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Abstract 

We propose a novel siamese generative adver­
sarial net for abstractive text summarization 
(SSPGAN), which can preserve the main se­
mantics of the source text. Different from pre­
vious generative adversarial net based methods, 
SSPGAN is equipped with a siamese semantic-
preserving discriminator, which can not only be 
trained to discriminate the machine-generated 
summaries from the human-summarized ones, 
but also ensure the semantic consistency be­
tween the source text and target summary. As a 
consequence of the min-max game between the 
generator and the siamese semantic-preserving 
discriminator, the generator can generate a sum­
mary that conveys the key content of the source 
text more accurately. Extensive experiments on 
several text summarization benchmarks in dif­
ferent languages demonstrate the effectiveness 
of the proposed method. 
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The software and information technology service 
industry in Chengdu has maintained the momentum of 
rapid development in recent years, ranking first among 
the cities in the central and western regions, and has 
become the ”Silicon Valley” in the west of our country. 
“The 2013 Chengdu Software and Information 
Technology Service Industry Development Report” was 
released a few days ago... For details, please see: 
@Chengdu Daily@Chengdu post
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Chengdu strives to build the Western ”Silicon Valley”
Generated: !3��/
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Chengdu releases software and information technology 
service industry development report

Figure 1: The case of lacking saliency in abstractive text 
summarization. Bold text represents the key content, 
while the underlined parts represent the unimportant 
content. 

Abstractive text summarization endeavors to pro­
duce a concise and fluent summary for a given 
text, while maintaining the key content and overall 
meaning. Previous attempts tackle this problem 
with either rule-based or statistical-based methods. 
Recently, with the successes obtained on the ma­
chine translation task (Sutskever et al., 2014; Sheng 
et al., 2020), the neural network based sequence­
to-sequence framework is also applied to the ab­
stractive text summarization task. Specifically, the 
sequence-to-sequence architecture consists of an 
encoder responsible for transforming the source 
sequence x = {x1, x2, . . . , xT x} into an interme­
diate representation, and a decoder to generate a 
target sequence y = {y1, y2, . . . , yT y} using the 
previously generated intermediate representation. 
Furthermore, to dynamically generate a context 
vector for a target word being generated, the at-
tention mechanism (Bahdanau et al., 2014; Luong 
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et al., 2015) is proposed to strengthen the sequence-
to-sequence models, which enables the model to 
focus on the relevant parts of the source-side se-
quence. Based on the encoder-decoder framework, 
many variants of model structures, such as convo­
lutional neural network (CNN) and recurrent neu­
ral network (RNN) are proposed (Bahdanau et al.,
2014; Gehring et al., 2017). With the emergence of 
Transformer (Vaswani et al., 2017), which is based 
entirely on the attention mechanism, state-of-the­
art performance is achieved on many sequence-to­
sequence tasks. Nevertheless, for the task of ab-
stractive text summarization, one of the dominant 
challenges is to maintain saliency, which requires 
the generated summary to convey the important 
information accurately. As shown in Figure 1, the 
key content of the source text “Chengdu become 
the ‘Silicon Valley’ in the west of our country” is 
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accurately summarized in the reference, while the 
generated summary expresses the unimportant con­
tent “Chengdu releases software and information 
technology service industry development report”. 

Intuitively, the lack of saliency in summarization 
is usually caused by attending to wrong parts of 
the source text, inspiring many attention optimiza­
tion methods for more accurate attention mecha­
nism. Among them, (Lin et al., 2018) proposes 
a global encoding framework, which controls the 
attention information flow from the encoder to the 
decoder based on the global information of the 
source context. (Gui et al., 2019) proposes an effec­
tive method to regularize the attention weights from 
both global and local aspects. (Duan et al., 2019) 
introduces a novel attention mechanism, where the 
attention weights on relevant parts of the source 
side are encouraged while the attention weights 
on less relevant or irrelevant parts are discouraged 
with a softmax and a softmin function respectively. 
However, for these methods, the underlying nature 
of saliency, which is actually the sentence-level se­
mantic consistency between the source text and the 
generated summary, is generally overlooked. 

To explicitly maintain the semantic consistency, 
we propose a novel Siamese Semantic-Preserving 
Generative Adversarial Net (SSPGAN) for abstrac­
tive text summarization. In SSPGAN, different 
from conventional adversarial training (Goodfel­
low et al., 2014) which mainly focuses on how 
to generate more realistic data, a novel training 
paradigm is introduced to generate a summary that 
is more semantically consistent with the source text. 
Specifically, the proposed model consists of two 
adversarial modules which play a min-max game: 

•	 A conventional neural encoder-decoder based 
generator, which aims to generate the sum­
mary sequence based on the input text. 

