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Abstract
Visual storytelling (VST) is the task of gener-
ating a story paragraph that describes a given
image sequence. Most existing storytelling ap-
proaches have evaluated their models using tra-
ditional natural language generation metrics
like BLEU or CIDEr. However, such metrics
based on n-gram matching tend to have poor
correlation with human evaluation scores and
do not explicitly consider other criteria nec-
essary for storytelling such as sentence struc-
ture or topic coherence. Moreover, a single
score is not enough to assess a story as it does
not inform us about what specific errors were
made by the model. In this paper, we propose
3 evaluation metrics sets that analyses which
aspects we would look for in a good story: 1)
visual grounding, 2) coherence, and 3) non-
redundancy. We measure the reliability of our
metric sets by analysing its correlation with hu-
man judgement scores on a sample of machine
stories obtained from 4 state-of-the-arts mod-
els trained on the Visual Storytelling Dataset
(VIST). Our metric sets outperforms other met-
rics on human correlation, and could be served
as a learning based evaluation metric set that is
complementary to existing rule-based metrics.1

1 Introduction

Visual storytelling (VST) is a natural language gen-
eration (NLG) task that aims to automatically gen-
erate a cohesive story given a sequence of images
(Huang et al., 2016). The task is fundamental to
the development of intelligent agents capable of
understanding complex visual scenarios, and can
be further applied to assist the visually impaired
in understanding images on the web. Recently,
progress has been made on designing network ar-
chitectures to accomplish the VST task but little
work has been done to explore new metrics that
automatically evaluate and quantify the errors pro-
duced by these systems. As to date, a majority of
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1The RoViST code: https://github.com/usydnlp/rovist

Figure 1: Example gold story found in the VIST dataset
versus machine output from 2 VST models and their
n-gram based metrics.

the past works on VST have used existing popular
n-gram based metrics such as BLEU, METEOR,
ROUGE, CIDEr, and SPICE to evaluate their mod-
els (Wang et al., 2018; Kim et al., 2018; Hsu et al.,
2019; Chen et al., 2021). However, it is known
that such metrics are unreliable for VST. Figure 1
shows two machine generated stories for a photo
sequence and their corresponding n-gram matching
based metrics (BLEU, CIDEr, METEOR, ROUGE-
L and SPICE). Evidently, the first candidate story
is more repetitive and lacks a narrative style but
achieves higher scores across a majority of the n-
gram based metrics in Figure 1. The second story
however, has greater word diversity and is more ex-
pressive through its use of phrases like ‘completely
in disrepair’. Relevant words like ‘trip’, ‘country-
side’ and ‘hills’ are also used but are not rewarded
since they are not mentioned in the gold story.

The low level of agreement between human
judgement and current automatic metrics may be
because such metrics were originally developed
to assess machine translation, summarization and
image captioning tasks (Sharif et al., 2018), which
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are significantly different problems to VST. Specifi-
cally, VST is a multimodal task that firstly requires:
1) generating text relevant to the image content but
unlike image captioning, there is less emphasis on
describing relationships between objects and may
contain concepts that are inferred from the image.
It additionally needs to ensure that: 2) the story
must be topically coherent, similar to how a human
would tell a story in a social setting. Sentences
should not sound disjointed e.g. ‘We went to the
park. I grew up in Sydney’. And finally 3) avoids
repetition which appears to be a common issue in
current VST models. For instance, Candidate Story
1 in Figure 1 exhibits inter-sentence repetition be-
tween the first sentence and last sentence. We also
find that some output stories may contain repetition
within sentences (i.e. intra-sentence repetition) e.g.
‘we had a good time and had a great time!’.

Moreover, it is noted that open-ended text gen-
eration tasks usually suffer from the one-to-many
issue, whereby there are multiple plausible outputs
for the same input which are not fully reflected in
the reference sentences (Guan and Huang, 2020).
This issue is even more prominent in the VST task
as different individuals may tell significantly differ-
ent stories and have diverse interpretations given
the same image sequence. All these issues suggest
that we require evaluation metrics that do not sim-
ply rely on comparison with reference sentences.
In addition, given that the VST task requires several
aspects, one single metric is not sufficient to eval-
uate a story and there is a need to design multiple
interpretable metrics that each target a specific VST
criteria. Hence, in this paper, we propose several
unreferenced metrics for the VST task based on the
three aforementioned criteria: 1) visual grounding,
2) coherence, and 3) non-redundancy.

