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Abstract

Translate-train or few-shot cross-lingual trans-
fer can be used to improve the zero-shot per-
formance of multilingual pretrained language
models. Few-shot utilizes high-quality low-
quantity samples (often manually translated
from the English corpus). Translate-train em-
ploys a machine translation of the English cor-
pus, resulting in samples with lower quality
that could be scaled to high quantity. Given
the lower cost and higher availability of ma-
chine translation compared to manual profes-
sional translation, it is important to systemati-
cally compare few-shot and translate-train, un-
derstand when each has an advantage, and in-
vestigate how to choose the shots to translate
in order to increase the few-shot gain. This
work aims to fill this gap: we compare and
quantify the performance gain of few-shot vs.
translate-train using three different base mod-
els and a varying number of samples for three
tasks/datasets (XNLI, PAWS-X, XQuAD) span-
ning 17 languages. We show that scaling up the
training data using machine translation gives a
larger gain compared to using the small-scale
(higher-quality) few-shot data. When few-shot
is beneficial, we show that there are random
sets of samples that perform better across lan-
guages and that the performance on English
and on the machine-translation of the samples
can both be used to choose the shots to manu-
ally translate for an increased few-shot gain.!

1 Introduction

With the emergence of large-scale multilingual Pre-
trained Language Models like mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020), a
significant amount of research went into exploring
the cross-lingual transfer capabilities of these mod-
els, allowing for an easier adaptation to a task in
many various languages. This is achieved through
a number of approaches.

!Code available under:
https://github.com/imanjundi/cross-lingual-transfer

Zero-shot cross-lingual transfer has become a re-
search focus, e.g. XTREME / XTREME-R bench-
mark (Hu et al., 2020; Ruder et al., 2021). In this
approach, transfer to new languages is done by
fine-tuning a multilingual PLM on the task at issue,
using only an English corpus (source language)
and reporting the performance on multiple target
languages.

Few-shot cross-lingual transfer was recently shown
to give an advantage over zero-shot cross-lingual
transfer (Lauscher et al., 2020). In this approach,
it is shown that fine-tuning the model using a
small amount of target-language task data (few-
shot) improves the performance, especially for low-
resource languages.

Translate-train is another common approach to
improve the performance. Here the full training
dataset is machine translated to the target language
and used for fine-tuning. There exists relatively
good Machine Translation (MT) systems for the
languages that are usually studied in the few-shot
approach? that could be used in translate-train.

In the following, we use few-shot to refer to
fine-tuning using fewer samples of high-quality
professional manual translation. Translate-train
is used to refer to fine-tuning using lower-quality
machine translation that has the potential to be
scaled to a larger number of samples. Although
some research has dealt with few-shot cross-lingual
transfer and analyzing it (Lauscher et al., 2020;
Zhao et al., 2021), no systematic study was done to
compare it to translate-train. Given that both zero-
shot and few-shot cross-lingual transfer assume the
availability of a large-scale English corpus of the
task for source training, we hypothesize that the
translate-train approach might have an advantage
over few-shot given the scale of data that would be
available even if not at the best quality.

2 All target languages in the studied datasets are supported
by e.g. Google Translate:
https://cloud.google.com/translate/docs/languages
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On the other hand, when there is a need for few-
shot cross-lingual transfer for some task and there-
fore a need for professional translation of some
training samples, this entails significantly more ef-
fort and cost compared to MT. It is then important
to find out which samples to manually translate
given the high variance in performance depending
on the choice of samples as shown in (Zhao et al.,
2021).

We investigate both those research directions
using 3 base models (mMBERT}, 5., XLM-Rpgse,
XLM-Ry4rge) on 3 high-level semantic tasks and
datasets: XNLI (Natural Language Inference), X-
PAWS (Paraphrase Detection) and XQUAD (Ques-
tion Answering), spanning 17 diverse languages.
We investigate the following research questions:

Q1. How does the performance of few-shot cross-
lingual transfer compare to that of translate-train?
We show that there is a performance advantage
for few-shot transfer over translate-train given the
same number of samples, but that with the increase
of samples used for translate-train, this gap shrinks,
and using the full large-scale corpus in translate-
train results in a clear advantage over few-shot.
We show that at a scale of 10x-100x of machine-
translation to manual-translation, quantity trumps
quality and it is recommended in this case to use
translate-train if MT is available for the language.
Few-shot transfer still has an advantage when less
source data is available and it is therefore not pos-
sible to benefit from the scale gain of using MT.