•	 A siamese semantic-preserving discriminator. 
Different from the conventional discriminator 
in a generative adversarial net (GAN), in addi­
tion to distinguishing the real summary from 
the generated summary, it is also required to 
capture the semantic consistency between the 
source text and the target summary. And we 
adopt a pseudo siamese net to achieve that. 
Specifically, we aim to maximize the seman­
tic similarity for a real sentence pair (text, real 
summary), while minimizing it for a gener­
ated sentence pair (text, generated summary). 

During the training process, in terms of the au­
thenticity and semantic consistency with the input 
source text, the generator aims to fool the discrim­
inator into believing that its output is a human-
generated summary, and the discriminator makes 
efforts not to be fooled by improving its ability to 
distinguish the machine-generated summary from 
the human-generated one. This kind of adver­
sarial training achieves a win-win situation when 
the generator and the discriminator reach a Nash 
Equilibrium (Zhao et al., 2016; Arora et al., 2017; 
Guimaraes et al., 2017). 

Different from conventional GANs, which as­
sume the existence of a generator in a continuous 
space, in our proposed framework, the text sum­
marization model is in fact not a typical generative 
model, but instead a probabilistic transformation 
that maps a source text to a target summary, both 
in a discrete space. To this end, we turn to a policy 
gradient method named REINFORCE (Williams, 
1992), which can guarantee that both the two sub 
models are effectively optimized in an adversarial 
manner. In addition to the conventional reward, 
which is the estimated probability of the gener­
ated summary being discriminated as the real one, 
we also adopt the semantic similarity between the 
source text and the generated summary as a sup­
plementary reward signal. Besides, we employ 
Transformer (Vaswani et al., 2017) as the basis of 
our discriminator to capture both the global and 
local features of the sentence. 

The contributions of this work are three-fold: 

•	 We propose a siamese net based discriminator 
to ensure the semantic consistency between 
the generated summary and the source text. 

•	 A generative adversarial net based entirely on 
Transformer is proposed. As far as we know, 
this work is the first attempt to apply such 
framework into the text summarization task. 

•	 Experimental results on both English and Chi­
nese text summarization datasets show that 
the proposed model outperforms conventional 
GAN-based methods. And we also demon­
strate that the proposed method can maintain 
semantic consistency from multiple perspec­
tives. 

2 Related Work 

Automatic text summarization can be broadly di­
vided into extractive and abstractive summarization. 
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The extractive methods simply extract important 
parts of the source text and reorganize them in a 
certain order (Jing and McKeown, 2000; Knight 
and Marcu, 2000; Neto et al., 2002). In comparison, 
abstractive text summarization is closer in princi­
ple to the process of manual summarization, which 
extracts the essential information of the source text 
and describes it in a shorter version as the abstrac­
tive summary. In this paper, we focus on abstractive 
text summarization. 

Previous works on abstractive text summariza­
tion are mainly designed with statistical methods 
and rule-based methods (Banko et al., 2000; Dorr 
et al., 2003; Zajic et al., 2004; Cohn and Lapata, 
2008). Recently, the sequence-to-sequence neu­
ral framework becomes predominant on the task 
of abstractive text summarization (Chopra et al., 
2016; Nallapati et al., 2016; Li et al., 2017b). Later 
on, with the advent of Transformer (Vaswani et al., 
2017), more and more works choose it as the base 
model in their frameworks. 

For the abstractive text summarization task, 
out-of-vocabulary (OOV), repetitions and lack of 
saliency are three dominant challenges. To tackle 
the problem of OOV, some works introduce the 
pointer network and copy mechanism (Nallapati 
et al., 2016; See et al., 2017; Gu et al., 2016; Paulus 
et al., 2017). On the issue of repetitions, (See et al., 
2017) adopts a coverage mechanism, which is in­
spired by the coverage vector from neural machine 
translation (Tu et al., 2016). Regarding saliency, 
some works (Duan et al., 2019; Gui et al., 2019) 
focus on how to optimize the attention mechanism, 
while (Zhu et al., 2021) tries to enhance the fac­
tual consistency with a fact corrector. Meanwhile, 
(Narayan et al., 2021) adopts the content planning 
to improve the performance of abstractive summa­
rization model. However, the essence of saliency, 
which is the sentence-level semantic consistency 
between the source text and the generated summary, 
is intuitive yet usually overlooked. 

