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Abstract

Multidomain and multilingual machine trans-
lation often rely on parameter sharing strate-
gies, where large portions of the network are
meant to capture the commonalities of the
tasks at hand, while smaller parts are reserved
to model the peculiarities of a language or a
domain. In adapter-based approaches, these
strategies are hardcoded in the network ar-
chitecture, independent of the similarities be-
tween tasks. In this work, we propose a new
method to better take advantage of these sim-
ilarities, using a latent-variable model. We
also develop new techniques to train this
model end-to-end and report experimental re-
sults showing that the learned patterns are both
meaningful and yield improved translation per-
formance without any increase of the model
size.

1 Introduction

Multidomain and multilingual machine translation
aim to develop one single model to perform trans-
lation for multiple domains and multiple language
pairs, respectively.1 These paradigms are moti-
vated by the compactness of the resulting transla-
tion system (Chu and Dabre, 2018; Dabre et al.,
2020), the hypothetical positive knowledge transfer
between similar domains (Pham et al., 2021) or
between languages in the same family (Tan et al.,
2019). However, having all the tasks use exactly
the same model parameters can cause negative in-
terference between unrelated tasks (Conneau et al.,
2020; Wang et al., 2020b). Hence, the recent devel-
opment of approaches relying on a partial sharing
of the parameters, eg. using adapter layers as stud-
ied in (Houlsby et al., 2019; Bapna and Firat, 2019;
Pham et al., 2020; Philip et al., 2020). If these tech-
niques have proven effective for building strong

∗ Now Research Scientist at Zoom Video Communica-
tions

1We will refer to these two situations as ’multi-task MT’
and refer to individual domains and languages as ’tasks’.

baselines, they fail to fully take advantage of the
similarities that exist between domains and tasks,
as documented eg. in (Pham et al., 2021). This
is because the partition of the parameter space be-
tween generic or task-specific subparts, and their
allocation to each task, is hard-coded in the net-
work, irrespective of the actual commonalties and
differences in the data space.

In this work, we study and develop a new
method, multi-task group dropout, aimed to take
into account the similarity between tasks in a more
effective way, by learning the network organiza-
tion from the data. To this end, we introduce a set
of latent variables in the model, to account for the
unseen association between tasks and regions of
the representation space and show how training can
still be performed end-to-end using a variational
surrogate of the log-likelihood loss function. Our
experiments with multilingual and multidomain
machine translation confirm that this method can
automatically detect similarities in the data, mean-
ing that related tasks use the same subparts of the
network. Our results also show that this method
is comparable to using adapter layers in a number
of empirical comparisons; however, contrarily to
adapters, these performance are obtained without
any increase of the model size. Our contributions
are primarily methodological and can be summa-
rized as follows:

1. We introduce a novel, sound mathematical
formulation to the problem of jointly learning
task-dependent sub-networks and the parame-
ters of the underlying models using variational
probabilistic modeling techniques;

2. We present algorithms to train this model end-
to-end with very little extra parameters;

3. We report, using an extensive set of experi-
ments, gains for multidomain MT and very
low-resourced languages in multilingual MT;

4. We study how this method can actually ex-
ploit the similarities between tasks to learn
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Figure 1: Latent group dropout. The set of nodes in
each layer is divided into equal-sized groups. For each
task, we only keep a fixed number of active groups of
nodes and nullify all the other nodes.

interpretable sub-networks.

2 Multi-task group dropout

2.1 Network architecture, groups and layers

Many architectures for multitask learning are based
on a matching of subset of model parameters with
tasks. Given the task and the input instance, only
a subpart of the network will be involved in the
computation of the output value, based on a prede-
fined association between subnetworks and tasks.
The adapter architecture of (Bapna and Firat, 2019)
illustrates this strategy, where a task-dependent set
of layers is activated for each task.

In our approach, we also require to know the
task d ∈ [0 . . .nd − 1] for each training and test
instance. The structure of our Transformer net-
works (Vaswani et al., 2017) is however based on
the notion of groups of nodes in the computation
graph. At the input of each Transformer layer
l ∈ [1 . . .L], we partition all input state vectors into
np groups of nodes, and zero-out a task-dependent
subset of these groups. The assignment of tasks
to groups will be learned from the data, under the
constraint that each task only activates exactly k
groups of active nodes, while the all the other val-
ues are nullified, akin to a dropout process (see
Figure 1). Formally, a group dropout mask md

l is a
np-dimensional binary vector containing exactly k
ones: group p (∈ [0, . . . ,np-1]) is retained for task
d if md

l (p) = 1 and is dropped if md
l (p) = 0. We

denote ∆np
k = {m ∈ {0,1}np such that | m |L1= k}

the set of all admissible masks, with | m |L1 the L1
norm of vector m; #∆np

k is the cardinal of ∆np .
Given md

l , the mask rd
l for task d in layer l is

then derived as:

rd
l (i) = md

l (p) if p× dk

np
6 i < (p+1)× dk

np
,

where dk is the dimension of the hidden state. The
propagation of information within the network then
depends on the current task value as follows:

∀l ∈ [0, · · · ,L−1] : h̃l = hl� rd
l ,

hl+1 = LAYERl+1(h̃l),

where LAYERl() represents all the computations
in Transformer layer l, � is element-wise product.
It is applied at all positions of each layer in the
encoder and in the decoder.