Q2. Are there sets of samples that have better

few-shot performance if translated and how can
those sets be identified?
We show that when few-shot transfer is beneficial
for the task, there are random sets of samples that
perform better across most target languages and
across different model initializations. We investi-
gate using the performance on the English version
of the samples and the machine-translated version
to choose the best candidates to manually translate
and use for few-shot transfer. We show that there is
a correlation between the performance of the same
set of shots across languages and that the few-shot
samples that perform better on the source language,
English, perform also better across languages. A
similar observation is made also using MT of the
samples. We further show empirically that choos-
ing the sets of samples for few-shot transfer using
those heuristics or a model, using such features of
the samples, results in more bang for your shots.

2 Related Work

Cross-lingual transfer: The cross-lingual trans-
fer capabilities of multilingual pretrained language
models have led to major recent advances and a
growing number of such models have been intro-
duced, e.g., mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), mT5 (Xue et al., 2021) etc.
The cross-lingual transfer is usually exploited in a
zero-shot setup, and benchmarks are built based on
this assumption e.g. XTREME/XTREME-R (Hu
et al., 2020; Ruder et al., 2021).

Few-shot: There has been recently some focus
on few-shot cross-lingual transfer and its analy-
sis. Lauscher et al. (2020) shows the effectiveness
of few-shot compared to zero-shot cross-lingual
transfer especially in lower-resource and distant
languages, where zero-shot is least effective and
few-shot gives a large gain. Zhao et al. (2021) ana-
lyzes few-shot cross-lingual transfer emphasizing
that the choice of shots has a significant effect on
the performance. The experiments are conducted at
a small scale of around 10 samples. Compared to
this, we conduct larger-scale few-shot experiments
with a size up to hundreds of samples and focus on
choosing the best-performing samples.

Translate-train: is commonly used to boost the
performance for a target language using a machine
translation of the source corpus (Conneau et al.,
2018; Lample and Conneau, 2019; Conneau et al.,
2020; Hu et al., 2020). Xue et al. (2021) shows that,
similar to zero-shot, translate-train performance in-
creases with the scale of the model. No systematic
study tested the effect of the scale of the translated
data in comparison with few-shot to understand the
interplay of data quality vs. quantity in this context.

Choosing samples: Two related areas are sam-
ple selection (Rousseeuw, 1984) which is used for
robust training on noisy data (Song et al., 2019)
and active learning (Cohn et al., 1994; Krogh and
Vedelsby, 1994) used to choose the best potential
samples to annotate (Siddhant and Lipton, 2018).
Both assume access to the actual sample input (with
or without label). On the other hand, this work
investigates choosing samples while only having
access to the source-language sample input/output.

3 Datasets

We focus on high-level tasks and conduct our ex-
periments on 2 classification tasks and a question
answering task (Table 1) from the XTREME bench-
mark. The details and properties of the languages
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Dataset [Trainl  ImDevl ImTestl |Langsl metric
XNLI 392,702 2,490 5,010 15 Acc
PAWS-X 49,401 2,000 2,000 7 Acc
XQuAD 87,599 261  1,190-261=930 11 Fl

Table 1: Datasets statistics. Train is the English training
dataset. ImDevl and ImTestl are used to indicate the size
of the multilingual split of the dataset.