To address criteria 1), we propose a learned met-
ric to calculate relevance scores between nouns in
the VST sentences with the bounding box regions
in the images. We decide to focus on nouns as they
provide the most visual information. Other words
like adjectives and adverbs are difficult to ground
and such words may differ significantly depending
on the person writing the story. The second criteria
which is story coherence requires that consecutive
sentences flow and that each sentence is not just an
isolated description of the image. Existing methods
for measuring coherence have used next sentence
prediction (NSP) to find the probability that a sen-
tence comes after a preceding sentence (Hu et al.,

2020). Inspired by this method, we fine-tune the
ALBERT (Lan et al., 2019) model on story sen-
tences and build a sentence-order prediction (SOP)
model. Finally, to address criteria 3), we propose
an additional metric to explicitly measure inter-
sentence and intra-sentence repetition.

The contributions are summarized as follows:
1) We propose an interpretable and reference-free
metric that addresses 3 criteria required for VST -
visual grounding, coherence and non-redundancy.
2) We conduct human evaluation studies to assess
a sample of machine generated stories obtained
from 4 state-of-the arts VST models. 3) We test the
effectiveness of our proposed metrics by analyzing
its correlation with human scores and show that our
metrics outperform other existing metrics that are
commonly used for VST and NLG tasks.

2 Related Works

Natural Language Generation Metrics The most
popular NLG evaluation metrics are BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al., 2016).
All these metrics are widely used in evaluating im-
age captioning tasks (Anderson et al., 2018; Zhou
et al., 2020) and have also been predominantly
used in VST tasks (Wang et al., 2018; Hsu et al.,
2019; Chen et al., 2021) due to the lack of metrics
designed for VST. While these metrics are com-
putationally efficient, they have limited ability in
accounting for synonym matches or phrase reorder-
ing. This poses a problem for many open-ended
text generation tasks like VST where different an-
notators may have slightly different (but still plausi-
ble) ways of describing the same image. To address
this, some metrics focus on comparing distance and
similarity between word embeddings such as Word
Mover’s Distance (Kusner et al., 2015), Mover-
Score (Zhao et al., 2019) and BERTScore (Zhang
et al., 2019). However, these metrics mentioned so
far still heavily rely on similarity with references,
potentially leading to bias for VST tasks as the ref-
erences may not fully cover the possible ways to
write a story for an image sequence.

Visual Grounding Metrics Past studies have
proposed examining the images in addition to hu-
man written references. Cui et al. (2018) trained
a binary classifier to discriminate between human
and machine captions using image and text repre-
sentations obtained from a CNN and RNN. TIGEr
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(Jiang et al., 2019) employs the pretrained SCAN
model (Lee et al., 2018) to calculate the text-to-
image grounding scores and compares the rele-
vance ranking and grounding weights distribution
among image regions between the references and
the candidate. Lee et al. (2020) later introduced
ViLBERTScore which uses the same approach as
BERTScore but utilizes the ViLBERT model (Lu
et al., 2019) to retrieve image-conditioned token
embeddings. However, we note that these methods
are initially designed for evaluating image caption-
ing systems. Hence, while they do consider the
text-to-image similarity aspect, they do not explic-
itly address the extra criteria required for VST such
as story coherence. Moreover, such metrics still
rely on reference sentences to some extent.

Story Generation Metrics Language models
like BERT (Devlin et al., 2018) trained with NSP
and masked language modelling tasks can identify
appropriate use of words and sentences and hence,
may show promising results when applied to evalu-
ating open-ended text generation. Guan and Huang
(2020) proposed UNION, an unreferenced metric
for scoring machine generated stories. They lever-
age a BERT model trained with negative samples
created by perturbing ground truth stories and pre-
dicts a score representing how human-like a story
is. They showed the effectiveness of BERT in iden-
tifying stories with conflicting logic, repeated plots
and incoherence. However, UNION purely evalu-
ates the output text and cannot be applied to anal-
yse the text-to-image relatedness required for the
VST multimodal task. Additionally, a single score
is outputted which is not informative enough to
gauge what specific errors were made by the model.
Moving to VST, Hu et al. (2020) designed reward
functions to capture story quality for VST models
that use a reinforcement learning framework based
on 3 criteria: image relevance, coherence and ex-
pressiveness. Image relevance is measured by n-
gram precision of entities between candidate and
reference sentences, coherence through BERT’s
NSP task, and word diversity by computing BLEU
scores between generated sentences.

