
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1845 - 1853
July 10-15, 2022 ©2022 Association for Computational Linguistics

SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising

Kuan Xu Yongbo Wang Yongliang Wang Zihao Wang Zujie Wen Yang Dong
Ant Group, Hangzhou, China

{xukuan.xk, wyb269207, yongliang.wyl, xiaohao.wzh, zujie.wzj, doris.dy}@antgroup.com

Abstract

On the WikiSQL1 benchmark, most methods
tackle the challenge of text-to-SQL with pre-
defined sketch slots and build sophisticated
sub-tasks to fill these slots. Though achiev-
ing promising results, these methods suffer
from over-complex model structure. In this
paper, we present a simple yet effective ap-
proach that enables auto-regressive sequence-
to-sequence model to robust text-to-SQL gen-
eration. Instead of formulating the task of
text-to-SQL as slot-filling, we propose to train
sequence-to-sequence model with Schema-
aware Denoising (SeaD), which consists of
two denoising objectives that train model to ei-
ther recover input or predict output from two
novel erosion and shuffle noises. These model-
agnostic denoising objectives act as the aux-
iliary tasks for structural data modeling dur-
ing sequence-to-sequence generation. In ad-
dition, we propose a clause-sensitive execu-
tion guided (EG) decoding strategy to over-
come the limitation of EG decoding for gen-
erative model. The experiments show that the
proposed method improves the performance of
sequence-to-sequence model in both schema
linking and grammar correctness and estab-
lishes new state-of-the-art on WikiSQL bench-
mark. Our work indicates that the capacity of
sequence-to-sequence model for text-to-SQL
may have been under-estimated and could be
enhanced by specialized denoising task.

1 Introduction

Text-to-SQL aims at translating natural language
into valid SQL query. It enables layman to explore
structural database information with semantic ques-
tion instead of dealing with the complex grammar
required by logical -form query. On the WikiSQL
benchmark, most models adopt a sketch-based slot
filling approach. It decomposes the task of convert
query to SQL into several sub-tasks that are rela-
tively easy to handle, e.g., the ‘SELECT‘ column

1https://github.com/salesforce/WikiSQL

week | data | opponent | result | attendance
… | … | … | … | …
… | … | … | … | …

SeaD

SELECT ` <col0> ` from ` table ` where ` <col4> ` = ` 53,677 `

Which week had an attendance of 53,677

<col0> week <col1> data <col2> opponent …

Figure 1: SeaD regards text-to-SQL as seq2seq gener-
ation task. During inference, given natural language
question and related database schema, SeaD directly
generates corresponding SQL sequence in an auto-
regressive manner.

mentioned or the query span corresponding to a
condition value. The entire SQL can be recovered
from the results of the sub-tasks deterministically.

Though being a typical sequence-to-sequence
(seq2seq) task, auto-regressive models (LSTM,
Transformer, etc.), however, fail to achieve state-of-
the-art results for text-to-SQL task. Previous works
attribute the sub-optimal results of seq2seq mod-
els to three major limitations. First, SQL queries
with different clause order may have exact same
semantic meaning and return same results by execu-
tion. The token interchangeability may confusion
model that based on seq2seq generation. Second,
the grammar constraint induced by structural logi-
cal form is ignored during auto-regressive decod-
ing, therefore the model may predict SQL with
invalid logical form. Third, schema linking, which
has been suggested to be the crux of text-to-SQL
task, is not specially addressed by vanilla seq2seq
model.

In this paper, we present a simple yet effective
method to boost the performance of seq2seq model
for text-to-SQL task. Instead of building extra sub-

1845

https://github.com/salesforce/WikiSQL

module or putting constraint on model output, we
propose two novel schema-awared denoising objec-
tives trained along with the original seq2seq gener-
ation task. These denoising objectives deal with the
intrinsic attribute of logical form and could facili-
tate schema linking required for text-to-SQL task.
The inductive schema-awared noises can be catego-
rized into two types: erosion and shuffle. Erosion
acts on schema input by randomly permute, drop
and add columns into the current schema set. The
related schema entity in target SQL query will be
jointly modified according to the erosion result.
Shuffle is applied via randomly re-ordering the
mentioned entity and values in natural language
(NL) or SQL with respect to the schema columns.
During training procedure, shuffle is performed dur-
ing monolingual self-supervision that trains model
to recover original text given the noised one. Ero-
sion is applied to seq2seq task that trains model to
generate corrupted SQL sequence, given NL and
eroded schema as input. These proposed denois-
ing objectives are combined along with the origin
seq2seq task to train a SeaD model. In addition, to
deal with the limitation of execution-guided (EG)
decoding, we propose a clause-sensitive EG strat-
egy that decide beam size with respect to the clause
token that is predicted. The proposed method es-
tablish new state-of-the-art on the WikiSQL bench-
mark.