can be found in Appendix Table 6. When attempt-
ing to choose the shots, we rely on measuring the
performance of the same set of samples across
different languages, so we are limited to datasets
with parallel corpus, i.e. the target language cor-
pus is created by translating the English corpus
as opposed to collecting and annotating the target
language corpus from scratch: XNLI (Conneau
et al., 2018) is a professional translation of the
dev and test set of the MultiNLI dataset (Williams
etal., 2018) into 14 languages. The dataset consists
of pairs of sentences, a premise and a hypothesis,
where the task is to predict whether the premise
entails, contradicts, or is neutral to the hypothe-
sis. PAWS-X (Yang et al., 2019) dataset is a pro-
fessional translation of the dev and test set of the
PAWS dataset (Zhang et al., 2019) into 6 languages.
The dataset consists of pairs of sentences and the
task is to predict whether those two sentences are
paraphrases of each other. XQuAD (Artetxe et al.,
2020b) is a professional translation of the dev set
from SQuAD v1.1 (Rajpurkar et al., 2016) into 10
other languages. The dataset consists of a para-
graph and a set of questions. The task is to select
the span of the paragraph that answers the ques-
tion. 10 paragraphs from the multilingual split are
reserved, similar to Lauscher et al. (2020), as dev
(total of 261 question/answer samples) and the rest
as test set.

4 Experiments

Three main models are used: mBERT (base), XLLM-
Rp (base) and XLM-Ry, (large). We report results
on XLM-Rp3 if not specified otherwise, because it
strikes a balance between good performance and
efficient training. For each task, we fine-tune the
model on the source language (English) corpus for
5 epochs with early stopping using the loss on the
English dev set. We then continue fine-tuning the
model on the target language either in a few-shot or
translate-train setup as explained in the following
sections. Training details are in Appendix A.

4.1 Few-shot experiments

We use samples from the multilingual dev set as
training samples. Few-shot fine-tuning is done
as follows: for each language, we separately con-
tinue fine-tuning the source model for one epoch
on n € {10,50,100,500, 1k} samples from the
target language corpus for the two classification
tasks and for n € {10, 50, 100, 250} for the Ques-
tion Answering task, given the smaller amount of
data available for training in this case. We report
the results on the test set for each target language.
For each n number of samples, the performance is
averaged across 5 different sets of random samples
using 5 different fine-tuned models with different
random initializations, 25 runs in total. This is
to ensure more robust results when measuring the
gain over zero-shot given the high variance across
different sets of samples (Zhao et al., 2021) as well
as the variance in zero-shot performance across all
random initializations (Keung et al., 2020). For
comparing the performance across shots, we make
sure to use the same set of parallel samples across
languages, using the sample ids, to compare how a
set of samples performs when translated to differ-
ent languages. This is possible due to our selection
of tasks and datasets that have a parallel corpus for
the various target languages.

4.2 Translate-train experiments

We train using MT of the source train set to each tar-
get language® and adapt a similar setup as few-shot:
for each language, continue fine-tuning separately
onn € {10, 50, 100,500, 1k, 10k, |dataset|} sam-
ples from the machine-translated train set and re-
port the results on the test set of the target language.

5 Results

5.1 How to translate your samples? Few-shot
vs. translate-train

To demonstrate the full potential for each approach,
Table 2 shows a performance summary for zero-
shot, few-shot and translate-train when the maxi-
mum possible number of samples is used. The gap
to English performance is the average of the gap
between the target language performance and the
performance on the English test set. Both few-shot
and translate-train help bridge the gap, but using
translate-train on a large scale has an advantage

3We use the Machine Translation provided by the
XTREME Benchmark:

https://console.cloud.google.com/storage/browser/xtreme_translations
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XNLI PAWS-X XQuAD
langs avg engap gain | langsavg engap gain | langsavg engap gain
English performance
mBERT | 81.85+0.99 - - | 92.81+0.33 - - | 83.74+£0.36 - -
XLM-Rp | 84.04+0.65 - - | 93.99+0.35 - - | 83.10+0.29 -
XLM-Ry, | 88.98+0.29 - - | 95.13+0.35 - - | 87.07£0.59 - -
zero-shot (only en training)
mBERT | 65.75£0.31 -16.10 - | 81.24+1.58 -11.57 - | 61.51£0.24 -22.22 -
XLM-Rp | 73.79+0.34 -10.26 - | 82.08+0.92 -11.92 -1 70.51+£0.32  -12.60 -
XLM-Ry, | 79.61£0.61  -9.37 - | 85.89£0.59  -9.24 - | 76.98+0.25 -10.10 -
few-shot (max 1k high-quality translated samples)
mBERT | 67.96£0.29 -13.89 221 | 83.01+091 -9.80 1.76 | 65.06+0.27 -18.67 3.55
XLM-Rp | 75.50£0.30  -8.54 1.71 | 82.83+0.53 -11.16 0.76 | 70.68+0.28 -12.42 0.17
XLM-Ry, | 81.70£0.14  -7.27 2.10 | 86.73+0.17  -8.40 0.84 | 77.06£0.16 -10.01 0.08
translate-train (full machine-translated training set)
mBERT | 72.81£0.24  -9.04 7.06 | 85.74+0.67 -7.07 4.50 | 69.84+0.34 -13.89 8.33
XLM-Rp | 76.95£0.32  -7.09 3.16 | 85.06+0.66  -8.93 2.99 | 72.16+0.16 -10.95 1.65
XLM-Ry, | 82.46+0.19 -6.51 2.86 | 88.73+0.20 -6.40 2.83 | 77.26+0.35 -9.81 0.29