The proposed training principle is based on ad­
versarial learning (Goodfellow et al., 2014). In 
conventional adversarial training, a generator and 
a discriminator compete with each other, forcing 
the generator to produce high quality samples that 
can fool the discriminator. Adversarial training 
typically excels in image generation (Goodfellow 
et al., 2014), with less applications in natural lan­
guage processing tasks (Yu et al., 2017; Li et al., 
2017a), mainly due to the difficulty of propagating 

the signals from the discriminator to the generator 
through the discretely generated tokens. (Yu et al., 
2017) addresses this issue with a reinforcement 
learning approach for sequence generation. Thus, 
the adversarial training paradigm can improve the 
model on the sentence-level instead of the vanilla 
token-level (e.g., maximum likelihood estimation). 

To address the semantic inconsistency problem 
mentioned above, we introduce the paradigm of 
siamese net into GANs. Siamese net is a class 
of neural network architectures that contain more 
than one identical or different sub networks, which 
depends on whether the inputs are similar or not. 
Siamese net is generally used to measure the simi­
larity between the inputs by comparing their corre­
sponding output feature vectors, and can be broadly 
divided into two types: true siamese net and pseudo 
siamese net. The true siamese net contains identi­
cal sub networks which share the same architecture 
and network parameters, while the pseudo siamese 
net contains sub networks which have different pa­
rameters and even different architectures. Among 
the existing works, (Kenter et al., 2016) is the first 
to adopt siamese net into unsupervised sentence 
embedding learning. (Mueller and Thyagarajan, 
2016) proposes MaLSTM to learn sentence simi­
larities with Manhattan distance. (Neculoiu et al., 
2016) considers similarity matching of a sentence 
pair as a binary classification task and replaces 
the Manhattan distance with cosine similarity. Re­
cently, (Reimers and Gurevych, 2019) introduces 
the principle of siamese net to fine-tune BERT (De­
vlin et al., 2019) for better sentence embedding. 

Different from previous GAN-based abstractive 
text summarization model in the work of (Liu et al., 
2018), by incorporating siamese net into GANs, 
the generator can generate summaries which are 
more semantically consistent with the source texts. 
As far as we know, this work is the first attempt to 
apply siamese net to the GAN-based sequence-to­
sequence generation task. 

3	 Siamese Semantic-Preserving 
Generative Adversarial Net 

In this section, we introduce the architecture of 
the proposed Siamese Semantic-Preserving Gen­
erative Adversarial Net (SSPGAN) in detail. The 
model consists of two main components. The first 
component is a standard Transformer-based sum­
mary generator G (Figure 2). During adversarial 
training, the generator G is treated as an agent tak­
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Figure 2: The summary generator, taking a conven­
tional Transformer based encoder-decoder architec­
ture (Vaswani et al., 2017), where the predicted word 
from the previous step serves as the input of the current 
step during inference. We omit some layers for brevity. 

ing sequential actions (i.e., generating words) and 
trained using policy gradient given the reward of 
each generated word. The second component is a 
siamese network based discriminator D, which is 
also implemented based on the Transformer. On 
the one hand, the discriminator D is required to 
distinguish the generated summary from the real 
one. On the other hand, it aims to capture the se­
mantic similarity between the source text and the 
target summary. Specifically, it is expected to max­
imize the semantic similarity for the real sentence 
pair (text, real summary), while minimizing the 
semantic similarity of the generated pair (text, gen­
erated summary). From these two perspectives, we 
compute a composite reward for each generated 
summary. Both the generator G and the discrim­
inator D are iteratively trained. Figure 3 shows 
the overview of the adversarial training framework. 
In the following, we describe the generator G and 
the siamese semantic-preserving discriminator D 
in detail. 

3.1	 Generator 

At time step t, the generator G takes an action 
(i.e., a word yt) according to a stochastic policy 
πθ(yt|x, yt−1), where x is the input source text, 
yt−1 = [y1, . . . , yt−1] is the previously generated 
partial summary, and θ is the parameter of the pol­
icy. We utilize the conventional Transformer based 
encoder-decoder framework (Vaswani et al., 2017) 
as the model of the policy. By sequentially gener­

ating each word yt using the policy πθ(.) until the 
end, a complete sentence y is generated. In conven­
tional sequence-to-sequence learning, the model is 
trained to minimize the cross-entropy loss: 

N Tn

n nJ (θ) = − logπθ(ŷ |xn , ̂y (1)t t−1) 
n=1 t=1 

where N is the number of text-summary pairs, Tn is 
nthe length of the ground-truth summary ŷ , Loss is 

n nthe cross-entropy loss, ŷt−1 and ŷ are the ground-t 
truth partial summary and word, respectively. Nev­
ertheless, in adversarial training, these is no explicit 
supervised information for computing the cross-
entropy loss. Hence, we adopt our discriminator 
D to assess the quality of the generated complete 
summary yn. Specifically, the discriminator D is 
responsible for calculating a reward using the gen­
erated summary yn and the source text xn (See 
Section 3.3 for details). 