The main contribution of this work is the schema-
aware denoising objectives that are designed for
text-to-SQL task. The denoising objectives are
model-agnostic and could apply to any seq2seq
model that are trained in auto-regressive manner.
In addition, we also propose a clause-sensitive EG
decoding strategy, which can improve the searching
efficiency of EG during seq2seq generation. The
results of the work demonstrate the effectiveness
of the schema-aware denoising approach and shad
lights on the importance of task-oriented denoising
objective.

2 Related Work

Semantic Parsing The problem of mapping natu-
ral language to meaningful executable programs
has been widely studied in natural language pro-
cessing research. Logic forms (Zettlemoyer and
Collins, 2012; Artzi and Zettlemoyer, 2011, 2013;
Cai and Yates, 2013; Reddy et al., 2014; Liang
et al., 2013; Quirk et al., 2015; Chen et al., 2016)
can be considered as a special instance to the more

generic semantic parsing problem. As a sub-task
of semantic parsing, the text-to-SQL problem has
been studied for decades. (Warren and Pereira,
1982; Popescu et al., 2003; Li et al., 2006; Gior-
dani and Moschitti, 2012; Wang et al., 2017). Slot-
filling model (Hwang et al., 2019; He et al., 2019a;
Lyu et al., 2020) translates the clauses of SQL into
subtasks, (Ma et al., 2020) treat this task as a two-
stage sequence labeling model. However, the con-
vergence rate between subtasks is inconsistent or
the interaction between multiple subtasks may lead
to the model may not converge well. Like lots of
previous work (Dong and Lapata, 2016; Lin et al.,
2018; Zhong et al., 2017; Suhr et al., 2020; Raffel
et al., 2019), we treat text-to-SQL as a translation
problem, and taking both the natural language ques-
tion and the DB as input.

Hybrid Pointer Networks Proposed by (Vinyals
et al., 2015), copying mechanism (CM) uses atten-
tion as a pointer to copy several discrete tokens
from input sequence as the output and have been
successfully used in machine reading comprehen-
sion (Wang and Jiang, 2016; Trischler et al., 2016;
Kadlec et al., 2016; Xiong et al., 2016), interactive
conversation (Gu et al., 2016; Yu and Joty, 2020;
He et al., 2019b), geometric problems (Vinyals
et al., 2015) and program generation (Zhong et al.,
2017; Xu et al., 2017; Dong and Lapata, 2016; Yu
et al., 2018; McCann et al., 2018; Hwang et al.,
2019). In text-to-SQL, CM can not only facilitate
the condition value extraction from source input,
but also help to protect the privacy of the database.
In this paper, we use a Hybrid Pointer Generator
Network which is similar to (Jia and Liang, 2016;
Rongali et al., 2020) to generate next step token.

Denoising Self-training Language model pretrain-
ing (Devlin et al., 2018; Yang et al., 2019; Liu et al.,
2019; Lan et al., 2019) has been shown to improve
the downstream performance on many NLP tasks
and brought significant gains. (Radford et al., 2018;
Peters et al., 2018; Song et al., 2019) are benefi-
cial to seq2seq task, while they are problematic
for some tasks. While (Lewis et al., 2019) is a
denoising seq2seq pre-training model, which is ef-
fective for both generative and discriminative tasks,
reduces the mismatch between pre-training and
generation tasks. Inspired by this, we propose a
denosing self-training architecture in training to
learn mapping corrupted documents to the original.

