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Abstract

Large language models (LMs), while power-
ful, are not immune to mistakes, but can be
difficult to retrain. Our goal is for an LM to
continue to improve after deployment, without
retraining, using feedback from the user. Our
approach pairs an LM with (i) a growing mem-
ory of cases where the user identified an output
error and provided general feedback on how to
correct it (ii) a corrector model, trained to trans-
late this general feedback into specific edits to
repair the model output. Given a new, unseen
input, our model can then use feedback from
similar, past cases to repair output errors that
may occur. We instantiate our approach using
an existing, fixed model for script generation,
that takes a goal (e.g., “bake a cake”) and gen-
erates a partially ordered sequence of actions
to achieve that goal, sometimes containing er-
rors. Our memory-enhanced system, FBNET,
learns to apply user feedback to repair such
errors (up to 30 points improvement), while
making a start at avoiding similar past mistakes
on new, unseen examples (up to 7 points im-
provement in a controlled setting). This is a
first step towards strengthening deployed mod-
els, potentially broadening their utility.1

1 Introduction

Language models (LMs) have achieved remarkable
success on many tasks (Wang et al., 2019; Talmor
et al., 2019), but they are still prone to mistakes
(Bender and Koller, 2020). Correcting mistakes
by retraining is not always easy due to the cost
and/or unpredictability of how additional training
data will change the model. Instead, our goal is to
allow users to correct such errors directly through
interaction, without retraining – by giving correc-
tive feedback on the model’s output. Our approach
is to maintain a growing, dynamic memory of such

∗Equal Contribution
1Our code and data is available at https://github.

com/allenai/interscript

Figure 1: Given a frozen model B, we train a corrector
model G to apply feedback from a user about errors
made by the original model. In the example, B has
generated a script with an error in, stating that “driving”
and “getting in a car” can occur in any order (red box).
The user provides general feedback (“Get in a car be-
fore driving”), and G operationalizes this to generate
a corrected graph (by predicting and applying a graph
edit operation) in which “get in car” happens first (green
box). The feedback is stored in a memoryM so it can
also be retrieved to repair similar, future errors.

feedback, and use a trained corrector model to ap-
ply such feedback to repair the model output. By
doing so, the system can also potentially fix output
errors for new unseen inputs using feedback from
similar, past cases. The ability to leverage a fixed
trained model without re-training could save costs
and have a positive environmental impact.

We consider the class of problems where the
model’s output is repairable, namely a structured
output that is (typically) nearly correct, and fixable
through a small number of edit operations. Our
system is general and admits a general graph based
input, so in principle it applies to a large number
of tasks. In this paper, we apply our approach to
the task of script generation that provides a natural
setting for users to critique, and has applications
in smart assistants (Zhang et al., 2021). We use an
existing, fixed model: proScript (Sakaguchi et al.,
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2021) that satisfies the constraint of the model’s
output to be repairable. proScript takes as input
a goal to achieve (expressed in natural language),
and outputs a partially ordered sequence of steps -
a script - required to achieve that goal. Our interest
here is not in proScript itself, but in what to do
when proScript’s output contains an error.

This instantiation of our approach is illustrated
in Figure 1. Here, proScript has generated a script
x to achieve the goal “see an alligator”, but the
script contains an error: it states that the steps of
“driving to the zoo” and “get in car” can be applied
in any order. To repair this, the user provides the
general feedback “Get in a car before driving”. The
corrector model G then takes that feedback and the
erroneous script, translates it into appropriate edit
operations on the script, and applies those edits to
generate a corrected script (y in Figure 1). The
feedback is stored in memoryM so it can also be
retrieved in the future. Our system, FBNET, com-
prises the corrector module G, the memory M,
and searching and writing operations. To train our
system, we collect examples of bad outputs, gen-
eral feedback, and specific edits that the feedback
should translate to (Section 4.2). This allows G to
learn how to translate general feedback into spe-
cific edits to apply. Pairing G with the memoryM
allows FBNET to repair new, unseen scripts con-
taining similar errors to the one the user corrected.

Our approach loosely follows some early AI sys-
tems that maintained a memory of the output prob-
lems and how to fix them (Sussman, 1973; Ham-
mond, 1986; Riesbeck, 1981), but here, we use
neural methods and interact with a user to provide
corrective feedback. It also builds on the idea of
allowing users to specify edits in natural language,
e.g., NLEdit (Elgohary et al., 2021), except we use
general user feedback (then translated to example-
specific edits by G) and add a memory so that
feedback can also be automatically reused.

We evaluate FBNET along two dimensions: (a)
How well does FBNET interpret NL feedback? (b)
How well can FBNET learn from prior mistakes?
We find that (a) it uses NL feedback effectively to
repair script errors, with +30% (absolute) improve-
ment over a baseline that does not use feedback,
and that (b) it makes a start at avoiding past mis-
takes (+7% (absolute) improvement in a controlled
setting). Although these results are only for a single
deployment of our general approach, they suggest
that memory-based architectures can help deployed

models continue to improve with time, without re-
training, potentially broadening their utility.