3.2	 Siamese Semantic-Preserving 
Discriminator 

Our discriminator D aims to not only distinguish 
the real summary from the generated one, but also 
capture the semantic similarity between the source 
text and the target summary. Here, the discrimi­
nator D is implemented based on the Transformer, 
as Transformer is capable of capturing both local 
and global sentence features. In the meantime, to 
capture the semantic similarity, the whole frame­
work of the discriminator D is designed based on 
the siamese net (right panel in Figure 3). 

Given the source text x = {x1, x2, . . . , xT x} and 
the target summary y = {y1, y2, . . . , yT y} (here y 
represents both the real and generated summary for 
simplicity), where xt and yt are the t-th words in 
the corresponding sequences. For the source text se­
quence x, we take it as input of the Transformer en­
coder. After the processing of Transformer blocks, 
a hidden state sequence hx will be produced: 

hx = {hx1 , hx2 , . . . , hxTx 
} (2) 

where hxt is the hidden state corresponding to xt in 
the input sequence. Thus, hxt contains not only the 
positional information, but also the global and lo­
cal correlation information. To get the final feature 
representation fx for the input sequence, a mean-
pooling operation is leveraged over the output hid­
den state sequence hx. Since there exists difference 
between the textual structures of the source text 
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Figure 3: Overview of the model. Left panel: our generator G produces a summary conditioned on the source
text. At each time step, the expected reward of a newly generated word (“earthquake” in the presented example) is
computed from the siamese semantic-preserving discriminator D using Monte Carlo rollout. We use policy gradient
to update the generator G toward generating summaries with higher rewards. Right panel: the discriminator D
observes the generated summary and aims at distinguishing it from the real one. Besides, the discriminator D
is responsible for capturing the semantic consistency between the source text and the target summary. During
adversarial training, both the generator G (left) and the discriminator D (right) are iteratively updated to improve.

and the target summary, for the target summary,
we adopt the same encoder framework as the one
for the source text, but share no parameters (i.e.,
pseudo siamese net). And the corresponding final
feature representation fy is also obtained using the
mean-pooling operation. Finally, given both the
source text and the target summary, the probability
that the target summary is classified as real can be
calculated as:

p = σ(V [fx, fy]) (3)

where V is the weight matrix to transform the con-
catenation of fx and fy into a 2-dimensional em-
bedding and σ is the logistic function. Finally, the
training objective for discriminating the real sum-
mary from the generated one can be formulated as
a supervised classification objective:

Lreal(ϕ) = −
N∑

n=1

log p(ln|xn, yn;ϕ) (4)

where N is the number of text-summary pairs, ϕ
is the model parameters of the discriminator D,
and ln is the corresponding label (i.e., 0 for the
generated summary and 1 for the real summary).

To capture the semantic similarity between the
source text and the target summary, we further uti-
lize the final features of the pseudo siamese net.

Specifically, we aim to maximize the semantic sim-
ilarity between the source text and the real sum-
mary, while minimizing it for the pair of the source
text and the generated summary. To this end, we
adopt the cosine function to evaluate the similarity
of the sentence pair:

Scos =
⟨fx, fy⟩

||fy|| ||fy||
(5)

and the value of Scos ranges from −1 to 1. Next,
we can obtain the contrastive loss Lsim for siamese
semantic similarity learning:

Lsim =
1

N

N∑

n=1

lnL+(f
n
x , f

n
y )

+(1− ln)L−(fn
x , f

n
y )

(6)

where N is the number of text-summary pairs, ln is
the corresponding summary label (i.e., 1 for the real
sentence pair and 0 for the generated sentence pair),
L+ and L− are the corresponding loss functions for
the real and generated sentence pair, respectively.
The two sub loss functions are given by:

L+(f
n
x , f

n
y ) = (1− Scos)

2

L−(fn
x , f

n
y ) =

{
S2
cos if Scos > 0

0 otherwise

(7)
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Thus, we can obtain the final objective of the 
siamese semantic-preserving discriminator D: 

Ld = ηLreal + (1 − η)Lsim (8) 

where η is a hyper-parameter to balance the two 
sub training objectives. 