1846

Erosion

SeaD

SELECT ` <unk> ` from ` table ` where ` <col0> ` = ` 53,677 `

Which week had an attendance of 53,677

<col0> week <col1> data <col2> opponent …

<col0> attendance <col1> venue <col2> result …

(a) Erosion

SELECT ` <col0> ` from ` table ` where ` <col4> ` = ` 53,677 `

<col0> week <col1> data <col2> opponent …

SeaD

SELECT ` 53,677 ` from ` table ` where ` <col0> ` = ` <col4> `

Which 53,677 had an week of attendance

Which week had an attendance of 53,677

(b) Shuffle

Figure 2: The proposed schema-aware denoising procedure. (a) Erosion denoising randomly drops, adds and re-
permutes schema columns. The related column entities in ground-truth SQL sequence will be jointly modified or
masked out with respect to the erosion results of the current schema set. Erosion objective trains model to predict
the modified SQL sequence under noised input. (b) Shuffle denoising objective re-permutes the mentioned entities
in SQL or NL sequence, and trains model to reconstruct the sequence with the correct entity order.

3 Methodology

Given natural language question Q and a schema S,
our goal is to obtain the corresponding SQL query
Y . Here the natural question Q = {q1, ..., q|Q|}
denotes a word sequence, the schema S =
{c1, ..., c|S|} is composed of a set of columns,
where each column ci = {c1, ..., c|ci|} is a se-
quence of words. Y = y1, ..., y|Y | denotes the
token-wise raw SQL sequence. We approach this
task with directly auto-regressive generation, i.e.,
predicting the SQL sequence token by token. We
choose Transformer as our base architecture, which
is a widely adopted in seq2seq translation and gen-
eration tasks. In this section, we first present the
sample formulation that transform text-to-SQL into
typical seq2seq task, followed by a brief introduce
of the Transformer architecture with pointer gener-
ator. Then we describe the proposed schema-aware
denoising method and clause-sensitive EG decod-
ing strategy.

3.1 Sample Formulation
Given training samples {Xi, Yi}, i = 1, ..., N ,
X = {Q,S}, where Q denotes the NL sequence
and S denotes the schema set, Y is the SQL se-
quence. Sample formulation is a function

X̃, Ỹ = format(X,Y)S

that transforms heterogeneous data into pairwise
token sequence. It is performed by filling template
that acts as a prompt to guide seq2seq model to
generate different types of token with respected
to various contexts. For schema formulation,

each column name is prefixed with a separate
special token <coli>, where i denotes the i-
th column in the schema set. The column type
of each column is also append to the name se-
quence to form the template for a schema col-
umn <coli> col name : col type. All
columns in schema is formulated and concatenated
together to compose the input sequence for schema.
The schema sequence is further concatenated with
the NL sequence for model input. We explicitly in-
troduce schema-mention alignment to NL sequence
by surrounding schema names that are mentioned
in NL sequence with bracket tokens [], in order to
improve the learning of schema linking,

For SQL sequence, we initialize it with raw SQL
query and perform several modifications on it: 1)
surrounding entities and values in SQL query with a
"‘" token, and dropping other surroundings if exist;
2) replacing col entities with their corresponding
separate token in schema; 3) inserting spaces be-
tween punctuation and words. The formulated SQL
sequence is illustrated in Figure 1. The formatting
procedure improves consistency between tokenized
sequences of source and target, and contributes to
the identification and linking of schema entities.

3.2 Transformer with Pointer

Following the previous works on seq2seq semantic
parsing, we use Transformer (Vaswani et al., 2017)
as the backbone of our model. The vanilla Trans-
former generate tokens with a feed-forward layer
that computes the unnormalized score over the tar-
get vocabulary. In text-to-SQL task, however, most

1847

schema and value mentions can be extracted from
the input sequence. Therefore, we adopt a Hybrid
Pointer Generator Network (Jia and Liang, 2016) in
our architecture to generate tokens from the target
vocabulary V or copy from the input context.

During inference, input sequence X is first en-
coded into a sequence of hidden states Henc. Then,
the decoder produces the hidden states hdec for step
t based on previously generated sequence and en-
coded output. The unnormalized scores scoresv =
{s1, ..., s|V |} over V can be obtained from hdec
through a feed-forward layer. V = {Vq,Vc,Vs}
is the target vocabulary, where Vq denotes cor-
pora token vocabulary, Vc denotes column token
set and Vs denotes avaliable SQL keywords, e.g.
SELECT, MAX, MIN, etc. The decoder output
hdec is also used to compute the unnormalized at-
tention scores scores = {i1, ..., i|X|} over the in-
put sequence tokens, where |X| is the sequence
length.