2 Related work

There have been numerous approaches to using
user feedback to improve model performance,
including:
(1) Providing additional training examples:
Dasgupta et al. (2019) show how a user can correct
bad model behavior by carefully selecting new
training examples for the system to learn from, a
style of interactive active learning (Settles, 2012).
(2) Marking/scoring the system’s answer(s):
In SHRDLURN, the user provides feedback by
identifying which of the system’s alternative
interpretations of a user command is correct (Wang
et al., 2016).
(3) Providing hints: (Mehta and Goldwasser,
2019) show how a system can learns to understand
regional (e.g., “top left”) and directional (e.g.,
“move down”) hints from the user for a (simulated)
robot.
(4) Provide additional information: In TeachY-
ourAI (Talmor et al., 2020), given a wrong answer
to a question, users can enter NL facts and rules
to use as context when reasking the question, to
(ideally) produce the correct answer.
(5) Correcting bad answers: In the semantic
parsing task of NL-to-SQL, NLEdit learns to
interpret and apply syntactic edit operations from
the user expressed in NL, e.g., “replace course id
with program id.” (Elgohary et al., 2021).

These methods all augment/replace the standard
use of automated answer feedback (if available),
e.g., testing whether a semantic parse correctly ex-
ecutes to the correct answer, e.g., (Zettlemoyer and
Collins, 2005), sometimes using unsupervised tech-
niques to generate additional training data, e.g.,
BIFI (Yasunaga and Liang, 2021).

Our work expands on the above approaches in
two important ways. First, users provide general
feedback in NL, that can potentially be applied to
multiple cases (rather than just correcting a specific
instance). The corrector model G is trained to oper-
ationalize that advice in different ways for different
examples appropriately, in contrast to (say) NLEdit
where the user-provided specific corrective edits
for a single example only.

Second, we use a feedback memory, allowing
feedback to be reused. While adding external mem-
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Figure 2: Proposed architecture: (left) B does not ac-
count for user feedback. (right) FBNET maintains a
memory M of corrective feedback, and searches for
feedback from prior queries with similar error intent as
x using a retrieval function Ω. x is then concatenated to
the retrieved feedback to form the input to the corrector
model G. Users can also give new feedback which is
added toM. In this work, we focus on script generation
models that might generate an erroneous script which
are correctable using an edit (feedback).

ory to neural systems is not new, e.g., RAG (Lewis
et al., 2020), REALM (Guu et al., 2020), ours is
the first to utilize a memory of prior user feedback
to improve future neural model performance. This
can be viewed as a modern approach to failure-
driven reminding, an essential theme in earlier AI
and Cognitive Science research (Riesbeck, 1981;
Schank and Leake, 1989; Ross, 1984).

3 FBNET

3.1 Overview of the Architecture

Fig. 2 gives an overview of FBNET. The input
is a potentially noisy graph x generated by a base
model B and the output y is a corrected graph. At
inference time, i.e., after deployment, a user can
critique y by providing natural language feedback
fb on an error e. As output, the model generates
the corrected graph y that accounts for fb.

The corrector model G is responsible for im-
proving the potentially noisy output from B. G
achieves it using user feedback stored in a continu-
ously updated memoryM.

The Memory M is a growing lookup table of
key-value pairs: key (xi) - value (fbi), where xi

is a particular incorrect graph, and fbi is the corre-
sponding feedback. This memory supports lookup
(read) and write operations. Given a new query
x, FBNET uses feedback fb from similar, prior
queries in the memory to enrich x. This feedback
fb is retrieved using the lookup function Ω(x,M).

The corrector then combines fb with x, and gen-
erates y. The write operation is used whenever a
user gives new feedback.

3.2 Assumptions

We make two assumptions on the characteristics of
the feedback and the input.

A1. Base model B’s output is repairable: B
typically produces syntactically correct output
graph but can have semantic errors that the user
can recognize and describe using natural feed-
back. For example, the script in Figure 1 is
repairable.

A2. Feedback is reusable: If two examples i, j
have similar errors ei and ej then the feedback
fb for one should apply to the other, i.e., (ei ∼
ej ⇔ fbi ∼ fbj)

3.3 MemoryM and Ω

As mentioned, the feedback is stored in a memory
of key (x), value (fb) pairs. Ω is a retrieval function
that matches a query key (xj) to a similar xi in
memory implicitly on the similarity of the errors ei
and ej .