3.3 Policy Gradient Training 

Following (Yu et al., 2017), during adversarial train­
ing, the goal of the generator G is defined as to 
generate a summary sequence from the start state 
to maximize its expected overall reward. Formally, 
the objective function is calculated as:
 

N
 
GJadv(θ) = Gθ(y  |1:T x) · R θ (y1:T −1, D x, yT )

ϕ 
y1:T 

(9)
 

where θ denotes the parameters of G, y1:T = 
{y1, . . . , yT } indicates the generated target sum­
mary, x is the source text. Here we denote Ty as 

GT for simplicity. R θ
D  

is the action-value function 
of the generated summary 

ϕ

given the source text
 
x (i.e., the expected accumulative reward starting
 
from the state (y1:T −1, x), taking action yT , and 
adopting the policy Gθ). To estimate the action-
value function, we combine the probability of being 
classified as real by the discriminator D with the 
cosine similarity as the total reward: 


GR θ (y1:T −1, D x, yT ) =λ · sreality 
ϕ 

+ (1 − λ) · ssimilarity 

sreality =Dϕ(x, y1:T ) − b(x, y1:T ) 

ssimilarity =Scos(x, y1:T ) 
(10) 

where b(x, y1:T ) denotes the baseline value to re­
duce the variance of the reward. In practice, we set 
it to 0.5 during training. And λ is a hyper-parameter 
for balance. It is worth noting that, (10) only de­
fines a reward value for a completely generated 
summary. If y1:T is partially generated, the values 
of Dϕ(x, y S1:T ) and cos(x, y1:T ) are meaningless. 
To evaluate the action-value for an intermediate 
state, we apply Monte Carlo (MC) tree search un­
der the policy Gθ to sample the following unknown 
tokens. Each search lasts until the end of summary 
token is sampled or the sampled summary reaches 
the maximum length. For more stable reward and 
lower variance, we conduct a K-time roll-out as 
follow: 

y1 { K } Gθ 
1:T1 

, . . . , y1:T  
 = MC ((y1:t, x),K) 

K
(11)

where Ti denotes the length of the summary sam­
pled by the i-th Monte Carlo search. (y1:t, x) is the 
current state and yi t+1:Ti 

is sampled based on the
policy Gθ. Accordingly, the discriminator provides 
K rewards for the sampled K summaries respec­
tively. The final reward for the intermediate state is 
computed as the average of K rewards. Thus, for 
the generated summary with length T , we compute 
the final reward for yt at the sentence level as: 

GR θ 
D (y1:t−1, x, yt) = 
 ϕ
 

N K
   1
    λ(Dϕ(x, yk  ) −1:T  b(x, yk
K 1:T ))+
 k=1

(1 − k λ)Scos(x, y1:T ) t < T
 
λ(Dϕ(x, y1:t) − b(x, y ))+
 1:t


 
(1 − λ)Scos(x, y1:t) t = T

(12)
 

Using the discriminator D as a reward function
 
can further improve the generator iteratively by dy­
namically updating D. Once we have a set of more
 
realistic generated summaries, we shall re-train the
 
discriminator model by minimizing (8). Each time
 
when a new discriminator model is obtained, we
 
can re-train the generator. The gradient of the ob-
jective Jadv(θ) w.r.t. the generator’s parameters θ 
can be formulated as: 

NT  1
 N

G∇Jadv(θ) = R θ (

T − , D , yt) ϕ 
y1:t 1 x

t=1 yt 

· ∇θ(Gθ(yt|y1:t−1, x)) 

NT  1 
= E G[R θ

 yt∈GT θ D (
ϕ 

y1:t−1, x, yt) 
t=1

· ∇θlogp(yt|y1:t−1, x)] 
(13) 

3.4 Adversarial Training 

The overall training flow of SSPGAN is shown in 
Figure 3. Both the generator G and the siamese 
semantic-preserving discriminator D learn together 
by pursuing competing goals. Given x, the genera­
tor G generates a summary y. It would prefer sum­
maries with bigger rewards, which implies larger 
values of sreality and ssimilarity. In contrast, the 
discriminator D would encourage smaller values 
of sreality and ssimilarity. Thus, the generator G 
and the siamese semantic-preserving discriminator 
D play a min-max game (see Algorithm 1 in the 
Appendix A.2 for more details). 
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4 Experiments 