We concatenate scoresv and scores
to get the hybrid score scorehybrid =
{s1, ..., s|V |, i1, ..., i|X|}, where the first |V |
elements represent the output distribution of
the target vocabulary V and the remained |X|
are pointers tokens referred to corresponding
input tokens. The final probability distribution
is computed by P = softmax(scorehybrid), to
determine the next token during generation.

3.3 Schema-aware Denoising

Similar to masked language modeling and other
denoising task, we propose two schema-aware ob-
jectives, erosion and shuffle, that train model to
either reconstruct the origin sequence from noising
input or predict corrupted output otherwise. The
denoising procedure is illustrated in Figure 2.

3.3.1 Erosion
Given input sample {Q,S, Y }, erosion corrupts
the schema sequence S with a serial compositions
of three noising operations:
Permutation Re-order the concatenation sequence
of schema columns during schema formulation.
Removal For each column, remove it with a drop-
ping probability pdrop.
Addition With a addition probability padd, extract
a column from another schema that exists in the
training database and insert it into current schema
set.
During all operations above, the order of separating
special tokens remains unchanged, therefore the

Algorithm 1: Training procedure for
schema-aware denoising

Input : training corpus
X = {(Qi, Si, Yi)}, i ∈ 1, ...|X |,
S2S Transformer Θ

foreach (Qi, Si, Yi) ∈ X do
Tsrc, Ttgt ← Qi, Yi;
Ttgt, Si ← Erosion(Ttgt, Si)
with Pshuffle do

with Pswap do
Tsrc, Ttgt ← Ttgt, Tsrc;

end
Tsrc← Shuffle (Ttgt)

end
Ttype← SeqType(Ttgt)
if Ttype = SQL then

Tprefix ← <2sql>;
else

Tprefix ← <2nl>;
end
Tsrc ← Tprefix + Tsrc + Si;
TrainOneSample(Tsrc, Ttgt,Θ)

end

corresponding anonymous entities in SQL query
should be updated along with the erosion opera-
tions in schema sequence. In particular, if a col-
umn entity mentioned in SQL query is removed
during erosion, we substitute the corresponding col-
umn token in SQL with a masking token <unk>
to cope with the absence of the schema informa-
tion. With such joint modification for schema and
SQL sequence, the model is required to identify
the schema entities that are truly related to the NL
question and learns to raise an unknown exception
whenever the schema information is insufficient to
compose the target SQL.

3.3.2 Shuffle

Given input sequence X ′ = {Q, S}, where Q =
{Q,Y }, the shuffle noise reorders the mentioning
sequence of entities in the source query while the
schema sequence S is fixed. The denoising objec-
tive trains model to reconstruct the query sequence
Q with entities in correct order. The objective of
recovering shuffled entity orders trains model to
capture the inner relation between different enti-
ties and therefore contributes to the schema link-
ing performance. It is also notable that, as a self-
supervision objective, both Q and Y are engaged

1848

in this denoising task and get trained separately.
Though we dependent on the SQL query to identify
the value entities in NL query, order shuffling with
only column entities is sufficient to obtain promis-
ing performance. Since no parallel data is required,
additional corpus with monolingual data for both
SQL and NL could help with the re-order task and
will be one of the further direction of this work.

3.3.3 Training Procedure
Inspired by previous works on denoising self-
training (Song et al., 2019; Lewis et al., 2019), we
propose to train the schema-aware denoising ob-
jectives along with the primary seq2seq task. Dur-
ing training, for each training sample, we apply
a nosing pipeline to it before feeding it into the
model. The noises with different type are applied
to the sample individually. Through the control
of activate probability, they could share the same
weights in the overall objective. Such continual
noising pipeline generates random-wise corrupted
samples during training. It prevents the model from
fast over-fitting and could yield results with better
generalization (Siddhant et al., 2020). In practice,
such simple combination noising strategy could
perform better comparing to model-based curricu-
lum method. The whole procedure is summarized
in Algorithm 1.