3.4 Corrector model G

The graph corrector model G generates an im-
proved output y given a noisy graph x and fb. This
is done in a two-step process, (i) learning to pre-
dict a graph edit operation ye given x and fb (ii)
using simple graph operations to apply ye to x to
produce y. Our approach of generating an edit
instead of directly generating the corrected graph
is beneficial for two reasons. First, generating ed-
its is simpler for the model than generating entire
graphs. Second, it simplifies evaluation metrics
as it is much simpler to compare two smaller gen-
erated edits. Note that we can deterministically
fix a script given an edit. Thus, the two-step pro-
cess helps us achieve the same end goal (corrected
scripts from noisy scripts and feedback).

3.5 Training and Inference

As mentioned, the graph corrector G first generates
an edit ye, which is applied to the incorrect graph x
to generate the correct graph y. We need a corpus
of (x, fb,y) to train this system. Specifically, we
extract an edit from each such tuple, where edit ye

is the difference between the output y and the input
x. x and y can be expressed in a string represen-
tation using a graph description language such as
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DOT. We then train a language model to estimate
Pθ(y

e | x, fb), which allows us to generate an edit
for a given (x, fb) using greedy sampling, where θ
denotes the parameters of the language model.

4 Application: Script Generation

4.1 Task

We instantiate our framework for the task of script
generation. Formally, the script generation task
(Sakaguchi et al., 2021) takes as input a scenario
and generates a script G(V,E), where V is a set
of essential events {v1, ...vi, ...v|V |} and E is a set
of temporal ordering constraints between events
{eij} which means that the events vi must precede
the event vj (vi ≺ vj). Partial ordering of events
is possible, e.g., you can wear a left sock and a
right sock in any temporal order. To solve this task,
script generation models are required to generate
events (V ) and predict the edges (E) jointly. See
Figure 3 for an example.

find the cake recipe

gather the ingredients

turn on the oven
mix the ingredients

put the cake batter in the oven

bake for the right amount of time

take the cake out of the oven

Scenario: bake a cake

Figure 3: An example of a script in Sakaguchi et al.
(2021). In a script generation task, models take the goal
as the input and generate a (possibly) partial-order graph,
which consists of essential steps and their ordering.

PROSCRIPTgen (Sakaguchi et al., 2021) is a re-
cently released model that, given a goal, generates
V and predicts the edge structure E jointly. It is
based on the T5-XXL model (11B parameters) and
generates the script as a graph in DOT format. The
authors report that the DOT format is always valid
at inference time and that V and the graph structure
are generally of high quality. They characterize the
graph edits required to correct a generated script
(such as removing a node, adding a node, changing
edge order, etc.). Mechanical Turk workers could
repair most of the generated scripts within a few

edits (typically an edit distance of 5) - we further
validate this in Appendix §8.1. This makes for an
attractive use-case for interactive learning because
the generated content from the model is repairable
through user feedback.

4.2 Feedback Data Collection

To train the corrector G, as well as evaluate our
approach, we collected a set of (x, fb, y) tuples us-
ing crowdworkers, where x is a possibly erroneous
script generated by PROSCRIPTgen, fb is general
feedback about the error (if any), and y is the cor-
rected script. In practice, crowdworkers specified
the edits to x to create y (using simple graph oper-
ations we can generate y from ye– see Table 7 for
an example). We collected 1542 tuples of data, ran-
domly splitting it into 843 train, 154 validation, and
545 test points. Examples of the resulting dataset
are shown in Table 1.

4.3 Training the Corrector Model

We initialize θ with a checkpoint from the text-
to-text pre-trained T5 transformer (Raffel et al.,
2020) and fine-tune on our dataset. We use the de-
fault hyperparameters (including the Adafactor op-
timizer) in the T5 library.2 We fine-tune a T5-XXL

model for the main results, fine-tuned for 5,000
steps (batch size 8), selecting the checkpoint with
the highest validation score (usually the final step).
To implement the memory M, we use a BERT-
based Sentence Transformer to encode x (Reimers
and Gurevych, 2019), and use cosine distance with
a threshold of 0.9 to find a matching key xm. We
leave the investigation of more complex retrieval
functions (e.g., using attention mechanism to future
work.)

5 Experiments

We empirically evaluate two questions:

RQ1. How well does FBNET interpret NL feed-
back? Specifically, we measure how well
FBNET can translate general feedback fb from
a user into the correct repair edit on an imper-
fect script x. The main focus of RQ1 is to test
the performance of G in the pipeline (Fig. 2)

RQ2. How well can FBNET learn from prior
mistakes? We make the same measurement,
but using feedback fb recalled from similar,

2https://github.com/google-research/text-to-text-transfer-
transformer
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Error type Input script x Feedback
fb

Expected
edit ye∗

Generated
edit yê

score

EM EMtype EMloc

missing step
1. get out of car
2. stop in front of car
3. turn body toward back of car
4. walk to back of car
5. take blanket out of car
6. walk to desired location
7. throw blanket down

a person
needs
to open
the door
before
they take
an object
out

insert
node
‘open the
back door
of the car’
before
‘take
blanket
out of car’

insert
node
‘open car
door’ be-
fore ‘take
blanket
out of car’