Inspired by this, we also analyze story quality
from 3 similar perspectives 1) visual grounding, 2)
coherence, and 3) non-redundancy. We attempt to
extend the methods of Hsu et al. (2019), provide a
reference-free approach and conduct a comprehen-
sive analysis with human evaluation.

3 Method

We describe our proposed metric in detail. Given
a machine story, we aim to output 3 scores that
explicitly evaluates the story based on 1) visual
grounding, 2) coherence, and 3) non-redundancy.

3.1 RoViST-VG: Visual Grounding Scorer

To detect the visual relationship between image
and text, we build a model that computes the sim-
ilarity between the nouns in the story sentences
with the bounding box regions in the images. We
focus specifically on nouns because despite the di-
verse range of words one can use when storytelling,
we notice that the main commonality among the
ground truth sentences is the noun mention. This is
most likely because nouns (in particular, tangible
nouns) tend to offer the most visual information
and is the common element that people would rec-
ognize when observing an image. An example of
this case is in Figure 2 where we can see that the
nouns ‘dart’ and ‘game’ tends to appear in multiple
gold sentences, even though each sentence is quite
different in structure.

Our visual grounding scorer is inspired by the
phrase localization task (Plummer et al., 2015)
which involves learning to align sentence entities
with image regions. We note that we could have
just employed typical image-text matching models
like SCAN (Lee et al., 2018) to calculate a similar-
ity score between image and text. However, such
models are trained on image captioning sentences
and do not explicitly focus on the more fine-grained
task of word-region alignment. Moreover, retrain-
ing these models with VIST images and whole
sentence pairs would be challenging as previously
mentioned, story sentences tend to differ signif-
icantly in semantics and structure due to human
imagination. This is in contrast to image captions
where ground truth sentences typically tend to be
similar to each other even across different human
annotators (e.g. see description in isolation sen-
tences in Figure 2).

Inspired by CLIP (Radford et al., 2021), we
create a model that learns the image region and
text embeddings such that the noun mention cor-
responding to an image region will have similar
vector representations in geometric space. Let Ii
be an image of a bounding box region and Ti be
the matching noun. For the image encoder, we fol-
low Radford et al. (2021) and leverage the Vision
Transformer (ViT) (Dosovitskiy et al., 2020) to first
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Figure 2: Example ground truth description in isolation
(dii) and story in sequence sentences (sis) sentences
corresponding to an image from the VIST dataset.

Algorithm 1 RoViST-VG
Input: 1)A mini-batch of image regions In with
shape (m× 3× 224× 224) where m is the batch
size, and the last 3 dimensions correspond to the
image channels, height and width respectively. 2)A
mini-batch of matching noun pairs Tn with shape
(m× 300) where 300 represents the dimensions of
the GLoVe vectors. Output: Symmetric loss for
the mini-batch.
Initialization: Pretrained ViT Model with linear
head for the image encoder, and a single linear
layer for the text encoder.

1: hn = VisionTransformer(In)
2: Ie = tanh(Wihn + bi) ▷ image embeddings;

shape = [m,1024]
3: Te = tanh(WtTn + bt) ▷ text embeddings;

shape = [m,1024]
4: logits = Te × ITe ▷ shape = [m, m]
5: Isim = Ie × ITe ▷ shape = [m, m]
6: Tsim = Te × T T

e ▷ shape = [m, m]
7: labels = (Isim + Tsim)/2 ▷ shape = [m, m]
8: Limage = cross_entropy_loss(labelsT , logitsT )
9: Ltext = cross_entropy_loss(labels, logits)

10: Lsymmetric = (Limage + Ltext)/2

extract the image features from Ii. An additional
linear head is further added to project the features
to a vector embedding of dimension 1024. For the
text encoder, Ti is first converted to 300 dimen-
sional GLoVe vectors (Pennington et al., 2014). If
Ti is composed of more than one word, the GLoVe
vectors of each token are simply averaged. These
vector representations are then passed through a
single linear layer to project the text features into
the 1024-dimensional joint embedding space. We
train the model in a contrastive manner to minimize
the symmetric loss. The psuedocode for each batch
iteration is provided in Algorithm 1.