3.4 Clause-sensitive EG Decoding

During the inference of text-to-SQL task, the pre-
dicted SQL may contain errors related to inap-
propriate schema linking or grammar. EG decod-
ing (Wang et al., 2018) is proposed to amend these
errors through an executor-in-loop iteration. It is
performed by feeding SQL queries in the candidate
list into the executor in sequence and discarding
those queries that fail to execute or return empty
result. Such decoding strategy, while effective, sug-
gests that the major disagreement in the candidate
list focuses on schema linking or grammar. Di-
rectly perform EG to the candidates generated with
beam search leads to trivial improvement, as the
candidates consist of redundant variations focuses
on selection or schema naming, etc. This prob-
lem can be addressed by setting the beam length
of most of the predicted tokens to 1 and releas-
ing those tokens related to schema linking (e.g.,
WHERE). We also notice that there are cases that
combine incorrect schema linking with some ag-
gregation in SELECT clause, which return some
trivial results such as 0, thus suppress the EG filter.

Model Dev Test

Acclf Accex Acclf Accex

SQLNet 63.2 69.8 61.3 68.0
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
IESQL ♣ 84.6 89.7 84.6 88.8
SeaD 84.9 90.2 84.7 90.1
BRIDGE ♦ 86.2 91.7 85.7 91.1
SDSQL ♣ 86.0 91.8 85.6 91.4

HydraNet+EG 86.6 92.4 86.5 92.2
IESQL+EG ♣ 85.8 91.6 85.6 91.2
BRIDGE+EG ♦ 86.8 92.6 86.3 91.9
SDSQL+EG ♣ 86.7 92.5 86.6 92.4
SeaD+EGCS 87.3 92.8 87.1 92.7

Table 1: Accuracy (%) of logic form (Acclf) and ex-
ecution (Accex) of our model SeaD and other competi-
tors. Best results in bold. EG: execution-guided decod-
ing. EGCS : the proposed clause-sensitive EG strategy
for S2S generation. ♣ denotes methods that leverage
additional annotation of dataset. ♦ denotes methods
that utilize database content during training.

To mitigate the issue, we suggest to drop aggregate
operator in SELECT during EG to maximize the
effectiveness of it. Note that with such strategy, the
condition with inequation in WHERE clause should
be dropped together to ensure the validity of the
ground-truth SQL results.

4 Experiment

To demonstrate the effectiveness of the proposed
method, we evaluate the proposed model on Wik-
iSQL benchmark and compare it to other state-of-
the-art methods.

4.1 Dataset

As the largest human-annotated dataset of text-
to-SQL, WikiSQL consists of 56, 355, 8, 421 and
15, 878 NL-SQL pairs for training, validation and
inference respectively. All ground-truth SQL
queries are guaranteed with at least one query re-
sult. Each SQL contains SELECT clause with at
most one aggregation operator and WHERE clause
with at most 4 conditions that connected by AND.
Each SQL is associated with a schema in database.

4.2 Implementation details

We implement our method using AllenNLP (Gard-
ner et al.) and Pytorch (Paszke et al.). For the
model architecture, we use Transformer with 12

1849

layers in each of the encoder and decoder with a
hidden size of 1024. We initialize the model weight
with bart-large pretrained model provided by
Huggingface community (Wolf et al.) and fine-
tune it on training dataset for 20 epochs. The batch
size during training is set to 8 with a gradient ac-
cumulation step of 2. We choose Adam (Kingma
and Ba) as the optimizer and set the learning rate
to 7e − 5 with a warm-up step ratio of 1%. We
searched for the best learning rate for our model
out of [1e-4, 7e-5, 1e-5, 5e-6, 5e-7]. The weight
decay for regulation is set to 0.01. We set the activa-
tion probability Pswap = 0.5 and Pshuffle = 0.3,
which lets the self-supervision and seq2seq objec-
tives share equal weight during training process.
Pdrop for column removal in erosion is set to 0.1.
The early stop patience is set to 5 with respect to
the BLUE metric (Papineni et al.) on validation
set. The overall training procedure spend around 3
hours on an Ubuntu server with 8 NVIDIA V100
GPUs.