0 1 1

missing step
1. buy a video game
2. talk to the cashier
3. make the transaction
4. get the receipt
5. load video game into the car
6. get into the car
7. take xbox home

after a
person
makes a
transac-
tion, they
then head
to their
car

insert
node
‘walk
to the
car’ after
‘get the
receipt’

insert
node ‘get
into the
car’ after
‘make the
transac-
tion’

0 1 0

wrong step
1. make a bunch of cards
2. grab a pen
3. grab some paper
4. pick up a pen
5. place the paper on the table
6. pick up the pen
7. write names on the cards

good
plans
shouldn’t
include
redundant
steps

remove
node
‘pick up
the pen’

remove
node
‘pick up
the pen’

1 1 1

wrong order
1. leave home and get in car
2. remem. destination address
3. look around for the car
4. walk towards the car
5. open the car door
6. sit down in the car
7. put on the seatbelt

you
wouldn’t
look for
some-
thing
you’re
already
with

reorder
edge
between
‘⟨ leave
home and
get in
car , look
around
for the car
⟩’

remove
node
‘look
around
for the
car’

0 0 0

Table 1: Some examples of the data points and model predictions. ye takes the form: <EDIT TYPE> over
[<ARG>] at <LOCATION> The dataset contains partial order points as well, but they are omitted here for
simplicity.

previous examples. The main focus of RQ2 is
to test the performance ofM and Ω.

Metrics To compare the gold edit ye∗ and the
generated edit yê, we use standard metrics used to
evaluate generated text. We report the following
metrics:

• Exact match: EM gives a score of 1 if ye∗ is
equal to yê and 0 otherwise.

• Generation metrics: We report standard gen-
eration metrics BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) to account for similar
but not exact matches. We use the implemen-
tation released in the metrics package of the
GEM-benchmark (Gehrmann et al., 2021).3

3https://github.com/GEM-benchmark/
GEM-metrics/

We report these metrics over the entire edit: EM,
BLEU, ROUGE. The components of ye broadly fol-
low a template: <EDIT TYPE> over [ARG]
at <LOCATION> (see Table 1). This allows com-
parison of the location or edit type in ye∗ and yê:
EM loc, BLEU loc, ROUGE loc and EM type, BLEU
type, ROUGE type

Baseline As baseline, we train a model that does
not use any feedback (we call this, NO-FB) and
is trained only with input = erroneous script and
output = edit. The language model used in this
baseline and FBNET is the same (T5-XXL), allow-
ing a meaningful comparison.
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EM EMloc EMtype BLEU ROUGE

NO-FB 3.5 9.7 30.4 21.7 39.0
FBNETo 38.6 45.8 69.3 54.2 70.6

Table 2: Interpreting NL Feedback: Correctness of
Predicted Edits .... Given an erroneous script x, and
general feedback fb from the user, FBNet perfectly pre-
dicts the specific repair edits 38% of the time (EM ,
exact match) - an order of magnitude better than a base-
line NO-FB predicting the repair from x alone. EMloc

and EMtype compare just parts of the edit sequences (lo-
cations/types of the required edits, respectively), while
BLEU and ROUGE are softer matching metrics.

5.1 RQ1: How well does FBNET interpret NL
feedback?

To measure how well the graph corrector G learns
to interpret NL feedback, we provide oracle feed-
back to FBNET, and we call this FBNETo . Table
2 shows that FBNETo learns to react to the feed-
back, as indicated by a sharp increase in both the
exact match scores and automated metrics. Further,
we note that the model is good at identifying the
error type that the feedback indicates. Still, it is
difficult for the model to localize the error in the
graph, probably because the location is not explic-
itly mentioned in the feedback, and the model must
infer it.

How consistently does FBNET interpret similar
feedback? In ∼15% of the data points, multiple
fb can lead to the same (x,y) pair. FBNET is ex-
pected to behave consistently for such re-phrasings
of fb. The model consistently produces exactly
the same y for fb re-phrasings ∼ 60% of the time.
Furthermore, we observe majority agreement as
the number of fb re-phrasings for a (x,y) pair in-
creases. In our analysis, a large proportion of the
inconsistent edits occur because different fb phras-
ings prompt the model to generate slightly different,
but semantically similar edits: see Table 3 for an
example.