2.2 Training with latent dropout masks

Assuming standard notation for our translation
model P(y|x,d;θ) where x, y and θ respectively
refer to the input, output, and parameter vector, the
latent variables md

l , l ∈ [0, . . . ,L],d ∈ [0, . . . ,nd−1]
are introduced as follows. We chose the prior distri-
bution for md

l as the uniform distribution over ∆np
k :

P(md
l |x,d;θ) = Unif(∆np

k ); variables for each layer
are independent and collectively refered to as md .
For any (variational) distribution Q(m1 . . .mnd ;Φ)
with parameters Φ= {φ 1

l , ...,φ
nd
L }, it is well-known

that the log-likelihood is lower-bounded by the so-
called ELBO function (hereafter denoted `), made
of a summation of two terms: the distortion D and
the rate R defined as follows:

logP(y|x,d;θ)≥`(x,y,d;θ ,Φ)

`(x,y,d;θ ,Φ) =D(x,y,d;θ ,Φ)−R(x,y,d;θ ,Φ)
(1)

D(x,y,d;θ ,φ) =Emd∼Q(md |d,Φ) logP(y|md ,x,d;θ)

R(x,y,d;θ ,φ) =KL(Q(md |d,Φ)||P(md |x,d;θ)),
where KL is the Kullback-Leibler divergence. We
use −`(x,y,d;θ ,Φ) as our surrogate training loss,
as a tractable approximation of the likelihood, and
try to minimize this function in θ and Φ.

The variational distribution Q of md is defined
independently on a layerwise basis; this means that
each layer only involves a subset Φd

l of variational
parameters. Q is computed as follows:

Indd = {i1, · · · , ik} ∼ SRS(softmax(Φd
l ),k)

md
l (i) = I(i ∈ Indd),

where SRS(π,k) denotes the process of sampling
k times without replacement from the distribution
π , and I is the indicator function. This modeling
choice for the latent vector md

l is motivated by the
Gumbel Top-K trick of Kool et al. (2019) that we
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use below. Given our choices for the prior and the
variational distributions, the two terms in Eq. (1)
can be computed as:

D(. . .) = Emd∼Q(md |d;Φ)logP(y|md ,x,d,θ)

= Egd∼i.i.dG(0,1)
[

logP(y|m̃d ,x,d,θ ,)
]

where the generation process G(0,1) is a product
of independent Gumbel distributions, yielding:

∀d,gd = [gd
1 , . . . ,g

d
L], with gd

l ∈ Rnp

∀p,gd
l (p)i.i.d∼ Gumbel(0,1)

Indd = {i1, · · · , ik}= Top-k { gd
l (0)+Φd

l (0), · · · ,
gd

l (np-1)+Φd
l (np-1) }

(2)

m̃d
l (p) = I(p ∈ Indd).

For the second term, the derivation is the following:

R = KL(Q(md |d,Φ)||P(md |x,d;θ)),

=−
L

∑
l=1

(
H
[
Q(md

l |d,Φ)
]
− log(#∆np

k )
)

=−
L

∑
l=1

(
H
[
Q(i1, · · · , ik|d,Φ)

]
− log(#∆np

k )
)

6−
L

∑
l=1

(
H
[
Q(i1|d,Φd

l )
]
− log(#∆np

k )
)
. (3)

We prove inequality (3) in Appendix B. This
inequality shows that an upperbound of R is
∑L

l=1(log(#∆np
k )−H(softmax(Φd

l ))) since i1|Φd
l ∼

softmax(Φd
l ). During training, we thus maximize

a sum over layers of the entropy H(softmax(Φd
l ))

which performs a regularization over the parame-
ters Φd of the variational distribution.

Thanks to the Gumbel Top-K trick, we can move
the parameters Φ into the objective function and
get rid of policy gradients, which have been re-
ported to be very unstable (Kingma and Welling,
2014). However, the operator Top-k, which serves
to define m̃d

l in Equation (2), is not differentiable.
Therefore, we approximate this function by the
Soft-Top-K function defined as follows:

m̂d
l (τ) = argmin

06mi61
∀06i6nd -1

1T .m=k

− (gd
l +Φd

l )
T .m− τHb(m)

(4)
in which

Hb(m) =−∑
i

milog(mi)+(1−mi)log(1−mi).