Table 2: Performance summary. The average performance on all languages along with the gap to the English
performance and the gain over zero-shot performance. Using translate-train on a large scale has a clear advantage.

in further narrowing the gap as compared to the
small scale of few-shot transfer. This results in
translate-train having the best performance for all
models across all datasets. The highest gain is seen
for the model with the highest en gap (mBERT)
for both few-shot and translate-train. For XLM-R
on XQuAD, the gain is low and negligible. Given
that there is a significant gain for mBERT and the
same experimental setup is used for all models, the
lack of gain is probably not dataset-specific and
possible happens with some models.

To see the effect of the available dataset size in
each scenario, Figure 1 shows the average perfor-
mance across languages for few-shot vs. translate-
train across varying number of samples. We can
see an advantage of having manual over machine
translation resulting in a clear performance gap be-
tween both on XNLI for the same number of sam-
ples. This gap increases with the increase of the
number of samples as seen at 1k. The availability
of manual translation for few-shot is limited though
and starting from 10k-100k, the scale of translate-
train has an advantage for all tasks (similar results
for the other models are in Appendix Figure 7, 8).
The performance on PAWS-X and XQuAD does
not improve much with few-shot as shown in Fig-
ure 1b and 1c, and the clear boost comes from using
the large scale machine-translated dataset. We dis-
cuss the observed large variance on XQuAD across
languages near the end of the following section.

Detailed results & language analysis: Figure 2
shows the translate-train performance gain (over
zero-shot) across a varying sample size for each
language family (More details about the languages
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Figure 1: Avg performance across langs for translate-
train vs. few-shot using XLM-Rg. The biggest perfor-
mance boost comes from using translate-train
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Figure 2: Translate-train gain on language families. European languages especially Germanic have the least gain,

whereas various other families like Koreanic and Niger-Kongo have the most gain (detailed results in Appendix C)

in Appendix Table 6). We can see, across all tasks
and models, that European languages have a small
gain compared to non-European languages which
show the largest gain e.g. Swabhili (Niger-kongo)
in XNLI, Korean and Japanese in PAWS-X, and
Turkish and Chinese for XQuAD. Those languages
also tend to have a larger zero-shot performance
gap to English and are more distant to it (the source
language). Those results are comparable to the
few-shot results of Lauscher et al. (2020). We can
see that the languages with the most gain differ be-

tween mBERT and XLM-R mainly because XLM-
R extends the pre-training corpus using Common-
Crawl to have more data that less-spoken languages
benefit especially from e.g. Turkish zero-shot per-
formance on XQuAD is low with mBERT as com-
pared to XLM-R models which result in more gain
for Turkish with mBERT on XQuAD (detailed re-
sults on XQuAD in Appendix Figure 15, 14, 16).
Appendix C contains the detailed performance
gains for few-shot and translate-train over zero-
shot for each language across varying sizes of sam-
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Figure 3: Detailed Results on XNLI using XLM-Rg. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases

ples. Figure 3 shows the detailed results for XNLI
as an example, where we see that once the full
machine-translated training set is used, a clear ad-
vantage for translate-train is seen across almost all
languages and in all tasks. We can see that the
gain for Urdu (ur) is the highest on XNLI up until
100k when it starts decreasing. We think this might
be due to a lower-quality MT. The same effect is
seen for Thai (th) on XQuAD with a significant per-
formance degrade when the full training dataset is
used (details in the Appendix in Figure 15). This is
also the reason for the degrade and high variance
in performance seen at this point in Figure 19b.

