding step t, our decoder com-
putes the current hidden state ht and current to-
ken distribution Dt, based on the current sequence
[D1], ..., [Dt−1], and the encoding output hencode:

hencode = Encoder(s, r)

ht = Decoder(hencode, [D1], ..., [Dt−1])

Dt = Softmax(ht)

where, Encoder and Decoder both adopt Trans-
former architecture; hencode only needs to be com-
puted once for each input <s, r>; ht and Dt are
calculated recursively from Decoder. In the
below section, we will elaborate how to com-
pute word embedding for sequence of distributions
[D1], ..., [Dm+n] in Transformer Decoder.

Assuming the BART word embedding matrix for
tokens in vocabulary Vcommon is EV ∈ R|V |×d, we
know that each [Di] is a multinomial distribution
on Vcommon, so the embedding vector EDi for each
[Di] is a linear combination on EV :

EDi = DT
i ∗ EV (1)

Encoding position embedding for [Di] is straight-
forward, depending on its position in a sequence.

During generating, assuming the current output
is Di, where i ∈ [1,m], if the highest possibility
token is </s> or the sequence reaches the maxi-
mal number m, we stop current generation, and
start generating [Dm+1]...[Dm+n]. The same is for
generating [Di], where i ∈ [m+ 1,m+ n].

3.2 Optimization
The generated prompt T<s,r> is passed forward
to a downstream MLM. Following the convention
of BERT, we add special tokens [CLS] (or <s>),
[SEP] (or </s>) at the first and the last position of
the prompt, separately. The calculation of word
embedding of [Di] in the downstream MLM is the
same as Equation (1), where EV will be from the
MLM.

The downstream MLM can be viewed as a black-
box, and it is used as a critic to evaluate the
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quality of our generated prompts. We fine-tune
the parameters of the generative model to mini-
mize the negative log-likelihood of a training set
Π = {<s, r, o>}:

LΠ = − 1

|Π|
∑

<s,r,o>∈Π
logP ([MASK] = o|T<r,s>),

where we use all the training data from different
relations together to train our model.

3.2.1 Label Information Leaking Constraint
The pre-trained generative model has the ability to
store open-domain knowledge during pre-training.
Without any constraint, the generated prompts
could be trivial and leak the label information.

To avoid label leaking, we develop a novel
constraint. We replace the [sub] of T<r,s> with
“None”, and get a perturbed prompt T (None)

<r,s> . We
argue that for a non-trivial T<r,s>, its correspond-
ing T (None)

<r,s> has no ability to trigger the correct
[obj] from the downstream MLM, since T (None)

<r,s> is a
context-free input. For example, assuming we pass
“None was born in [MASK]” into an MLM, the
possibility of filling the mask with “Hawaii” will
be low without knowing the subject of “Obama”.
We define the second objective function as:

Lperturb =
1

|Π|
∑

<s,r,o>∈Π
logP ([MASK] = o|T (None)

<r,s> ),

through which the log-likelihood of training set is
minimized. Finally, the overall objective function
becomes L = LΠ + α ∗ Lperturb, where α ≥ 0 is a
hyper-parameter.

4 Experiments

4.1 Experimental setup
Following the same setting of Shin et al. (2020);
Zhong et al. (2021), we use the original test set, and
the training LAMA dataset contains 1000 facts for
each of the 41 relations from T-REx dataset (ElSa-
har et al., 2018) and Wikidata. Refer to Appendix
for implementation details.

We compare our model with the following base-
lines: 1) manually created prompts (Petroni et al.,
2019). 2) LPAQA (Jiang et al., 2020). 3) Gao
et al. (2021) 1. 4) AutoPrompt (Shin et al., 2020),

1We generate one prompt for each relation using T5, given
input in the form of “[sub] [extra_id_0] [obj] [extra_id_1]”,
where [sub] and [obj] are from training set. The filling result
of [extra_id_0] and [extra_id_1] will be used as final prompt.

where “* [T]s” means using * token triggers. 5)
OptiPrompt (Zhong et al., 2021), where “* [V]s”
means using * vector triggers; “manual” means
using manually designed prompts as initialization.