In Appendix A, we prove that limτ→0 m̂d
l (τ) =

m̃d
l . Furthermore, we also provide the computation

of m̂d
l (τ) and prove that m̂d

l (τ) is a differentiable

function w.r.t Φd
l and that its gradients can be com-

puted using the implicit differentiation theorem.
During training, we approximate m̃d

l by m̂d
l (τ) by

gradually decaying the hyper-parameter τ to 0.2.
The gradient of D w.r.t Φd

l is computed using the
chain rule as follows:

∂D
∂Φd

l
=

∂D
∂ m̂d

l (τ)
× ∂ m̂d

l (τ)
∂Φd

l

The gradient ∂D
∂ m̂d

l (τ)
is computed via autograd algo-

rithm while ∂ m̂d
l (τ)

∂Φd
l

is computed via implicit differ-
entiation, as explained in Appendix A.

We jointly train the Transformer parameters θ
and the parameters of the variational distribution Φ
using the following multi-task loss.

L (θ ,Φ) =
nd

∑
d=1

Ex∼Dd
s ,y∼MT d(x)

[
− `(x,y,d;θ ,Φ)

]

in which Dd
s is distribution of task d over the

input space Ωd
s ; MTd : Ωd

s →Ωd
t is the translation

function for task d, which our multi-task model
needs to learn; −`(x,y,d,θ ,Φ) is the ELBO loss,
defined in Equation 1.

Finally, during inference, we define the dropout
mask for layer l and task d as follows:

Indd
l = Top-k(Φd

l )

md
l = I(i ∈ Indd

l )

meaning that we simply pick the k most likely pa-
rameter groups for the task at hand, and define the
state dropout mask accordingly.

3 Experimental settings

3.1 System design and configuration

3.1.1 Multidomain translation systems
Our systems for the multidomain experiments are
designed as follows:

• Transformer: The embedding dimension for
both encoder and decoder is set as 512, and
the feedforward dimension is 2048; the multi-
head attention mechanism contains 8 heads; 6
layers in the encoder; 6 layers in the decoder.

• Adapter-based Transformer: the intermediate
feedforward dimension is set to 2048, as in
Pham et al. (2021).

• Transformer using Latent multi-task group
dropout (LaMGD Transformers): There is no
change in the architecture. We group the 512
nodes in each layer into 16 groups of 32 con-
secutive nodes. For each domain, only 12 out
of the 16 groups are selected. The number
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of parameters of the variational distribution is
L× k×L×nd , which is negligible in compar-
ison to the size of the Transformer model.

• Transformer using heuristic multi-task group
dropout (HMGD Transformer): we share 320
nodes for every task, and reserve 32 nodes for
each task (totalling 320+32∗6 = 512 nodes).

We set the dropout probability to 0.1. We train
the multidomain Transformer model for 200k itera-
tions with a batch size of 12k tokens using 4 V100
GPUs. The convergence of the standard Trans-
former is before 200K as its validation curve be-
came flat near the 200K-th iteration. The LaMGD
Transformer converged after 300k iterations with
the same batch size. The convergence of LaMGD is
controlled by its validation curve. Finally, we plug
adapters to the multidomain Transformer model
and finetune them for 25k iterations using the same
batch size as the baseline.

3.1.2 Multilingual translation systems
The systems used in our multilingual experiments
are implemented as follows:

• Multilingual Transformer: the embedding di-
mension for both encoder and decoder is set as
512, and the feedforward dimension is 1024,
each multi-head attentions contains 8 heads
as in (Wang et al., 2020a).

• Adapter based Transformer: the intermediate
feedforward dimension is set as 128. We fol-
low here the parameter setting of (Gong et al.,
2021a).

• LaMGD Transformer: There is no change in
the architecture. We group 512 nodes in each
layer into 16 groups of 32 consecutive nodes.
For each language, we select 12 groups.

We set the dropout probability to 0.3. We train
the multilingual Transformer model for 40k itera-
tions with a batch size of 9600 tokens on 16 V100
GPUs as in Gong et al. (2021a). We train LaMGD
Transformer for 50k iterations with the same batch
size. The convergence of the models are controlled
via their validation curves. Finally, we finetune the
language-specific Adapters for 5k iterations.

All the translation systems are implemented with
OpenNMT-tf 2 (Klein et al., 2017).

3.1.3 Hyper-parameters
We choose nd = 16 so that the size of the dropout
group is neither too small nor too large. The second
important hyper-parameter in LaMGD is the number

2https://github.com/OpenNMT/OpenNMT-tf

of selected groups in each layer, k, which we set
to 12 in every experiments. By retaining 12/16
groups, we share on average 75% active groups
between two domains or languages. This design
ensures that the percentage of sharing is in the same
ballpark as what we obtain with adapter modules.
In our future work, we intend to analyze how these
choices affect the final performance of the model.