4.1 Datasets 

We conduct extensive experiments on both Chi­
nese and English text summarization datasets. The 
Chinese dataset we adopt is a large corpus of Chi­
nese short text summarization (LCSTS) (Hu et al., 
2015), which is collected from Sina Weibo, a fa­
mous Chinese social media website. Following the 
data split of previous works, we get around 2.4M 
text-summary pairs for training, 10K pairs for vali­
dation and 725 pairs with annotation score no less 
than 3 for testing. For English text summarization, 
we use the Gigaword dataset based on Annotated 
Gigaword (Napoles et al., 2012), and preprocess it 
identically to (Rush et al., 2015), which results in 
3.8M sentence pairs for training, 190K for valida­
tion and around 1.9K for testing. 

4.2 Evaluation Metrics 

For a fair comparison with previous works, we 
adopt ROUGE (Lin, 2004) as the automatic eval­
uation metric. ROUGE measures the degree of 
overlap between the generated summary and the 
reference, with respect to the number of n-grams. 
We report ROUGE-1 (uni-gram), ROUGE-2 (bi-
gram), ROUGE-L (longest common subsequence 
- LCS) on the testing set for our quantitative ex­
periments. Since the official ROUGE evaluation 
package is only available for English summariza­
tion, to evaluate the models on the Chinese summa­
rization task, we follow (Hu et al., 2015) and map 
all characters including punctuation and numbers 
to numerical IDs, and then conduct evaluation on 
them. In experiments, we denote ROUGE as RG 
for simplicity. 

4.3 Compared Models 

Baselines for the Chinese text summarization task 
include the followings. RNN and RNN-context 
are two RNN-based models adopted in (Hu et al., 
2015), without and with the attention mechanism 
respectively. CopyNet leverages the copy mecha­
nism to alleviate the OOV problem (Gu et al., 2016). 
RNN-MRT (Shen et al., 2016) and Actor-Critic (Li 
et al., 2018) are two sentence-level training meth­
ods to address the problem of teacher forcing which 
use the maximum likelihood estimation. DRGD (Li 
et al., 2017b) uses a recurrent latent random model 
to strengthen the abstractive text summarization 
model. GlobalEncoding (Lin et al., 2018) controls 

System RG-1 RG-2 RG-L 
ABS 29.55 11.32 26.42 

ABS+ 29.76 11.88 26.96 
Concept-pointer+DS 37.01 17.10 34.87 

DRGD 36.27 17.57 33.62 
Actor-Critic 36.05 17.35 33.49 
Transformer 37.57 18.90 34.69 

SSPGAN 38.31 19.89 35.60 

Table 1: The full-length F-1 based ROUGE scores on the 
testing set of the English benchmark Gigaword. Here 
we bold the best results. 

the information flow from the encoder to the de­
coder based on the source-side global information. 

As for the English dataset, besides DRGD and 
Actor-Critic, we choose the following baselines. 
ABS and ABS+ are two pioneer methods using 
neural networks for abstractive text summariza­
tion (Rush et al., 2015). Concept-pointer+DS en­
gages abstractive summarization models to gener­
ate new conceptual words (Wang et al., 2019). 

Our model is complemented based on Ten­
sor2Tensor 1. For all experiments, SSPGAN is run 
with 5 random seeds on 2 NVIDIA V100 GPUs 
and the final automatic results are presented with 
means (see the Appendix A.1 for more details). 

4.4 Quantitative Results 

4.4.1 English Results 

Table 1 shows the results on the English dataset Gi­
gaword. The results of the baselines are reported in 
the upper rows, while the bottom row summarizes 
the results of the proposed SSPGAN. When we 
introduce the SSPGAN framework to Transformer, 
it significantly improves the performance, proving 
the effectiveness of our method. 

4.4.2 Chinese Results 

The experimental results on the Chinese dataset LC­
STS are presented in Table 2. As can be observed 
from the comparison between the baselines in the 
upper rows and SSPGAN in the bottom row, the 
proposed method achieves the best performance. 
In addition, the proposed SSPGAN brings signifi­
cant improvements to the classical baseline Trans­
former. Precisely, Transformer is greatly improved 
in ROUGE-1/2/L with gains of +1.88/+1.09/+1.20. 