We investigate whether longer training would
have changed the results and would have been bene-
ficial, especially for few-shot where longer training
on the high-quality manual translation might be
beneficial. We split the available set of samples
into train/dev and train for 10 epochs with early
stopping on dev. Although some languages benefit
from this setup, it still yields comparable results
and translate-train still has a clear advantage. (re-
sults in Appendix Figure 17 and 18).

5.2 How to choose your shots? Which samples
to translate for few-shot?

Few-shot can still have an advantage over translate-
train when the English dataset is not large enough
to benefit from the scale effect of translate-train.
It can also be necessary when adapting to a target
language that does not have an existing machine
translation system or does not have a good one.
Creating few-shot samples, in this case, can be

done by collecting and labeling new samples or
by translating samples from the available English
dataset. The latter is a common method and 4 out
of the 7 non-retrieval datasets in XTREME use
manual professional translation to create samples
in the target languages (all of which high-level
semantic tasks). It is beneficial then to support
in selecting the samples with higher performance-
potential to translate and do few-shot training on.
To emphasize the significance of choosing the
samples, we plot in Figure 4 the XNLI perfor-
mance variance on different shots (using the
same model initialization) across 20 sets of ran-
dom few-shot samples varying in size from 10 to
1k samples. The performance varies, sometimes
significantly, depending on the set of samples used.
Zhao et al. (2021) shows similar variance obser-
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Figure 4: XNLI accuracy variance on different shots.
High variance decreases with an increased data size
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Figure 5: XNLI Pearson correlation between the performance on English and the performance on other languages.

ar  bg de el es fr

hi

ru SW th tr ur vi zh

065 086 0.89 075 088 0.88 0.80 075 0.72 0.85 086 0.61

0.89 0.89

Table 3: XNLI Pearson correlation between the performance of machine translation and manual translation

vations on a smaller number of samples (around
10). We consider a larger size range that is more
representative of the data size if a manual transla-
tion is conducted. The performance variance across
shots decreases with the increased number of shots.
This means that choosing the shots to translate is
more important when a smaller size of samples is
used. (similar results on PAWS-X and XQuAD are
in Appendix Figure 19 although for XQuAD the
variance increases with the size). In the following,
we focus mainly on XNLI as the task that had the
most few-shot gain. We investigate whether there
are sets of samples that have a potential for better
performance across languages and what could be
an indication of that. For a set of shots, we con-
sider two indicators: the performance of this set in
another language, and the performance on the MT
of the samples in the set.

5.2.1 Correlation between performance across
languages

If the performance of a set of samples for one lan-
guage can be an indication of its performance on
another language, a high correlation between the
performance for both languages is expected. To es-
timate this, we calculate the performance using the
manual translations across languages of the same
set of training samples. We then calculate the Pear-

son correlation of the performance across 5 random
sets of samples (with varying sample-set sizes) us-
ing 5 models with different random initialization.
As seen in Figure 5, there is a high positive corre-
lation between the performance on XNLI for the
various languages (using XLM-R ). This is also
the case, but to a lesser degree for PAWS-X as seen
in the Appendix Table 8. XQuAD, on the other
hand, has low and sometimes even negative corre-
lation (Appendix Table 11), which might be due to
the QA task being harder and requiring more data
and the fact that we have less data in this case for
both training and test. It is also worth noting that
the correlation is lower for both tasks, PAWS-X
and XQuAD, which had low few-shot gain.