The temperature parameter τ for the Soft-Top-K
operator is gradually decreased from 0.5 to 0.2
according to the following policy:

τ = min{0.2,0.5∗ exp−r∗step},
in which r = 0.0001. While Gong et al. (2021b,a)
fixed τ to be 0.2, we select an anneal policy for τ
proposed by previous studies (Jang et al., 2017).
Finally, we set the weight of the entropy term to
0.0001 in the training loss in every experiments.

3.1.4 Latent variables initialization
We initialize the distribution of the latent variables
uniformly. More precisely, we set Φd

l , which gen-
erates the probability of the masks via the softmax
activation function, to 0nd .

3.2 Datasets and metrics

3.2.1 Multidomain translation
We use the same data as in the recent work of
Pham et al. (2021) on multidomain translation. The
datasets 3 for the multidomain translation experi-
ments are detailed in Table 1. For each domain, the
size of the dev set and the test set is 1 K.

3.2.2 Multilingual translation
We evaluate our model on both one-to-many (O2M)
and many-to-one (M2O) translation tasks borrow-
ing the multilingual translation datasets from past
studies. More precisely, we used:

• TED8-Related. Following the setting of Wang
et al. (2020a), we use a subset of translations
from Qi et al. (2018) between English and
eight related languages.

• TED8-Diverse. The dataset consists of par-
allel sentences between English and eight di-
verse languages as in Wang et al. (2020a).

The languages used in the multilingual experi-
ments are as follows (see statistics in Table 2):

• Diverse set: bos (Bosnian), Bulgarian (bul),
French (fra), ell (Greek), hin (Hindi), Korean
(kor) mkd (Macedonian), mar (Marathi);

3See https://github.com/qmpham/
experiments/tree/main/tacl20
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MED LAW BANK IT TALK REL

# lines 2609 (0.68) 501 (0.13) 190 (0.05) 270 (0.07) 160 (0.04) 130 (0.03)
# tokens 133 / 154 17.1 / 19.6 6.3 / 7.3 3.6 / 4.6 3.6 / 4.0 3.2 / 3.4
# types 771 / 720 52.7 / 63.1 92.3 / 94.7 75.8 / 91.4 61.5 / 73.3 22.4 / 10.5
# uniq 700 / 640 20.2 / 23.7 42.9 / 40.1 44.7 / 55.7 20.7 / 25.6 7.1 / 2.1

Table 1: Corpora statistics: number of parallel lines (×103) and proportion in the basic domain mixture (which
does not include the NEWS domain), number of tokens in English and French (×106), number of types in English
and French (×103), number of types that only appear in a given domain (×103).

• Related set: Azerbajiani (aze), Belarusian
(bel), Czech (ces), Galician (glg), Portuguese
(por), Russian (rus), Slovak (slk), Turk-
ish (tur).

For all experiments, we report the BLEU score
of Papineni et al. (2002) computed with SacreBleu
(Post, 2018). Statistical significance is computed
with compare-mt4 (Neubig et al., 2019). We report
significant differences at the level of p = 0.05.

4 Results and analyses

4.1 Multidomain translation

For these experiments, our main results are in Ta-
ble 3, where we observe that the LaMGD Trans-
former achieves a significant improvement (+2.78)
over the generic Transformer system with zero
extra parameters. Moreover, LaMGD Transformer
achieves performance that are equivalent on aver-
age to that of the Adapter sytems, which is fine-
tuned and contains approximately 25M additional
parameters per domain. Variational mask learned
from data by LaMGD also outperforms heuristic
dropout mask HMGD by 0.5 in average.

4.1.1 Fuzzy domain separation
For this experiment, we reuse proposal of Pham
et al. (2021), who measure the efficiency of a mul-
tidomain NMT system exploiting the proximity
between domains. It uses the same data as in the
previous experiment; however, the domain LAW is
now randomly split into two pseudo-domains LAW1
and LAW2 of equal size. A truly multidomain sys-
tem should be able to automatically detect the prox-
imity between LAW1 and LAW2, and there should be
no significant difference between the performance
of a system trained with the six original domains
(including LAW) or with the seven domains (includ-
ing LAW by LAW1 and LAW2). Pham et al. (2021)
reported a large gap between the two settings when
using residual adapters. We replicated this setting

4https://github.com/neulab/compare-mt

and report the results obtained with the LaMGD
Transformer system in Table 4.

The results in Table 4 show a performance de-
crease for the adapter-based system when train-
ing with two pseudo-domains LAW1 and LAW2. In
contrast, the LaMGD model obtains very stable re-
sults. In Section 4.3, we show that our algorithm
in fact computes the same sub-network for LAW1
and LAW2, that allows a full sharing of information
between these two pseudo-domains.