1https://github.com/tensorflow/tensor2tensor 
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System RG-1 RG-2 RG-L 
RNN 21.50 8.90 18.60 

RNN-context 29.90 17.40 27.20 
CopyNet 34.40 21.60 31.30 

RNN-MRT 37.87 25.43 35.33 
Actor-Critic 37.51 24.68 35.02 

DRGD 36.99 24.15 34.21 
GlobalEncoding 39.40 26.90 36.50 

Transformer 42.35 29.38 39.23 
SSPGAN 44.23 30.47 40.43 

Table 2: The full-length F-1 based ROUGE scores on 
the testing set of the Chinese benchmark LCSTS. Here 
we bold the best results. 

System RG-1 RG-2 RG-3 
Transformer 37.57 18.90 34.69 

+SSPGAN (η, λ=1.0) 38.00 19.41 35.18 
+SSPGAN (η, λ=0.7) 38.31 19.89 35.60 
+SSPGAN (η, λ=0) 37.78 19.19 34.99 

Table 3: Ablation study regarding the sub training objec­
tives proposed in (8) and (10). We bold the best results. 

4.5 Analysis 

In this section, we analyze the effectiveness of the 
proposed method from multiple perspectives. All 
the experiments are conducted on Gigaword. 

4.5.1 Ablation Study 

As shown in Table 3, we analyze the contribu­
tions of different sub training objectives proposed 
in (8) and (10). On the Transformer model, 
the basic GAN (i.e., the second row with η=1.0 
and λ=1.0) achieves improvement with gains of 
+0.43/+0.51/+0.49 in ROUGE scores. We also 
test the results when Transformer is only guided 
by the semantic similarity objective (i.e., the 
fourth row with η=0 and λ=0), resulting gains of 
+0.21/+0.29/+0.30. Armed with the proposed SSP­
GAN (i.e., the third row with η=0.7 and λ=0.7), the 
performance can be more significantly improved 
with gains of +0.74/+0.99/+0.91 in ROUGE scores. 

4.5.2 Human Evaluation 

To further evaluate the quality of the generated sum­
maries, we randomly select 50 test examples from 
the Gigaword testing set for human evaluation. For 
each example, we show the source text, the ground 
truth summary as well as the summaries generated 
by different models. The human evaluators do not 
know which summary comes from which model or 

System R C 
Transformer 6.39 6.65 

+SSPGAN (η, λ=1.0) 7.09 6.82 
+SSPGAN (η, λ=0.7) 7.06 7.33 
+SSPGAN (η, λ=0) 6.64 6.78 

Table 4: Comparison of human evaluation on a random 
subset of the Gigaword testing set. We denote the read­
ability and consistency as R and C, respectively. The 
best results are bold. 

Source: malaysia’s national car maker proton expects to 
export its cars to russia by early next year to boost its 
overseas sales, a company official said tuesday
Reference: malaysian carmaker proton seeks inroads 
into russia by early next year
GAN: malaysia’s car maker to boost overseas sales
SSPGAN: malaysia’s proton to export cars to russia
Source: chinese vice-premier wu yi said  tuesday that 
the country should step up efforts to develop its 
service trade in a bid to alter the growth pattern of 
foreign trade and increase employment and domestic 
consumption.
Reference: chinese vice-premier calls for fast 
development of service trade
GAN: chinese vice-premier urges to increase domestic 
consumption
SSPGAN: chinese vice-premier urges development of 
service trade

Figure 4: Comparison of the summaries generated by 
the basic GAN and the proposed SSPGAN. Bold text 
represents that the correct contents are extracted, while 
the underlined parts correspond to the wrong ones. 

which one is the ground truth. Two scores from 1 to 
10 are assigned to each summary (1 and 10 indicate 
the worst and the best respectively), one for read­
ability (how well-written the summary is) and one 
for consistency (how well the summary conveys the 
key content of the source text). Each summary is 
rated by 10 invited human evaluators who are capa­
ble of reading English proficiently. And the results 
are averaged across all selected examples and evalu­
ators. As shown in Table 4, equipped with the basic 
GAN objective, the readability is improved signifi­
cantly with comparable results (i.e., the second row 
with η=1.0 and λ=1.0 and the third row with η=0.7 
and λ=0.7). As for the consistency, our proposed 
model (i.e., the third row with η=0.7 and λ=0.7) 
achieves the highest score, which justifies that the 
proposed method can preserve the key content of 
the source text more accurately. It is worth noting 
that the improvements of the fourth row are limited, 
which is only equipped with siamese similarity ob­
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jective. Due to the lack of basic GAN objective, 
the improvement of readability is limited, resulting 
in incomplete sentence semantic expression and 
damage to the improvement of consistency. 