How well can FBNET handle wrong feedback?
While the ability to react to feedback is a desired
trait for FBNET, we also want to ensure that the
performance of FBNET is proportional to the qual-
ity of feedback. This will ensure that FBNET can
act faithfully in settings where the feedback might
be potentially misleading. We investigate this ques-
tion by identifying lexically similar scripts but ir-
relevant feedback from the training set for each test

feedback predicted edit
The feedback is if a
person is going to open
a book, they need to
choose one first

insert node ‘choose a
book to read’ before
‘open the book’

The feedback is you
can’t open something
you’re not holding

insert node ‘get the
book out of the bag’ be-
fore ‘open the book’

Table 3: Multiple feedbacks for the same (x, y). Here,
x is: You are given a plan to read to child. decide which
books to read, open the book, read the book to the child,
turn the pages ... . ye is insert node ‘pick a book off the
shelf’ before ‘open the book’

example. Note that our setup easily allows us to test
this hypothesis since the train/test/val splits were
carefully designed to ensure no overlap between
the examples. Thus the feedback from one exam-
ple will typically not apply to another example.
We find that with irrelevant feedback, the perfor-
mance of FBNET drops to 3%. This shows that
FBNET is sensitive to the quality of feedback, and
no feedback is better than misleading and irrelevant
feedback.

How well does FBNET perform across error
types? FBNETo gets the highest performance
(EM 63.0%) on wrong-step error type where fb
typically contains negative words that signal the
error type, and the model learns to localize the er-
ror node. One of the most challenging error types
is partial order removal or addition (EM 10.5%).
This can be attributed to the challenging localiza-
tion involving multiple nodes that participate in a
partial order. The lowest-performing is the missing
step error type (EM 2.73). The reason for this low
EM score is that the edit must generate the miss-
ing node, and EM undercounts the correctness of
the generated text. Other metrics such as ROUGE
are much higher validating that the model performs
well on this error type. Section §9 Table 8 breaks
down the performance of FBNET by error type.

5.1.1 Error analysis
We randomly sampled 50 instances from the test
set where the model generates an incorrect edit (i.e.,
EM = 0). Our goal is to understand the typical
errors made by the model and use the analysis to
calibrate the findings in Table 2.

• Lexical variation (36%) Exact match under-
estimates the performance of our model (as the
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task involves generation). We find that more
than 35% of the predicted edits are semantically
similar (typically lexical variation) to the refer-
ence gold edit. Some examples include: insert
node picking a book... vs, insert node choosing
a book to read. Another kind of example is the
model suggesting swapping the order of edges
A and B while the reference edit swaps edges B
and A - but both of these are equivalent.

• Challenging feedback (24%) This type of er-
ror occurs when the model fails to interpret a
feedback because it is difficult to interpret e.g.,
the feedback is expressed abstractly. For exam-
ple, for the goal “go to locker room,” the gener-
ated script repeats the step “walk to the locker
room.”. However, the feedback is ‘you can’t go
where you already are’, and FBNET generates
the edit “reorder edge between ‘⟨ walk towards
the locker room , walk to the locker room ⟩’ ” ,
failing to interpret the feedback.

• Error not localized (20%) In about 20% of
the failures, FBNET fails to localize the error
given the feedback. For example, consider the
erroneous input script about the goal buy an
xbox: 1. go to the store 2. talk to the cashier 3.
make the transaction 4. get the receipt 5. load
the video game into the car 6. get into the car 7.
take xbox home The feedback is after a person
makes a transaction, they then head to their
car. The expected edit is: insert node ‘walk to
the car’ after ‘get the receipt’, but the predicted
edit insert node ‘get into the car’ after ‘make
the transaction’ does not correctly identify the
erroneous node. The feedback points to making
a transaction, but it also involves getting the
receipt.

• Alternative answers (16%) We also encounter
cases where there are multiple ways to correct
a script. For example, an edit can be expressed
as insert node ‘X’ before ‘step 4’ or insert node

‘X’ after ‘step 3’. This comprises ∼ 16% of the
errors.

In ∼32% cases, the model generates a correct
edit that differs from the gold. Extrapolating this
performance under-counting to the entire test set,
the accuracy of FBNET in Table 2 would increase
to ∼70% (+32%).

EM EMloc EMtype BLEU ROUGE

NO-FB 6.94 15.3 34.7 24.1 44.2
FBNET 16.72 20.9 56.9 32.5 48.5
FBNETo 22.2 27.8 72.2 44.6 65.8

Table 4: Learning from prior mistakes: On the reuse
dataset, given an erroneous script x, and feedback fb
recalled from similar, prior examples, FBNet perfectly
predicts the specific repair edits 16.7% of the time (or
20.9% the edit location and 56.9% the edit type), a
promising start to learning from prior mistakes.
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Figure 4: Performance on unseen examples (number
of correct data points) improves as memory size grows.
NO-FB baseline performance remains static. Note that
accuracy is evaluated using exact match, and thus is a
lower bound on the actual equivalence as exact match
might miss rephrasings.

5.2 RQ2: How well can FBNET learn from
prior mistakes?

Section §5.1 shows that the corrector G can utilize
user-supplied feedback to fix an incorrect structure.
FBNET combines G with a memoryM of feed-
back, allowing us to leverage past feedback on new
examples. This section presents a setup where feed-
back on previously seen inputs is used to fix new,
unseen examples.