A breakdown of the English correlation based
on data size is show in the Appendix Table 7 and 9.
As an example of this, Figure 6 shows XNLI few-
shot gain over zero-shot performance for 5 random
sets of samples { A, B,C, D, E'} each containing
10 samples. The performance is shown for 3 differ-
ent XLM-Rp initializations. The sets {A, C, E'}
perform better than { B, D} across target languages
and on average as well as across different initial-
izations. The performance on English can be used
as an indicator of the best shots to choose as seen
when comparing the English performance (top) to
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Figure 6: XNLI few-shot gain over zero-shot across 5 sets of samples (size=10) for 3 different model initializations.
Sets C, A, and E yield better performance for the 3 different initializations. The English performance can be used as

an indicator when choosing samples to translate

the average (bottom, excluding the English perfor-
mance). This is here the case even when further
fine-tuning a model on English samples results in a
decreased English performance as seen for the 2nd
model initialization. The least negative sets of sam-
ples still correspond to the best performing shots.
The results generalize for varying sizes of few-shot
sets e.g. 1000 samples in Appendix Figure 20.

5.2.2 Correlation between manual and
machine translation performance

Another possible indicator of the best performing
set of samples could be the performance of the sam-
ples in the set when they are machine translated
to the target language. Artetxe et al. (2020a) has
shown that subtle patterns in the (machine or man-
ual) translated samples can have a notable impact
on the model performance, so it is important to em-
pirically study the relation between both. Similar to
the above, we calculate the correlation between the
performance for both manual and machine trans-
lation of the same set of samples for each target
language. As seen for XNLI in Table 3, there is an
even higher correlation than with the English per-
formance. A somewhat lower correlation is seen
for PAWS-X in Appendix Table 10. Lower corre-
lation might be a result of lower-quality MT or a
result of the different patterns introduced by MT as
mentioned before.

5.2.3 Gain from choosing shots

We show in Table 4 the few-shot performance
gain resulting from choosing the shots with the
highest English performance and the highest MT

performance. Random samples are used for few-
shot cross-lingual transfer in related work, so we
compare to the average few-shot gain across the
different shots in no choosing (avg), and also to
the minimum in no choosing (min), because an im-
portant aspect of choosing shots is avoiding the
worst-performing ones (Comparing to the average
hides the fact that we might accidentally use a very
bad set of shots). We can see a clear gain in most
cases across all models when using en performance
or mt performance. When there is no gain com-
pared to no choosing (avg), the performance is
still comparable and the benefit of not choosing
the worst performing shots is still there as com-
pared to no choosing (min). The few-shot gain with
chosen-shots is most significant at smaller number
of samples where the gain is almost double that
from no choosing (avg).

Combining both En and MT performance when
choosing the shots is expected to result in more
gain, so we investigate feeding the performance
values as features to a linear model that takes as
input the performance of a set of samples and pre-
dicts the performance gain when this set is manu-
ally translated and used for few-shot. Predicting
the performance gain is also helpful to avoid trans-
lating any set of samples if all are expected to result
in a negative or low gain. We use the performance
metrics as a dataset: collecting the performance of
En/MT of random sets of samples along with the
performance of the actual manual translation. This
is done using 5 different random sets of samples
for 5 different XLM-R p initialization with varying
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10 50 100
mBERT

no choosing (avg) 0.22 0.51 0.92 135 221
3 | no choosing (min) -0.18 -0.00 0.17 0.11  0.99
% [ enperformance 059 0.84 106 137 243
mt performance 0.76 0.87 1.23 1.87 252
no choosing (avg)  0.22 -0.02 -0.02 0.89 1.76
E no choosing (min)  0.04 -0.24 -0.28 0.24 0.67
% | enperformance ~ 0.03 037 -0.02 121 189
mt performance 046 0.54 0.27 0.72  2.00
A | nochoosing (avg) 0.64 1.68 2.28 3.55
Z | nochoosing (min)_-0.15 035 059 059
< | en performance 0.80 158 2.34 3.52
XLM-Rp
no choosing (avg) 036 0.64 1.13 1.38 1.71
no choosing (min)  0.04 -0.15 0.10 036 0.65
5 [ enperformance 071  1.15 132 1.82 1.90
E mt performance 088 1.08 1.36 1.81 2.01
en+mtmodel 085 LIl 142 185 201
+ lang features 0.83 113 144 1.85 2.03
no choosing (avg)  0.19 0.02 -0.20 044 0.76
no choosing (min) -0.34 -043 -1.05 -0.23 0.10
% | en performance ~ 0.i7 0.10 023 033 071
Z | mtperformance 038 0.9 009 042 073
en + mt model 032 0.09 0.13 044 0.76
+ lang features 026 0.04 0.00 0.52 0.84
A | nochoosing (avg) 0.04 0.06 -0.02 0.17
Z | no choosing (min)_-036 071 076 131
< | en performance 0.04 0.08 -0.15 0.17
XLM-Rj,
_ | nochoosing (avg) 0.53 0.76  1.35 1.84 2.10
2 | no choosing (min) 0.28 0.32  0.70 097 129
“ [ enperformance 071 1.09 151 178 211
» | no choosing (avg)  0.06 -0.10 -0.52 046 0.84
£ | no choosing (min) -0.56 -0.75 -0.78 0.02 0.04
£ | enperformance ~ -0.14 027 018 055 1.04
A | no choosing (avg) 0.05 0.06 -0.08 0.08
g | no choosing (min)_ 020 042 097 117
< | en performance 0.09 0.0 -0.01 0.06