4.2 Multilingual translation
Results for the multilingual experiments are in Ta-
ble 5. The LaMGD Transformer achieves an im-
provement of 0.42, 0.33, 0.32 in average over the
multilingual Transformer in the O2M-related,
M2O-related, M2O-diverse conditions, respec-
tively. Significant gains are observed for languages
BEL, GLG (both direction), HIN and BOS (O2M di-
rection) which are very low-resource languages in
our sets. However, LaMGD Transformer is outper-
formed by the multilingual Transformer and
language Adapters for the O2M-diverse condition.

4.3 Similarity between dropping masks
This section compares the sub-networks learnt for
each domain or language pair by computing the av-
erage similarity between the corresponding dropout
masks concatenated for all the layers of the under-
lying model. For the multidomain experiment, we
analyze the case of pseud-domain separation re-
ported in Section 4.1.1 in Figure 2a. We see that
the sub-networks for LAW1 and LAW2 are identical,
yielding a full sharing between the corresponding
training sets. Furthermore, we observe a large dis-
tance between REL and the other domains, which
is expected given that REL is quite distinct from
the other domains. REL only share around 75% its
active groups with other domains, as would be ob-
tained by chance in our setting (see Section 3.1.3).
In Figure 4, we visualize the domains using their
dropping masks concatenated and mapped to a 2d
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Related Diverse
LANG TRAIN DEV TEST LANG TRAIN DEV TEST

Azerbaijani 5.94k 671 903 Bosnian 5.64k 474 463
Belarusian 4.51k 248 664 Marathi 9.84k 767 1090
Galician 10.0k 682 1007 Hindi 18.79k 854 1243
Slovak 61.5k 2271 2445 Macedonian 25.33k 640 438
Turkish 182k 4045 5029 Greek 134k 3344 4433
Russian 208k 4814 5483 Bulgarian 174k 4082 5060

Portuguese 185k 4035 4855 French 192k 4320 4866
Czech 103k 3462 3831 Korean 205k 4441 5637

Table 2: Data Statistics of TED8 Datasets

Model / Domain MED LAW BANK TALK IT REL AVG

Transformer [65m] 40.3 59.5 49.8 36.4 49.0 80.0 52.5
HMGD Transformer [+0m] 40.4 60.4 51.9 38.7 50.8 86.80 54.8
Adapter [+151m] 39.5 61.0 53.1 37.5 49.6 91.0 55.3
LaMGD Transformer [+0m] 40.3 60.4 52.4 39.0 52.4 87.5 55.3

Table 3: Multi-domain translation. Boldface identifies best system for each domain.

Model / Domain LAW LAW1 LAW2

Adapter [+151m] 61.0 60.4 (-0.6) 60.2 (-0.8)
LaMGD Transformer [+0m] 60.4 60.4 (=) 60.4 (=)

Table 4: Experiments with two similar pseudo-domains

O2M-related AZE BEL CES GLG POR RUS SLK TUR AVG

Transformer [91.6m] 4.8 7.3 20.8 21.1 39.7 19.8 22.6 15.2 18.9
Adapter [+13m] 4.3 6.8 21.1 22 39.7 20 23 15.2 19
LaMGD Transformer [+0m] 5.2 9.4 20.6 22.8 39.6 19.6 22.4 15.0 19.3
M2O-related AZE BEL CES GLG POR RUS SLK TUR AVG

Transformer [67.8m] 11.4 16.6 28.5 27.1 43.7 24.6 30.3 25.6 26.0
Adapter [+13m] 10.1 15.8 28.4 26.8 43.7 24.5 30.2 25.6 25.6
LaMGD Transformer [+0m] 11.3 17.4 28.6 28.7 43.7 24.5 30.7 25.6 26.3
O2M-diverse BOS MAR HIN MKD ELL BUL FRA KOR AVG

Transformer [96.9m] 10.2 4 12.7 22.2 31.8 34.0 38.3 8.3 20.2
Adapter [+13m] 10.2 4 13.3 21.9 32.2 34.1 38.5 8.3 20.3
LaMGD Transformer [+0m] 10.1 3.8 12.6 22.8 31.8 33.4 38.1 8.1 20.1
M2O-diverse BOS MAR HIN MKD ELL BUL FRA KOR AVG

Transformer [70.4m] 22.4 9.7 20.5 31.8 37.5 38.7 39.8 19.0 27.4
Adapter [+13m] 22.5 9.4 20.0 30.6 37.2 38.2 39.3 19.0 27.0
LaMGD Transformer [+0m] 23.5 9.6 21.5 32.2 37.7 38.6 40.0 18.9 27.7

Table 5: Multilingual Translation experiments. Boldface denotes significant gains over Transformer (p= 0.05).

space using Principal Component Analysis (PCA).