To investigate this setting, we create a new test
set, called the interaction-reuse set or ISET. To
create it, we randomly sample 72 test points (re-
ferred as interaction-reuse set-genesis or ISET-
SOURCE) and perturb them linguistically to gener-
ate interaction-reuse set(also referred as ISET). The
perturbations are performed on the salient entities
in the script, including (i) linguistic perturbation on
∼20% samples (e.g., box→ carton, package) and
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Algorithm 1: FBNET inference on a
stream of inputs with growing memory
Given: FBNET,M, Ω
Given: Set {ISET ∪ ISET-SOURCE} of N

queries.
for i← 1, 2, . . . , N do

/* Check memory for feedback */

f̄bi = Ω(xi,M);
/* Get corrected structure from

FBNET. f̄bi can be empty. */

yi = FBNET (xi, f̄bi);
/* Get user feedback */

fbi = User feedback on yi;
/* Grow memory with new

feedback */

Write fbi toM
end

(ii) the relatively harder analogical perturbation on
the remaining ∼80% samples (e.g., bus → train,
and how to lift blinds → how to open oven door
because the event structure is analogical). The ye

to the original script also applies to the substituted
script. We ensured that the perturbations did not
introduce additional errors in the substituted script.
This ensures that the interaction-reuse setnow con-
tains similar examples to the original test set, a con-
dition that our original splits do not satisfy. There
are a total of 72 data points in interaction-reuse set.

Continually learning using a memory of errors
Examples in interaction-reuse set are randomly
mixed with the original test set. This combined test
set of queries Q is then evaluated using our setup
as shown in Algorithm 1. Intuitively, interaction-
reuse set allows us to simulate a setting where
the system has been deployed in the wild, and end-
users can query. Algorithm 1 runs the memory-
based inference described in Section §3 (Figure 2).
As the system is run through the stream of queries,
we expect that i) the overall performance of the sys-
tem will be better than no feedback, as some of the
examples in the interaction set will provide mean-
ingful feedback, and ii) the running performance
of the system will improve with growing memory:
the probability of relevant feedback being present
for an unseen example increases with time, thus
boosting the performance.

Our experiments show that FBNET meets both
these expectations. First, Table 4 shows that re-
trieved feedback improves over no feedback by

10 points (exact match) and similarly in terms of
BLEU and ROUGE scores, respectively. Further,
Figure 4 shows a graph confirming that FBNET

can improve continuously as memory grows.

6 Scope

In principle, we could apply FBNET to any task
that satisfies the assumptions (§3.2). However, our
approach has some limitations in practice, several
of which merit further detailed follow-up work.

• On Assumption A1: We assume that the out-
put of B is repairable. Such an assumption is
only possible for models that generate mostly
correct outputs and have errors that are easy to
highlight for humans. In practice, this implies
that our approach will most efficiently work
in conjunction with modern language models
(Bommasani et al., 2021) that are shown to be
syntactically correct in form, but can produce
output that lacks commonsense (Bender and
Koller, 2020), making their output repairable.

• On Assumption A2: Having reusable, general
feedback is costly and requires careful instruc-
tions to collect from general users and crowd-
workers (e.g., we asked the crowdworkers how
they would explain the model error to a five-
year-old). As the domain of the task becomes
more specialized, such as database query gener-
ation (Elgohary et al., 2021) or code correction
(Yasunaga and Liang, 2020), collecting data to
train G becomes difficult. Systems that pro-
duce structured explanations are better suited
to our model (see Wiegreffe and Marasović
(2021) for an overview), rather than specialized
domains that require expert users to provide
feedback (e.g., in database query generation).

• Consistent memory: We show in Section §5.1
that FBNET is sensitive to the appropriateness
of the feedback. However, adversarial or in-
correct feedback could pollute the memory and
possibly make it inconsistent. There has been
some recent work to ensure consistency of be-
liefs of a model (Kassner et al., 2021), and more
effort is required in this direction to apply to
more complex settings like ours.

• Using multiple feedbacks: Ω can be enhanced
with more complex attention mechanisms that
aggregate from multiple relevant memory en-
tries and possibly generalize them. We con-
ducted an initial experiment using attention and
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found that we would need a larger dataset to
train Ω effectively.

Advancements in these directions would further
increase the applicability of FBNET. Still, there
are several applications (Wiegreffe and Marasović,
2021) where our approach would currently apply
in principle, or is easy to set up.