4.3 Competitors
We compare the proposed method to the follow-
ing models: (1) SQLNet (Xu et al., 2017) is a
sketch-based method; (2) SQLova (Hwang et al.,
2019) is a sketch-based method which leverage the
pre-trained language model for representation; (3)
X-SQL (He et al., 2019a) enhances the structural
schema representation with contextual embedding;
(4) HydraNet (Lyu et al., 2020) transforms schema
linking into column-wise matching and ranking;
(5) IESQL (Ma et al., 2020) treats text-to-SQL as
a sequence labeling task; (6) BRIDGE (Lin et al.,
2020) is a sequential architecture for modeling de-
pendencies between natural language question and
related schema; (7) SDSQL (Hui et al., 2021) is
a multi-task model with explicitly schema depen-
dency guided module.

4.4 Comparison with State-of-the-art Models
The comparison results are summarized in Table 1.
Models suffixed with ♣ leverage additional annota-
tion of the dataset. Models suffixed with ♦ utilize
database content during training procedure. With-
out using EG, SeaD significantly outperforms all
models without the auxiliary of table content or
schema linking annotation. When combined with
EG decoding, SeaD achieve best performance even
compared to those models that utilize additional
training information. It indicates the effectiveness
of the proposed denoising objectives on model-

Model Dev Test

Acclf Accex Acclf Accex

IESQL+EG+AE 87.9 92.6 87.8 92.5
SDSQL+EG+AE 86.7 92.5 87.0 92.7
SeaD+EGACS 87.6 92.9 87.5 93.0

Table 2: Accuracy (%) of logic form (Acclf) and ex-
ecution (Accex) of our model SeaD and other com-
petitors with EG decoding. Best results in bold. EG:
execution-guided decoding. AE: rule-based aggrega-
tion enhancement. EGACS : the clause-sensitive EG
strategy for S2S generation, with aggregation ignored
during decoding.

Model Scol Sagg Wcol Wop Wval

SQLova 96.8 90.6 94.3 97.3 95.4
X-SQL 97.2 91.1 95.4 97.6 96.6
HydraNet 97.6 91.4 95.3 97.4 96.1
IESQL 97.6 90.7 96.4 98.7 96.8
SeaD 97.7 91.7 96.5 97.7 96.7
SDSQL 97.3 90.9 98.1 97.7 98.3

SQLova+EG 96.5 90.4 95.5 95.8 95.9
X-SQL+EG 97.2 91.1 97.2 97.5 97.9
HydraNet+EG 97.6 91.4 97.2 97.5 97.6
IESQL+EG 97.6 90.7 97.9 98.5 98.3
SeaD+EGCS 97.9 91.8 98.3 97.9 98.4

Table 3: Test accuracy (%) on WikiSQL test set for
various clause components of SQL. The best results in
bold. EG: execution-guided decoding. EGCS : clause-
sensitive EG decoding for S2S generation.

ing text-to-SQL through vanilla seq2seq. Notably,
the annotation noise makes aggregation prediction
a major challenge for WikiSQL. Previous works
suggested to improve AGG prediction via rule-
based annotation amendment. As shown in Table 2,
we argue that the proposed aggregation dropping
strategy for EG achieves comparable enhancement,
while less human effort is involved. Combined with
the AGG dropped clause-sensitive EG, the SeaD
model establishes new state-of-the-art on WikiSQL
benchmark.

To analysis the detailed improvement for SeaD
on text-to-SQL task, in Table 3 we report the ac-
curacy on WikiSQL test set with respect to sev-
eral SQL components with and without EG de-
coding. SeaD shows promising results on column
selection, aggregation, where column and where
value prediction. It outperforms all method except
SDSQL, which leverages rule-based annotation of
schema linking. After applying EG decoding, SeaD

1850

Model Acclf

Dev Test

Bart 81.3±0.4 81.1±0.3
Bartptr 82.5±0.6 82.4±0.5
Bartptr + infilling 82.7±0.7 82.6±0.6
SeaD (Shuffle-only) 83.3±0.6 83.1±0.4
SeaD (Erosion-only) 84.2±0.5 84.1±0.9
SeaD 84.4±1.1 84.6±0.8

Table 4: Ablation study for SeaD model on WikiSQL
benchmark. The results are averaged over 3 runs with
same parameter settings.

achieves best performance on four out of five com-
ponents among all competitors.