4.2 Results

For all our models, we set m=10, n=5. Our re-
sults are in Table 1. The LAMA results are broken
down by relation category. Relations from each
category can refer to Table 4 in Appendix. Overall,
PromptGen outperforms the previously reported
results in terms of top-1 accuracy on the LAMA
benchmark. The improvement is consistent across
all categories, except for the “1-1” category, which
contains two relations, “capital” and its inverse
“capital of”. We see that the best result in this
category is the manual prompt. The intuitive ex-
planation behind this is that the variety of natural
language expressions about “capital of” in open-
domain knowledge is low, so it’s hard for our model
outperforms manually designed prompts.

The detailed results on each relation are in Table
4 in the Appendix.

Method 1-1 N-1 N-M All

Manual 68.0 32.4 24.7 31.1
LPAQA 65.0 35.9 27.9 34.1

Gao et al. (2021) 22.5 12.7 8.5 11.4

AutoPrompt (5 [T]s) 58.0 46.5 34.0 42.2
OptiPrompt (5 [V]s) 49.6 53.1 39.4 47.6

OptiPrompt (10 [V]s) 60.7 53.2 39.2 48.1
OptiPrompt (manual) 59.6 54.1 40.1 48.6

Ours (α = 0.3) 54.8 55.3 44.0 51.0

Table 1: Micro-averaged results (top-1 accuracy in %)
on the LAMA benchmark using the BERT-base-cased
model, averaged over relations.

4.2.1 Hyper-parameter Analysis
In this section, we analyze the effect of hyper-
parameter α. We set α equals to 0.0, 0.2, 0.3 and
0.4, separately, and the results of variants are re-
ported in Table 2. The best result comes from
α = 0.3. Although α = 0.0 gives us the second
best result, we find that when we replace the [sub]
in generated prompts into ‘None”, the top-1 accu-
racy is still 48.1, which proves that without label
information leaking constraint (α = 0.0), the gen-
erated prompts are trivial. For α = 0.2, 0.3, 0.4,
their top-1 accuracy using perturbed prompts all
equals to 0, which proves the effectiveness of our
label information leaking constraint.
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Method 1-1 N-1 N-M All “None”

α = 0.0 53.9 53.9 43.1 49.7 48.1
α = 0.2 53.4 53.5 43.3 49.6 0.0
α = 0.3 54.8 55.3 44.0 51.0 0.0
α = 0.4 39.4 49.3 38.4 44.9 0.0

Table 2: Results of Variants on the LAMA benchmark.

4.2.2 Case Study of Generated Prompts
We show two case studies on relation “instrument”
in Table 3 comparing with AutoPrompt, which used
a fixed prompt for one relation regardless of input.
We report the generated prompts by choosing the
highest probability token for each Di, and the top-1
predictions from BERT. We highlight the [sub] in
blue, and wrong predictions in red.

Method Generated prompt top-1

AutoPro Joe Pass playingdrum concer-
toative electric [MASK].

piano

Ours Joe Pass and not violin yeah
much like majority depending
Resources [MASK].

guitar

AutoPro Marco Benevento playing-
drum concertoative electric
[MASK].

piano

Ours Marco Benevento and not vio-
lin yeah much like trafficking
UNESCO partly [MASK].

piano

Table 3: Case Study on relation “instrument”.

We find that AutoPrompt always triggers the
MLM to predict the majority label “piano”, regard-
less of the subject. Through dynamic prompts, we
bypass this issue.