7 Summary

Our goal is to create a system that can continu-
ously improve the structured output of a model.
Our approach is to train an error correction model
that uses natural language (NL) feedback to correct
errors in that output. We have presented the first
step towards this goal, showing that an error cor-
rection module can learn to interpret NL feedback
successfully, resulting in 40% fewer errors in script
generation. We have also described ongoing work
on the next step, namely adding a memory layer
where human feedback is stored and later retrieved
efficiently. Together, these offer a possible path to
systems that can continuously improve their output
over time, with progressively less feedback and
without retraining.
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Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
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8 Appendix

8.1 Initial study on the errors of B
(PROSCRIPT)

On PROSCRIPT’s test set, we performed inference
using the released checkpoint (both GPT-2 and T5-
XXL based model). We then randomly sampled
30 generated graphs and manually wrote feedback
for them. Similar to Sakaguchi et al. (2021), we
found that the model makes repairable mistakes
(leading to assumption A1 being satisfied). Further,
we found there instances where a general principle
feedback applies across more than one instances
(e.g., you have to be near something to use it). (see
Table 5).

What was the error General principle feed-
back

Script was missing the step
of not turning off the alarm
after waking up

People don’t leave their
alarms ringing all day.

Script mentioned coming to
the doorway and passing
through it

One cannot walk through
the doorway without open-
ing the door first.

Script tells that getting in
car and drive in zoo can be
done in any order

People must get into a ve-
hicle, before driving to any
place.

Script is looking for a but-
terfly after placing it

You don’t need to look for a
butterfly if it’s already in a
container.

Table 5: Sample error and the corresponding general
principle feedback that could, in principle, repair the
model output.

On an average, there were about two mistakes
present in the graphs. Often, the error was that the
script was using an entity before having it (e.g.,
write on the paper comes before the node find the
paper or reach for the paper). Thus, there seems
to be a possibility of applying similar feedback to
more than one example. We also found some cases
where the script might have to be changed to adapt
to special cases. For example, for a script visit Dis-
neyland, an event obtain a visa might be required
for some users. We believe the original ProScript
dataset aims to generate widely applicable scripts
and grounded in commonsense; rather than cover
all possible outcomes.

On the surface, the generated scripts were of
good quality. However, a closer look at the mis-
takes revealed that most of them could be attributed
to the model lacking basic commonsense. For ex-
ample, Figure 1 shows a typical mistake the model
makes. This underscores the gap between the syn-
tax and semantic correctness of machine-generated

output in the context of automatic script generation.
This observation is in-line with other NLP tasks
(Bender and Koller, 2020) that distinguish the suc-
cess of recent models on the correctness of form
rather than the far-from-over goal of understanding
of meaning.

8.2 Data collection

An average user could point out mistakes in the
generated scripts, as a majority of the errors in
generated scripts are caused by a lack of basic com-
monsense (§8.1). Consequently, we designed a
Mechanical Turk task to provide feedback on mis-
takes. A broad overview of the annotation process
is shown in Figure 5.

Figure 5: A broad overview of the annotation process.
For actual annotation task (including the M-turk task
template), see our code repository.

Annotation Now we discuss our crowdsourcing
setup to collect the data. To maximize the opportu-
nity to get more feedbacks for a predicted script, we
filtered a subset of the test set in ProScript where
the human evaluated graph edit distance was likely
to be high (i.e., there were likely to be more er-
rors). The ProScript authors released the graph
edit value for the set of test set samples they evalu-
ated. We performed inference using their released
PROSCRIPTgen model on those data points with
high graph edit distance value (≥ 8). With this
we collected about 400 (predicted graph, expected
gold graph) tuples. The ProScript paper describes
that their expected gold graph is also imperfect and
might contain about 20% noise. Nevertheless, hav-
ing the gold reference graph guides and constrains
an annotator about the common script for a sce-
nario rather than the wide open space of solving
the task using multiple potentially correct scripts.
(e.g., one could go to a zoo without driving the
car by hiring a taxi and then they won’t need to
drive or park the car). As mentioned in §8.1 our
annotation process must focus on scripts that are
widely applicable and grounded in commonsense.

The annotators are shown the model-generated
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Figure 6: The mechanical turk page for annotation. We show the generated and the expected ProScript gold
reference. The annotator must answer which script is worse and why. They must point out an egregious mistake
(and not any trivial errors that have minor grammatical errors), and annotate: the error type (missing step, wrong
step, wrong order, wrong partial order), localize the error by providing the node or edge id, and give feedback why
it is wrong, and finally to gather the general principle behind the feedback they are asked to explain the feedback to
a five-year-old.

350



and expected gold (reference) scripts, and are re-
quired to answer which script is worse and why. It
is possible that the gold script is marked as worse.
However, we later post-process and remove such
cases, as our focus is to get errors on the generated
scripts and not the manually created scripts. The
annotators must point out an obvious mistake (e.g.,
an event or an edge that does not follow common-
sense). They were asked to ignore grammatical and
fluency errors, and focus on critical errors of four
types:

• Wrong ordering: the order in the sequence
of steps is not correct (e.g., wearing shoes is
described before wearing socks).