To compute the visual grounding score, we ex-
tract all nouns from the output story sentences and

the top 10 bounding box regions for each image in
the story based on the confidence scores generated
from Faster R-CNN (Ren et al., 2015). This results
in 50 regions for a 5-image story. Each extracted
noun and image region is fed through our trained
text and image encoder respectively to obtain the
image and text embeddings which we denote by Ie
and Te. For each noun, the cosine similarity (cos)
is calculated between its text embedding with all
other region image embeddings. It is noted that a
noun mention from a sentence can match with a
region from other images and not necessarily just
with regions from its corresponding image as we
find that words in story sentences may refer to con-
cepts in other images of the sequence. We then
use a greedy matching approach to obtain the max-
imum similarity score for each noun. Following
Zhang et al. (2019), we further experiment by multi-
plying the similarity score by the inverse document
frequency (idf) of the noun calculated from the cor-
pus. This is to put less emphasis on abstract nouns
that are not visually grounding but frequently occur
in stories (such as ‘time’ and ‘today’). Given N
stories, the idf score of a token Ti is:

idf(Ti) = log(
N

1 + df(Ti)
) (1)

where df(Ti) is the number of stories containing
token Ti. Finally, inspired by Lee et al. (2018),
a recall score is computed by using LogSumExp
(LSE) pooling:

SV G = log
|Te|∑

i=1

exp(idf(Ti) max
Ie,j∈Ie

(cos(Te,i, Ie,j)))

(2)
For interpretability, one can optionally scale the

score between 0 and 1 using a shifted and scaled
version of the sigmoid function:

SV G(scaled) =
1

1 + exp (−0.5× SV G)
× 2− 1

(3)

3.2 RoViST-C: Coherence Scorer
To measure the story’s inter-sentence coherence,
we leverage the ALBERT model to perform sen-
tence order prediction (SOP) (Lan et al., 2019). The
SOP task is a binary classification task, whereby
positive samples are consecutive sentences while
negative samples are simply constructed by swap-
ping the two sentences around. This forces the
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model to primarily focus on learning coherence
properties rather than topic prediction. We fine-
tune the ALBERT model with adjacent story sen-
tences extracted from the VIST and ROCStories
dataset. In total, 822,920 training samples were
created where 15% was used in the validation split.

Let {si−1, si}Ni=1 denote the training data where
si−1 and si are adjacent segments. The input se-
quence fed into ALBERT is in the format sn =
‘[CLS], si−1, [SEP], si, [SEP]’, where [CLS] and
[SEP] are special tokens. Then, the pooled 1024-
dimensional vector representation hn of the input
sequence is obtained by the output of ALBERT:

hn = ALBERT(sn) (4)

To perform SOP, we add a task-specific linear
layer on top of ALBERT to predict the probability
that si follows si−1:

p̂n = softmax(Wchn + bc) (5)

where Wc and bc are the trainable weights and
bias. For the loss function, we optimize the binary
cross-entopy loss as follows:

L = −pnlog(p̂n)− (1− pn)log(1− p̂n) (6)

To obtain the final coherence score for each story,
we compute p̂n for each adjacent sentence pair in
the story and average the probabilities across all
sentence pairs.

3.3 RoViST-NR: Non-redundancy Scorer
A common problem faced by system output sto-
ries is redundancy of words in the form of whole
sentences or phrases. While existing methods (Hu
et al., 2020) for assessing word diversity and rep-
etition do consider inter-sentence repetition, they
do not address repetition within sentences. There-
fore, to calculate the inter- and intra-sentence non-
redundancy score, we propose calculating the Jac-
card Similarity (JS) between and within sentences.
The JS is defined as the intersection size divided by
the union size of two sets (Singh and Singh, 2021).
That is, in our problem, the intersection would be
the number of co-occurring words between two
texts, while the union is the total number of words
in both texts. In particular, we compute the Jaccard
Similarity with sentence ŷi and all its preceding
sentences {ŷ1, ..., ŷi−1} as in Eq. 7. Here, C(ŷi)
and C(ŷj) are the count of unique words in sen-
tence ŷi and ŷj respectively. The inter-sentence

repetition score is then just simply the average JS
scores across the

(
n
2

)
sentence pairs where n is the

number of sentences in the story.