For multilingual (TED-related) experiments,
the training data contains four language fam-
ilies: (1) Turkic, with Azerbaijani and Turk-
ish(AZE,TUR); (2) Slavic, with Belarusian and Rus-
sian (BEL,RUS); (3) Romance, with Galician and

Portuguese (GLG, POR); and (4) Czech-Slovak,
with Slovak and Czech (CES, SLK). We provide in
Figure 2b the heatmap of the similarities between
the dropout masks of our objective languages. We
observe that each pair of languages in the same
family correspond to brightest color except the di-
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(a) Multidomain

(b) Multilingual (Related)

Figure 2: Heatmap visualization of the similarities be-
tween dropout masks of domains(languages).

agonal in every column or every row.
We also plot the languages based on their

dropout masks in Figure 3 using a 2d PCA pro-
jection.

4.4 Ablation study

We discuss here the choice of the hyper-parameters
k, the number of activated nodes in each layer,
and its impact on the sharing level between the
tasks. Table 7 shows the variance of performance
when the number of activated nodes is changed,
and the sharing level between tasks decreases in
consequence. In addition, we also report in this sec-

k AVG sharing rate
8 18.1 0.63
10 19.15 0.73
12 19.33 0.78
14 19.44 0.88

Table 6: Variation of the performance w.r.t k, while we
fix np = 16 (o2m-related experiment).

tion the effect of not choosing the number of groups
np, which is assigned to 16 in the comparison of
LaMGD and the contrasting methods. We show
that setting np to the layer’s size, which means the
group size is 1, has a very similar performance as

choosing np heuristically.

k/np AVG

12 / 16 19.33
384 / 512 19.26

Table 7: Setting the size of group to 1 (o2m-related
experiment). The quota of activated nodes is keep un-
changed to 75%

5 Related work

Multidomain and multilingual translation systems
have received considerable attention in the recent
years, and a exhaustive survey is beyond the goal
of this paper. Domain adaptation for neural MT is
surveyed in (Chu et al., 2017), while multidomain
MT systems are notably studied in (Saunders, 2021;
Pham et al., 2021); for multilingual MT, the reader
is referred eg. to (Chu and Dabre, 2018; Dabre
et al., 2020). We focus on the most relevant subset
of this literature below.

Language similarity The methods developed
by (Sen et al., 2019; Kong et al., 2021) use lan-
guage proximity to design parameter sharing strate-
gies. The authors propose a multi-decoder model
sharing the same encoder among languages and
routing languages in different families to different
decoders. These approaches share the same interest
in expressing the proximity between tasks in the se-
lection of task-specific parameters as our approach.
However, our method learn the selection from a
latent commonality in data instead of using a pre-
defined selection such as "One language family per
decoder" in (Kong et al., 2021).

Language-specific sub-networks. Frankle and
Carbin (2019); Liu et al. (2019) study techniques
to identify the most important parameters for the
current task, so that masking the less important pa-
rameters during training does not hurt performance.
Lin et al. (2021) adapts this idea for multilingual
NMT, trying to identify language dependent sub-
sets of parameters by pruning a fine-tuned model.
Our approach also aims to map sub-networks to
tasks: we do so by masking the output of each
layer, rather than masking parameters. Further-
more, Lin et al. (2021) computes the masks via a
heuristic selection; while our approach learns the
masks with variational techniques.

Sparse Transformer The idea of adaptive spar-
sity is studied in several works. For instance, Li
et al. (2020) propose to use a variable depth for dif-
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(a) TED-Related (b) TED-Diverse

Figure 3: Visualization of languages according to their dropout masks (a large vector concatenating the dropping
masks of all the layers of the model) constructed by PCA.

ferent tasks. The authors aimed to match the depth
of the sub-network to the complexity of the task.
Gong et al. (2021b,a) also take an interest in the
adaptive sparse Transformers, in which differ each
task triggers the selection of specific heads in multi-
head attention, layers, and blocks in feedforward
matrices. Mixture-of-experts (MoE) constitute an-
other effective approach to achieve sparsity. Using
the Transformer architecture, the GShard model
replaces a single feedforward (FFN) sub-layer with
an MoE module consisting of multiple FFN sub-
layers (Lepikhin et al., 2021; Fedus et al., 2021).

Adapter modules Adapters have proven to be
very efficient for multi-task NLP (Houlsby et al.,
2019; Bapna and Firat, 2019; Pham et al., 2020;
Pfeiffer et al., 2020). In a nutshell, this technique
consists in plugging several so-called adapter mod-
ules to the intermediate layers of a pretrained Trans-
former and finetuning these adapters on the down-
stream tasks. Adapters can also be trained with-
out supervision for multilingual translation (Philip
et al., 2020). However, the hard-coded separation
between the domains of different tasks may lead
to a catastrophic forgetting effect (Pfeiffer et al.,
2021), which is a common problem in multi-task
modeling using neural networks (McCloskey and
Cohen, 1989). In multidomain translation, Pham
et al. (2021) recently demonstrated the brittleness
of adapters against fuzzy domain separations, out-
of-domain distributions, and erroneous domain
tags. Several subsequent studies have aimed to
mitigate this weakness through a mixture of expert
mechanism (e.g. (Pfeiffer et al., 2021)).