• Flexible ordering: some steps can be done in
a flexible order (e.g., you can wear left sock or
right sock first). A good script captures such
flexibility.

• Missing critical steps: a bad script might have
missed critical steps (e.g., the script can say:
“wait for a plane” followed by “get off the plane”
– here an obvious step “get on the plane” is
missing) . There is no strict definition for a
critical step, so the annotators were instructed
to use their commonsense judgment.

• Wrong step: a bad script might have irrelevant
and wrong steps (e.g., the script describing “go
to a party” might describe an irrelevant step
such as read a book, open a book, etc.).

For every data point, the annotators were asked
to answer the following:

• Explicit feedback type-1: the error type (miss-
ing step, wrong step, wrong order, wrong par-
tial order)

• Explicit feedback type-2: localize the error by
providing the erroneous node or edge id

• Implicit feedback type-1: give feedback in a
few words, explaining the error

• Implicit feedback type-2: An explanation of
the error that would potentially make sense to
a five-year-old. Such an explanation of the
feedback helped gather the general principle
that is violated, and is targeted in the feedback.

Fig. 6 shows a sample of our Mechanical Turk task.
Annotators were required to list only one critical
error that they believe was most important. Each
data point is annotated by three annotators, adding
some diversity in the errors. The annotators were
paid $15 an hour. The annotators were English

speaking crowdworkers on Mechanical Turk from
USA. The average time for completion of one script
was 2 minutes.

fb type count example
explicit fb
type-1

1,553 Remove node ‘put the
shirt on’

explicit fb
type-2

1,553 The following step is
not right: put the shirt
on

implicit fb
type-1

1,553 It tells you to iron your
shirt while it’s still on
your body.

implicit fb
type-2

1,553 If you hold a hot
iron against the clothes
you’re currently wear-
ing, you’ll get terrible
burns.

total 6,212 https://
anonymous.4open.
science/r/
interscript/
data.json

Table 6: Dataset statistics. In this paper, we use the hard-
est feedback (implicit-feedback-type-2). This example
is from the input script: input script for the following
table (goal: press the wrinkles out) = 1. put the shirt on,
2. find place to press, 3. grab iron from drawer, 4. place
iron on shirt, 5. wait for iron to heat up, 6. use iron to
smooth out wrinkles, 7. press the wrinkles out

We measured the agreement on labels (which
graph is worse), and on explicit feedback type-1
and type-2. It was difficult to measure agreement
on implicit feedback because it is not easy to per-
form binary comparison on the generated text with-
out accounting for linguistic variations. On the
labels, the Fleiss Kappa agreement was 0.90 (al-
most perfect agreement) and on explicit feedback
the agreement was 0.75 Fleiss Kappa (substantial
agreement). This also shows that there is some
diversity in what the users perceive as a serious
mistake in ybad.

Eventually, we compiled these annotations into a
dataset of 1,553 4-tuples where each entry consists
of (explicit feedback type-1, explicit feedback type-
2, implicit feedback type-1, implicit feedback type-
2).

8.3 Model Output Examples
Table 7 provides some sample model outputs.

9 Performance of FBNET by error type

Table 8 breaks down the performance of FBNET

by error type.
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x fb ye∗ y

1. ...
2. set alarm for early morning
3. get out of bed
4. prepare for yoga
5. go to the bathroom
6. do yoga
7. do yoga in the morning

People don’t leave
their alarms ring-
ing all day.

insert node ‘wake
up and turn off
alarm’ before ‘get
out of bed’

1. ...
2. set alarm for early morning
3. wake up and turn off alarm
4. get out of bed
5. ...
6. ...
7. ...

1. ...
3. put on shoes ...
5. open the door
6. drive to the train station
7. get into the car
8. reach the train station

You must get into
a vehicle, before
driving to any
place.

reorder edge be-
tween ‘⟨ drive to
the train station,
get into the car ⟩’

1. ...
3. ...
5. open the door
6. get into the car.
7. drive to the train station
8. ...

1. ...
3. pick up the butterfly
4. put the butterfly in container
5. look for a butterfly ...
6. Take the butterfly home ...

You don’t need to
look for a butterfly
if it’s already in a
container.

remove node ‘look
for a butterfly’ 1. ...

3. pick up the butterfly
4. put the butterfly in container
5. Take the butterfly home
6. ...

Table 7: Task: Applying the graph edit to the bad script.

Edit type EM%

Overall 38.6

Add partial order exactmatch 10.5
Add partial order type 44.7
Missing step exactmatch 2.8
Missing step type 65.5
Remove partial order exactmatch 0.0
Remove partial order type 0.0
Wrong ordering exactmatch 45.1
Wrong ordering type 72.8
Wrong step exactmatch 63.0
Wrong step type 78.6

Table 8: Performance of FBNET by error type
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