JS(ŷi, ŷj) =
C(ŷi) ∩ C(ŷj)

C(ŷi) ∪ C(ŷj)
(7)

We also measure the intra-sentence redundancy
by first splitting each sentence into non-overlapping
n-grams and then calculating the JS score between
consecutive n-grams within sentences. The intra-
sentence repetition score for a story is then the
average JS scores across all consecutive n-gram
computations. Lastly, we take the mean of the final
inter- and intra-sentence score to obtain the final
repetition score for the story and subtract from 1.
The result is a score between 0 and 1 where a value
closer to 1 means that the story tends to contain
less redundancy.

4 Data

4.1 Supporting Datasets
VIST The Visual Storytelling Dataset (VIST)
dataset (Huang et al., 2016) consists of 10,117
Flickr albums and 210,819 unique images. Each
sample is one sequence of 5 photos selected from
the same album paired with a single human con-
structed story, where each story is comprised of
mostly one sentence per image.
ROCStories Corpora (Mostafazadeh et al., 2016)
is used as additional data along with VIST to train
the ALBERT model. It contains 98,161 stories
where each story consists of 5 sentences written by
humans after being given a prompt.
Flickr30K Entities (Plummer et al., 2015) is de-
rived from the Flickr30K dataset (Young et al.,
2014), consisting of 31,783 images each matched
with 5 captions. The dataset links distinct sen-
tence entities (i.e. a noun/noun phrase) to image
bounding boxes, resulting in 70K unique entities
and 276K unique bounding boxes. We use the
Flickr30K Entities data to train our visual ground-
ing scorer. After filtering out stopwords from the
entity mention, we obtained 566K unique entity-
region pairs.

4.2 VST Models
We evaluate our proposed metric on the output sto-
ries produced by 4 state-of-the art VST models: 1)
AREL (Wang et al., 2018): adopts an inverse rein-
forcement learning approach trained adversarially.
The policy model is a CNN+GRU that generates
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sub-stories for each image, while the reward model
is a CNN-based model designed to output the story
reward. 2) GLACNet (Kim et al., 2018): com-
bines both local and global attention. Image fea-
tures are fed sequentially to a bi-LSTM where the
output is a global representation of the entire story.
This is concatenated with local image-specific fea-
tures to create glocal vectors which are passed to a
decoder for story generation. 3) KG-Story (Hsu
et al., 2020): For each image, a word-form con-
ceptual representation is created by predicting a
set of terms which are then used to query Visual
Genome (Krishna et al., 2017) and OpenIE (Pal
et al., 2016) to identify links between sets of terms
across images. Finally, a Transformer (Vaswani
et al., 2017) takes in the term paths to decode the
story. 4) MCSM+BART (Chen et al., 2021): im-
age concepts and related concepts extracted from
ConceptNet (Liu and Singh, 2004) are used as in-
put for generating richer stories with BART (Lewis
et al., 2020). To incorporate the most appropriate
concepts, their Maximal Clique Selection Mod-
ule model learns a correlation map, reflecting co-
occurrence probabilities of all candidate concepts.

5 Evaluation Setup2

Evaluation Metrics To assess the performance for
RoViST, we analyze its correlation with reliable
human judgements by recruiting many responders
(26) whereas related works (Guan and Huang,
2020; Hu et al., 2020) have used 3-7 annotators.
In total, the 26 responders analysed 400 machine
generated sentences across 80 stories and 4
models, including AREL, GLACNet, KG-Story
and MCSM+BART. A Likert scale was used to
score 3 different criteria for each story based on
what we believe defines a good story - 1) the story
is visually grounded, 2) sentences are natural
sounding and topically coherent, and 3) there is
no repeating plots within the story. Annotators
were additionally asked to vote for which of the
4 models produced the best story relating to the
visual prompt based on no particular criteria. We
follow existing literature and report the Spearman’s
correlation ρ, Pearson’s correlation r and Kendall’s
correlation τ .