5 Conclusion

In this work, we propose PromptGen for knowl-
edge probing, which can automatically gener-
ate prompts conditional on the given query
(i.e., subject, relation). Our PromptGen lever-
ages a pre-trained generative model, e.g., BART.
PromptGen is end-to-end trainable, where we
fine-tune the parameters of the generative model,
while keeping the downstream pre-trained MLM
frozen. We evaluate PromptGen on the bench-
mark LAMA dataset. We observe the significant
improvement of the performance on the down-

stream MLM by finding more appropriate dynamic
prompts without label information leaking.
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A Appendix

Relation Type Name Maunal LPAQA AutoPro OptiPro Ours

P1376 1-1 capital of 73.8 67.8 56.2 56.7 61.6
P36 1-1 capital 62.1 62.1 59.7 61.3 52.2
P103 N-1 native language 72.2 72.2 79.7 86.8 86.9
P127 N-1 owned by 34.8 32.5 44.3 49.6 54.0
P131 N-1 located in the admin. territorial entity 23.3 22.8 28.9 41.4 40.3
P136 N-1 genre 0.8 16.8 55.3 63.6 68.4
P138 N-1 named after 61.4 59.5 70.7 73.4 76.1
P140 N-1 religion 0.6 59.8 60.5 76.5 80.9
P159 N-1 headquarters location 32.4 35.6 35.7 37.4 37.6
P17 N-1 country 31.3 39.8 51.0 57.8 54.2
P176 N-1 manufacturer 85.5 81.5 87.5 87.3 91.6
P19 N-1 place of birth 21.1 21.1 19.5 20.6 22.8
P20 N-1 place of death 27.9 27.9 29.8 33.8 35.8
P264 N-1 record label 9.6 6.3 4.2 45.5 5.6
P276 N-1 location 41.5 41.5 43.0 47.1 46.5
P279 N-1 subclass of 30.7 14.7 54.9 64.7 65.6
P30 N-1 continent 25.4 16.9 78.6 86.3 89.1
P361 N-1 part of 23.6 31.4 37.0 46.4 41.1
P364 N-1 original language of film or TV show 44.5 43.9 45.0 51.3 54.6
P37 N-1 official language 54.6 56.8 52.7 58.6 62.9
P407 N-1 language of work or name 64.2 65.2 68.4 71.0 68.2
P413 N-1 position played on team / speciality 0.5 23.7 41.7 44.0 51.5
P449 N-1 original network 20.9 9.1 33.1 36.0 39.8
P495 N-1 country of origin 28.7 32.2 35.8 40.8 37.7
P740 N-1 location of formation 8.9 13.7 13.1 15.0 17.3

P1001 N-M applies to jurisdiction 70.5 72.8 80.5 85.2 87.0
P101 N-M field of work 9.9 5.3 12.1 14.1 19.4
P106 N-M occupation 0.6 0.0 13.6 35.7 31.3
P108 N-M employer 6.8 5.7 7.8 11.2 12.5

P1303 N-M instrument 7.6 18.0 23.1 23.6 45.8
P1412 N-M languages spoken, written or signed 65.0 64.7 71.5 76.1 77.1
P178 N-M developer 62.9 59.4 64.3 67.9 68.6
P190 N-M twinned administrative body 2.2 1.7 2.4 3.1 3.9
P27 N-M country of citizenship 0.0 41.5 45.8 47.1 46.5
P31 N-M instance of 36.7 36.7 53.6 64.9 68.9
P39 N-M position held 8.0 16.1 27.2 42.8 69.6
P463 N-M member of 67.1 57.3 64.0 64.0 73.8
P47 N-M shares border with 13.7 13.7 19.2 22.2 21.2
P527 N-M has part 11.2 10.6 22.1 34.8 38.7
P530 N-M diplomatic relation 2.8 3.9 2.8 3.3 2.8
P937 N-M work location 29.8 39.1 34.4 43.3 48.2

Table 4: The accuracy of different prompts on LAMA for each relation using BERT-base-cased.

A.1 Implementation Details
We adopt “BART-large” as our generative module and “BERT-base-cased” as our MLM module, both of
which are collected from Huggingface website2. We use the Adam optimizer with learning rate 5e− 5,
set warm-up ratio to 0.1, and weight decay to 1e-3. We repeat our experiments five times and report the
average metrics on the test set.

A.2 Detailed Results
Table 4 shows the per-relation accuracy for each prompting method. We see that our method achieves the
best performance for most cases.

2https://huggingface.co/models
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