4.5 Ablation Study

To evaluate the contribution of each proposed ob-
jective, we perform ablation study to SeaD (Ta-
ble 4) with WikiSQL dataset. We start from the
Bart model and add components to it in sequence.
The pointer net contributes to 1.3% absolute im-
provement of Acclf on test set. Combine text in-
filling, an effective denoising objective utilized by
Bart, into training procedure brings 0.2 absolute
Acclf improvement. On the other hand, erosion
and shuffle objectives contribute to 1.5% and 0.5%
absolute Acclf improvement for SeaD on test set
respectively. It demonstrates the effectiveness of
the schema-aware denoising objective for improv-
ing seq2seq generation in text-to-SQL task.

5 Conclusions

In this paper, we proposed to train model with novel
schema-aware denoising objectives, which could
improve performance of seq2seq generation for
text-to-SQL task. These objectives are applied in-
dividually with respective to their activate probabil-
ities, which are fixed during the training procedure.
A noise re-weighting model will be considered for
future work. Combined with the proposed clause-
sensitive EG decoding strategy, our model achieves
state-of-the-art on the WikiSQL benchmark. The
success of the SeaD highlights the potential of uti-
lizing task-oriented denoising objective for seq2seq
model enhancement.

References
Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping

semantic parsers from conversations. In Proceed-

ings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 421–432.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 423–433.

Xinyun Chen, Chang Liu, Richard Shin, Dawn Song,
and Mingcheng Chen. 2016. Latent attention
for if-then program synthesis. arXiv preprint
arXiv:1611.01867.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. arXiv preprint
arXiv:1601.01280.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. Al-
lenNLP: A deep semantic natural language process-
ing platform.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to sql queries with generative
parsers discriminatively reranked. In Proceedings of
COLING 2012: Posters, pages 401–410.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019a. X-sql: reinforce schema
representation with context. arXiv preprint
arXiv:1908.08113.

Shizhu He, Kang Liu, and Weiting An. 2019b. Learn-
ing to align question and answer utterances in cus-
tomer service conversation with recurrent pointer
networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 134–
141.

Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li,
Yongbin Li, Jian Sun, and Xiaodan Zhu. 2021. Im-
proving text-to-sql with schema dependency learn-
ing. arXiv preprint arXiv:2103.04399.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

1851

https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547.

Diederik Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Yunyao Li, Huahai Yang, and HV Jagadish. 2006.
Constructing a generic natural language interface
for an xml database. In International Conference
on Extending Database Technology, pages 737–754.
Springer.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. arXiv preprint
arXiv:2012.12627.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A cor-
pus and semantic parser for natural language inter-
face to the linux operating system. arXiv preprint
arXiv:1802.08979.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik
Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy-
brid ranking network for text-to-sql. arXiv preprint
arXiv:2008.04759.

Jianqiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang,
and Jianping Shen. 2020. Mention extraction and
linking for sql query generation. arXiv preprint
arXiv:2012.10074.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. BLEU: a method for automatic evalua-
tion of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics - ACL ’02, page 311. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. PyTorch: An impera-
tive style, high-performance deep learning library.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 149–157.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878–888.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing with unsupervised learning.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Fi-
rat, Mia Chen, Sneha Kudugunta, Naveen Arivazha-
gan, and Yonghui Wu. 2020. Leveraging monolin-
gual data with self-supervision for multilingual neu-
ral machine translation.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

1852

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388.

Adam Trischler, Zheng Ye, Xingdi Yuan, and Ka-
heer Suleman. 2016. Natural language com-
prehension with the epireader. arXiv preprint
arXiv:1606.02270.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. arXiv preprint
arXiv:1506.03134.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik.
2017. Synthesizing highly expressive sql queries
from input-output examples. In Proceedings of the
38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017,
page 452–466, New York, NY, USA. Association for
Computing Machinery.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
text-to-sql generation with execution-guided
decoding. arXiv preprint arXiv:1807.03100.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905.

David HD Warren and Fernando CN Pereira. 1982. An
efficient easily adaptable system for interpreting nat-
ural language queries. American journal of compu-
tational linguistics, 8(3-4):110–122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Hug-
gingFace’s transformers: State-of-the-art natural lan-
guage processing.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.

2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Tao Yu and Shafiq Joty. 2020. Online conversation dis-
entanglement with pointer networks. arXiv preprint
arXiv:2010.11080.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018. Typesql: Knowledge-based
type-aware neural text-to-sql generation. arXiv
preprint arXiv:1804.09769.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

1853

https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