Baseline We select 11 baseline metrics to
compare with our metric: BLEU-1,2,3,4 (Papineni
et al., 2002), ROUGE-L (Lin, 2004), METEOR

2The implementation details can be found in the Appendix

Figure 3: Average human scores for an example story
across 3 criteria for 4 different VST models. ‘Propor-
tion of votes’ refers to the percentage of voters who
voted that model’s story as the best out of the 4. Blue
highlighted words visually relate to the image.

(Banerjee and Lavie, 2005), CIDEr (Vedantam
et al., 2015), SPICE (Anderson et al., 2016), WMD
(Kusner et al., 2015), FBERT (F1-measure version
of BERTScore) (Zhang et al., 2019) and TIGEr
(Jiang et al., 2019).

6 Results

6.1 Human Scores versus Story Ranking
We first investigate whether there is any correlation
between the human scores for each 3 criteria and
the model that was voted as the best for each photo
sequence. For each photo sequence, we rank each
of the 4 models’ stories based on the proportion
of votes that it received. The correlations were
then calculated between the mean human scores
for each criteria and the model rankings, and the
average correlation coefficients were finally taken
across the unique stories to obtain the values in
Table 2. We also sum up the human scores across
the 3 criteria and measure its correlation with the
rankings to further analyze at an Overall level.

Interestingly, we find that sentence coherence
plays the most significant role when ranking sto-
ries whereas non-redundancy and visual grounding
are less important. Figure 3 provides an exam-
ple of this case where our human annotators pre-
ferred KG-Story and GLACNet over AREL which
was more visually grounding but less coherent-
sounding. We observe even stronger correlation
when we sum the 3 criteria scores, suggesting that
all 3 aspects combined can give better guidance
when judging a story as can be seen in Figure 3
where most of the votes went to MCSM+BART
which scored relatively well in all 3 areas.
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Grounding Coherence Non-redun Overall

ρ r τ ρ r τ ρ r τ ρ r τ

BLEU-1 0.198 0.168 0.127 0.052 0.044 0.030 0.018 -0.044 0.019 0.080 0.064 0.051
BLEU-2 0.261 0.233 0.181 0.057 0.057 0.037 -0.028 -0.148 -0.006 0.066 0.035 0.049
BLEU-3 0.259 0.229 0.173 0.121 0.160 0.083 -0.073 -0.165 -0.053 0.065 0.062 0.043
BLEU-4 0.225 0.134 0.148 0.121 0.082 0.077 -0.075 -0.195 -0.058 0.051 -0.027 0.026

ROUGE-L 0.244 0.222 0.164 0.197 0.161 0.127 -0.039 -0.138 -0.021 0.109 0.075 0.077
METEOR 0.348 0.319 0.228 0.291 0.256 0.213 0.203 0.075 0.140 0.327 0.280 0.223

CIDEr 0.269 0.158 0.194 0.207 0.104 0.146 0.013 -0.190 0.005 0.182 -0.005 0.131
SPICE 0.311 0.301 0.214 0.052 0.069 0.031 0.018 -0.051 0.015 0.127 0.134 0.095
WMD 0.472 0.490 0.337 0.186 0.236 0.129 0.106 0.015 0.076 0.262 0.312 0.183
FBERT 0.180 0.175 0.149 0.287 0.320 0.202 0.088 0.038 0.061 0.199 0.218 0.128
TIGEr 0.519 0.504 0.354 -0.03 -0.089 -0.027 -0.224 -0.325 -0.147 0.010 -0.005 0.010

RoViST(-VG/C/NR) 0.509 0.460 0.365 0.446 0.456 0.308 0.531 0.736 0.397 0.554 0.579 0.387

Table 1: Criteria level Spearman’s ρ, Pearson’s r and Kendall’s τ correlations between automatic metrics and mean
of human scores. Correlations for Grounding, Coherence, Non-redun and Overall are measured with RoViST-VG,
RoViST-C, RoViST-NR and RoViST respectively.