Zhang et al. (2021) propose to learn to route
between shared and language-specific representa-
tions with a conditional language-specific routing
while training the parameters of the underlying
Transformer. This method is related to the Fusion-
Adapters of Pfeiffer et al. (2021). Both approaches
aim to select between shared and task-specific rep-
resentations. The proximity between tasks is not
taken into account in the routing mechanism. We
propose a different approach to the problem of
multi-task routing in the underlying network.

6 Conclusions and outlook

In this work, we have presented a novel method
for multdomain and multilingual translation. It al-
lows us to jointly search for an optimal assignment
of sub-networks to tasks and to learn the param-
eters of the underlying network. Our method re-
lies on a sound mathematical framework and an
end-to-end optimization procedure; it only adds a
small number of extra parameters. The additional
training cost is also reasonable, amounting to 100k
iterations in the multidomain setting, given the ob-
served gains in performance. Experimentally, we
achieve a large improvement over a Transformer
baseline; our performance are also comparable to
that of a strong a multi-task baseline using residual
adapter modules which rely on a large number of
extra parameters. For multilingual translation, our
model outperforms multilingual Transformer and
Language Adapters in 3 our of 4 settings. LAMGD
seems specially beneficial for training languages
with little parallel data, which can take advantage
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of the resources that are available for related lan-
guages. Besides, we provided an thorough analysis
of the similarities between learned sub-networks
and demonstrate a strong correlation between the
learned similarities and the proximity of the corre-
sponding tasks (domain or language).

There are several ways in which our methodol-
ogy can be improved. In future work, we would
first like to provide an complete variational frame-
work to model both the number of groups, k and
the selection of the dropout masks. Second, we
also intend to dispense with the domain informa-
tion during inference: this would mean replacing
the dependency on d in the variational distribution
by a dependency on the input x. Another interest-
ing direction will be to consider adapting the size
and capacity allocated to each domain / language,
depending on the difficulty of the associated trans-
lation task. Addressing these questions will allow
to us replace heuristic choices in the architecture
design with an increased dependency on the train-
ing data.

7 Ethical Considerations

MT technologies are generally intended to facili-
tate cross-lingual as well as cross-cultural commu-
nications. The methods presented here are notably
interesting in the view to improve MT from and
into English for low-resource languages, subject
to the availability of data for a related language.
We acknowledge that (a) our results should ulti-
mately be backed-up large scale experiments in-
volving much more languages – even though this
goes against the idea of limiting the computing
cost our experiments; (b) better architectures and
training regimes can improve the translation qual-
ity for low-resource languages, yet will not solve
the problem entirely. This means that additional
work focusing specifically on developing resources
for these languages should remain an important
objective for future work.
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A Appendix A

This section explains how to compute m̂d
l (τ) by

solving the optimization problem (4) and then how
to compute the gradients ∂ m̂d

l (τ)
∂Φd

l
.

First, to solve (4) we follow the same approach
as in (Amos et al., 2019; Amos and Yarats, 2020)
by applying the Karush–Kuhn–Tucker (KKT) con-
ditions to (4). The solution of (4) will have the
following form:

m̂d
l (τ) = σ(

gd
l +Φd

l + ν̄
τ

) (5)

in which σ(.) is the sigmoid function and ν̄ is the
solution of the following equation:

np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k (6)

Because sigmoid is monotonically increasing,
equation (6) has a unique solution. Further-
more, because of the smoothness of g(ν ,Φd

l ) =
np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) w.r.t ν and Φd

l , we can

perform the implicit differentiation of its solution
ν̄ w.r.t Φd

l as below, even though the solution of (6)
does not have an explicit form.

∂g
∂ ν̄
× ∂ ν̄

∂Φd
l
+

∂g
∂Φd

l
= 0

⇒ ∂ ν̄
∂Φd

l
=−

( ∂g
∂ ν̄
)−1× ∂g

∂Φd
l

Because the differentiation of sigmoid has exact
forms, ∂g

∂ν and ∂g
∂Φd

l
also have exact form. Therefore,

we do not need autograd to compute the implicit
gradient ∂ν

∂Φd
l
. The gradient of m̂d

l (τ) w.r.t Φd
l is

computed as follows:

∂ m̂d
l (τ)

∂Φd
l

=
∂ m̂d

l (τ)
∂ν

× ∂ν
∂Φd

l
+

1
τ

exp(gd
l (i)+Φd

l (i)+ν
τ )

(1+ exp(gd
l (i)+Φd

l (i)+ν
τ ))2

(7)
In our algorithm, we solve (6) by binary search.