4.5.3 Case Study 

Figure 4 shows some examples of the generated 
summaries on the English dataset, in which both 
the basic GAN and the proposed SSPGAN pro­
duce readable results. However, as shown in the 
highlights of the SSPGAN examples, the proposed 
method is able to convey the key content of the 
source text more accurately, resulting in more 
salient summaries as expected. Specifically, in 
the upper example, the key content “expects to 
export its car to russia” in the source text is only 
expressed by SSPGAN, while the basic GAN gen­
erates “boost overseas sales”, ignoring the most 
relevant information. Similar behaviors can also be 
observed in the bottom example. 

5 Conclusion 

This paper presents a novel siamese generative ad­
versarial net (SSPGAN) which can preserve the se­
mantic consistency between the source text and the 
target summary for abstractive text summarization. 
In SSPGAN, a novel semantic similarity based re­
ward is introduced to further augment the GAN-
based abstractive text summarization to preserve 
the semantic consistency and convey the key con­
tent in the source text. It is worth noting that SSP­
GAN addresses the problem of saliency for text 
summarization from a totally different perspective 
of semantic consistency, therefore it is orthogonal 
to some state-of-the-art methods which focus on 
attention mechanism, and can be applied to them 
for further improvements. 
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A Appendix 

A.1 Experimental Setup 

We build both the generator and the siamese 
semantic-preserving discriminator on the basis of 
Transformer. For the generator, in both the encoder 
and the decoder, 6 layers are stacked with dimen­
sions of embedding layers and hidden layers set to 
512. The dimension of feed-forward layers is set to 
2048. And we set 8 heads for multi-head attention. 
In the discriminator, both the text encoder and the 
summary encoder have the same framework as the 
encoder in the generator, except that the number 
of layers is set to 2. For the generator, we adopt 
the joined source-target vocabulary for both En­
glish and Chinese experiments. The encoder input 
embeddings, the decoder input embeddings and 
the decoder output embeddings are all shared. For 
the discriminator, the two encoders share the input 
embeddings. 

For the Chinese dataset, we tokenize the se­
quences into character-level text-summary pairs 
and evaluate the performance based on the refer­
ence tokens. For the English dataset, to improve the 
computational efficiency and avoid problems with 
closed vocabularies, we segment the data using 
byte-pair encoding (BPE) (Sennrich et al., 2016), 
which results in a vocabulary of 32K tokens. 

During pre-training, for the generator, Adam op­
timizer is used with the learning rate set as 0.0005. 
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The inverse square root learning rate decay is ap­
plied for initial warm up and annealing with 4000 
steps. For the discriminator, we adopt RMSProp 
optimizer with the learning rate of 0.0005 and 
η = 0.7. The dropout rate is set to 0.3 for both mod­
els. During adversarial training, for both models, 
the learning rate is set to 0.00001 without changing 
the optimizer. K in Monte Carlo rollout is set as 
20 and λ is 0.7. 

In the proposed architecture, there are 2 hyper-
parameters η and λ need to be jointly tuned during 
training. Here we conduct a grid search to find 
a proper combination of these hyper-parameters. 
For both η and λ, the value is selected in set 
[0.1, 0.3, 0.5, 0.7, 0.9] and we experimentally find 
that the η of 0.7 and the λ of 0.7 give the best 
results on validation sets. 

A.2 Pseudo Code 

Algorithm 1 Siamese Semantic-Preserving GAN 

Require: generator Gθ, siamese semantic-
preserving discriminator Dϕ, a text summa­
rization dataset S = (x, ̂y) 

1:	 Initialize Gθ, Dϕ with random weights θ, ϕ 
2:	 Pre-train Gθ using (1) on S 
3:	 Generate negative summaries y with Gθ for 

training D 
4:	 Pre-train Dϕ using (8) on the combination of 

(x, y) and S 
5:	 while Gθ not converged do 
6: for g-steps do 
7:	 Generate a sequence y = (y1, · · · , yT ) ∼ 

Gθ 

8:	 for t in 1 : T do 
Gθ9: Calculate RDϕ 

(y1:t−1, x, yt) using 
(12) 

10:	 end for 
11:	 Update generator with policy gradient 

(13) 
12: end for 
13: for d-steps do 
14:	 Generate negative pairs (x, y) using latest 

Gθ and combine them with given positive 
pairs S 

15:	 Train discriminator Dϕ by (8) 
16: end for 
17: end while 

2132