ρ r τ

Grounding 0.423 0.434 0.400
Coherence 0.663 0.698 0.618
Non-redun 0.379 0.484 0.328

Overall 0.754 0.769 0.676

Table 2: Criteria level Spearman’s ρ, Pearson’s r and
Kendall’s τ between human scores and story ranking.

6.2 Correlation Analysis with Human Scores
Table 1 displays the correlation between the met-
rics and the mean human scores. The results were
analyzed at a criteria level by examining correla-
tions between each criteria’s scores with our met-
ric which targets that criteria. We also analyze
the Overall scores by summing up the 3 criteria
scores and measuring its correlation with RoViST
which represents the sum of the scores produced
by RoViST-VG, RoViST-C and RoViST-NR.

With the grounding correlations, RoViST-VG
outperforms the baselines for Kendall’s correla-
tion. However, it is slightly outperformed by TIGEr
when comparing Spearman’s correlation and by
TIGEr and WMD when comparing Pearson’s cor-
relation. We note that all baseline metrics are
reference-based and therefore, a likely explanation
for the moderate correlations for even simple met-
rics like METEOR is that human references can
already provide a good guideline when assessing
text-to-image relatedness. Moreover, we hypoth-
esize that image captioning metrics will perform
well for the visual grounding aspect in the case
when the model happens to output a sentence that
sounds like an image caption. However, unlike im-
age captioning, we emphasize that just having high
correlation between image objects and text descrip-

Figure 4: Kendall (left) and Spearman (right) correlation
vs. Number of References.

tions does not necessarily mean a good story as we
highlighted in the previous section. Examining the
coherence and non-redundancy aspect, we observe
that a majority of the baselines correlate poorly.
Conversely, our RoViST-C and RoViST-NR metric
designed to specifically target these criteria gener-
ated significantly higher correlations. When com-
paring at the Overall level, we also achieved no-
ticeably better results in terms of ρ, r and τ .

6.3 Changing Number of References
Figure 4 shows how the Spearman and Kendall
correlations for some of the metrics vary with dif-
ferent number of human-written references versus
our reference-less metric. The stories selected for
our analysis each have a different number of ref-
erence stories ranging from 1 to 4. As there were
not many stories with 4 references, we select those
stories that had 3 references, resulting in 60 stories
with 300 sentences for analysis. We then compute
the correlations with the human judgement across
the metrics using 1,2, and 3 references.

It is evident that the results from the reference-
based metrics fluctuate significantly according to
the number of references. However, the trend is
unclear. Increasing the number of references from
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Figure 5: Predicted coherence probabilities from
RoViST-C for 4 VST models.

1 to 2 appears to improve the correlations for some
of the metrics like CIDEr, SPICE and ROUGE-L.
This may be because having more references can
better capture allowable variations in storytelling
compared to a single reference. However, increas-
ing from 2 to 3 references actually worsens the
performance for many of the metrics (BLEU-1/4,
CIDEr, METEOR and ROUGE-L). A possible ex-
planation could be that the additional reference
added may have caused bias for some metrics. In
particular, n-gram based metrics like BLEU and
ROUGE focus on n-gram overlap. Thus, it is pos-
sible that the additional reference introduced may
have a high n-gram overlap with the candidate but
for unimportant filler words like ‘the’ or ‘and’. Our
metric on the other hand, alleviates this issue by
first being a reference-free metric and secondly, by
only focusing on important words (nouns) in the
candidate story via RoViST-VG.

It is also noted that examining more amount of
references could potentially reveal a better trend.
However, this is challenging as the maximum
amount of references in the VIST dataset is 5 with
82.50% of the stories having 3 or less. Moreover,
collecting multiple human reference stories is an
expensive process in most cases.

6.4 Qualitative Analysis
We conduct qualitative analysis on our visual
grounding scorer (RoViST-VG) and coherence
scorer (RoViST-C).