The convergence of binary search is extremely
fast and assured by the monotonicity of g(ν ,Φd

l ).
In our experiments, we set the search range to
[−100,100].

Finally, we need prove that limτ→0 m̂d
l (τ) = m̃d

l .
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We assume gd
l (i1) + Φd

l (i1) > gd
l (i2) + Φd

l (i2) >
· · ·> gd

l (inp)+Φd
l (inp).

Because:

lim
τ→0

σ(
gd

l (i)+Φd
l (i)+ν

τ
) =

=





1, if τ >−(gd
l (i)+Φd

l (i)),
0, if τ <−(gd

l (i)+Φd
l (i)),

1
2 otherwise

and

np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k

there exist ε such that ∀τ < ε , the solution ν̄ of (6)
satisfies−(gd

l (ik+1)+Φd
l (ik+1))> ν̄ >−(gd

l (ik)+
Φd

l (ik)). Furthermore, because sigmoid is mono-
tonically increasing,

σ(
gd

l (i)+Φd
l (i)− (gd

l (ik)+Φd
l (ik))

τ
)< m̂d

l (τ)(i)

< σ(
gd

l (i)+Φd
l (i)− (gd

l (ik+1)+Φd
l (ik+1))

τ
)

By taking the limit on both sides, we get the
following results:

lim
τ→0

m̂d
l (τ)(iu) =

{
1, if u > k
0, if u < k

And, because
np

∑
u=1

m̂d
l (τ)(iu) = k, by tak-

ing the limit on both sides, we will have
limτ→0 m̂d

l (τ)(ik) = 1. Finally, we have

lim
τ→0

m̂d
l (τ)(iu) =

{
1, if u > k
0, if u < k

which is equivalent to limτ→0 m̂d
l (τ) = m̃d

l .

B Appendix B

In this section, we give a simple proof of in-
equality (3). In fact, we only need to prove
H
[
P(i1, · · · , ik|Φd

l )
]
> H

[
P(i1|Φd

l )
]
. The proof is

as follows:

H
[
P(i1, · · · , ik|Φd

l )
]
=− E

i1,··· ,ik|Φd
l

[
logP(i1, · · · , ik|Φd

l )
]

=− E
i1,··· ,ik|Φd

l

[ k

∑
j=2

logP(i j|i1, · · · , j j−1,Φd
l )+ logP(i1|Φd

l )
]

>− E
i1,··· ,ik|Φd

l

[
logP(i1|Φd

l )
]

=− E
i1|Φd

l

[
logP(i1|Φd

l )
]
=H

[
P(i1|Φd

l )
]

C Appendix C

Figure 4: Visualization of domains according to their
dropout masks (a large vector concatenating the drop-
ping masks of all the layers of the model) constructed
by PCA.

D Appendix D

Algorithm 1 Training LaMGD

Require:
• nd corpora Cd ,d ∈ [1, . . . ,nd ] for nd do-

mains equiped by an empirical distribu-
tion Dd(x)

• number of groups: np; number of retained
groups: k

• i = 0; iter_num
1: repeat
2: Pick a batch from domain d
3: Sample ∀l,∀p : gd

l (p)i.i.d∼ Gumbel(0,1)
4: Solve the equation ∀l

np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k

using binary search
5: Compute mask of each layer

∀l, m̂d
l (τ) = σ(

gd
l +Φd

l + ν̄
τ

)

6: Apply masks to their corresponding layer

∀l ∈ [0, · · · ,L−1] : h̃l = hl� rd
l ,

hl+1 = LAYERl+1(h̃l),
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7: Compute gradient of training loss over the
underlying Transformer

∆θ =
∂L
∂θ

8: Compute gradient over the Soft-Top-K
masks

∂D
∂ m̂d

l (τ)

9: Compute implicit gradient of the
Soft-Top-K masks over Φd

l

∂ ν̄
∂Φd

l
=−

( ∂g
∂ ν̄
)−1× ∂g

∂Φd
l

∂ m̂d
l (τ)

∂Φd
l

=
∂ m̂d

l (τ)
∂ν

× ∂ν
∂Φd

l
+

1
τ

exp(gd
l (i)+Φd

l (i)+ν
τ )

(1+ exp(gd
l (i)+Φd

l (i)+ν
τ ))2

10: Compute the gradient the training over Φd
l

∆Φd
l
=

∂D
∂ m̂d

l (τ)
× ∂ m̂d

l (τ)
∂Φd

l
+

∂H
[

softmax(Φd
l )
]

∂Φd
l

11: Update θ and Φd
l with their gradients

12: i = i+1
13: until i > iter_num
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