RoViST-VG Figure 6 in Appendix A displays an
example gold story with noun mentions highlighted
in blue, followed by the corresponding bounding
box regions that gave the highest similarity score
retrieved by our RoViST-VG model. We observe

that the model performs well at matching a majority
of the nouns. However, words that are less visu-
ally grounding like ‘corner’ or intangible nouns
such as ‘visit’ are extremely challenging to ground.
Consequently, RoViST-VG can sometimes retrieve
a region that is not closely related for these types
of words. This also occurs for words that are men-
tioned in the story but not explicitly shown in the
images like the word ‘photos’ in Example Story 2.
A potential problem of this may be the presence of
false positives if a story tends to mention many non-
visual entities. This could lead to a higher ground-
ing score compared to a story that only mentions a
few entities that are visually grounded. Neverthe-
less, our model still serves as guidance for analyz-
ing how visually detailed a story is and can also
reflect how many related entities are mentioned.

RoViST-C The qualititive results for 4 example
machine stories is displayed in Figure 5. Notice-
ably, RoViST-C tends to assign higher probabil-
ities to sentences that flow. These sentences do
not necessarily need to be about the same topic.
For instance, sentence 2 and 3 in AREL’s story
each have a different topic focus but the sentence
transition is given a 0.90 coherence score as they
follow a narrative style. Conversely, consecutive
sentences with similar topics but are incoherent
can be given low scores such as sentences 4-5 from
KG-Story. It is clear that training ALBERT with
sentence order prediction allows the model to cap-
ture inter-sentence coherence and is not just limited
to modelling topic similarity across sentences.

7 Conclusion

We propose RoViST, a metric for evaluating VST
tasks on 3 aspects: visual grounding, coherence and
non-redundancy. RoViST correlates well with hu-
man judgement, outperforming other metrics when
comparing the coherence and non-redundancy cri-
teria as well as when combining all 3 criteria.
While some existing metrics slightly outperform
our method on visual grounding, we note that
image-to-text similarity is just one aspect of VST
and this aspect alone is insufficient in defining
a good story. Unlike other metrics, RoViST is
reference-free and hence, robust to the number of
references which are costly to obtain for VST. It
is also interpretable and can be used to gauge out
where the model is underperforming. We hope that
RoViST provides preliminary insight into future
work on developing VST models and evaluations.
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A RoViST-VG Example Output

Figure 6 shows the retrieved regions from the
RoViST-VG model for an example gold story
(top) and a machine-story generated from the
MCSM+BART model (bottom). The blue high-
lighted words are the nouns while red highlighted
words indicate words that do not explicitly appear
in the image sequence or are less visually ground-
ing words.

B Implementation Details

RoViST-VG We use the Adam optimizer (Kingma
and Ba, 2014) with a 0.00001 weight decay. The
learning rate was initially set to 0.00005 and was
reduced by 5% with each consecutive epoch. For
the ViT model, we use the ‘vit-base-patch16-224’
style configuration which outputs image features as
a 768 dimensional vector. Further, the linear layer
used to project the text and embedding features to
the joint embedding space (of dimension 1024)
uses a tanh activation function. No normalization
of the image and text embeddings was done during
the training process as we did not find any benefit
from doing this. Finally, we set the mini-batch
size to 64 and use early stopping to cease training

after the validation loss fails to improve for 3
consecutive epochs. We note that 85% and 15%
of the data was used in the training and validation
set respectively. The model converged in 3 epochs,
taking approximately 12 hours with a Nvidia Tesla
P100 GPU.

RoViST-C For ALBERT, we use the ‘albert-large-
v1’ configuration and the Adam optimizer with a
0.00001 weight decay for training. The learning
rate was 0.00001 which we schedule to reduce
by 5% every epoch. Additionally, the batch size
was 32 and early stopping was employed after the
validation loss failed to improve for 5 epochs. We
note that 85% and 15% of the data was used in the
training and validation set respectively. In total,
we trained the model for 5 epochs, taking 14 hours
with a Nvidia Tesla P100 GPU.

RoViST-NR For assessing intra-sentence
non-redundancy, n-grams of size 4 were used as
we found that repetition of words within sentences
usually occurred in fours.

Figure 6: Retrieved regions from RoViST-VG for an example gold story (top) and machine generated story (bottom).
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C Human Evaluation Survey

Figure 7 shows the survey instructions used in the human evaluation study and the format of the survey
questions. Participants recruited were volunteers from a variety of age groups (20-60 years old), education
level and gender (10 female, 16 male).

Figure 7: Survey instructions and form format for the human evaluation study.
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