(*) 250 for XQuAD

Table 4: Chosen-shots performance gain. Gain over
zero-shot performance when choosing the best set of
shots using a heuristic (en or mt performance) or a linear
model that predicts the performance.

sample sizes across all languages (excluding En-
glish) resulting in 1750, 750, 1100 data points for
XNLI, PAWS-X and XQuAD. For each language,
we train the model using the data from all other
languages and evaluate on the selected language.
Cross-validation is done on the data after excluding
the selected language to choose the best hyperpa-
rameters. The following features are considered
as input: En and/or MT performance gain for the
set of samples corresponding to each data point. In
all cases, we consider: the zero-shot performance
(since the gain is usually larger when the zero-shot
performance is lower), and the number of sam-
ples used for that data point. We also investigate

whether adding language features* can improve
the prediction in a way similar to the analysis by
Lauscher et al. (2020). lang2vec 3 from Littell et al.
(2017) is used to obtain the feature vectors for each
language. The cosine similarity between the En-
glish vectors and the vectors for each language are
added as 5 new scalar features (values are in Ap-
pendix Table 6). Those features can help the model
better use the English performance depending on
the similarity between the language and English.
The prediction error of the linear models is reported
in Appendix Table 13. We can see in Table 4 that
using the models improves the chosen-shots per-
formance gain for XNLI with the best result, as
before, using a combination of all features. This is
not the case for PAWS-X and could be partially due
to having a smaller performance data and fewer lan-
guages to train on (7 as compared to 15 for XNLI).

The detailed results for the different languages
are in the Appendix Figure 21. Choosing the shots
improves the few-shot performance on XNLI for
all languages across almost all sample sizes. For
PAWS-X, there is mixed gain/loss but the improve-
ment when using English performance at maximum
size is concentrated in the European languages.

6 Conclusion and Future Work

This work conducted a systematic comparison be-
tween translate-train and few-shot cross-lingual
transfer. It quantified the performance gain for each
and showed that starting from 1k samples, MT data
could be used to improve over zero-shot perfor-
mance, and that at 10k-100k, there is an advantage
for translate-train over few-shot.

For the tasks that benefit from few-shot, we show
that there are random sets of samples that perform
better across languages and that the English per-
formance of the samples in those sets can help
us identify them. The performance of the MT of
the samples can also be used as another indicator.
When not incurring gain, both help at least avoid
the worst performing samples.

Further analysis in the future could help identify
why some datasets do not benefit from few-shot
transfer with certain models, and analysing the sam-
ples might lead to uncovering interesting properties
in the best/worst performing sets of samples.

#Using syntax, phonology, inventory, family and geograph-
ical location as features
Shttps://github.com/antonisa/lang2vec
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A Training Details

Software: We use the Huggingface Transformers ¢ for fine-tuning the pretrained language models. We
use scikit-learn 7 to train the performance prediction models. Our code is made publicly available 8.
Hardware: NVIDIA GeForce GTX 1080 Ti with 11G memory is used for most experiments. The linear
model is trained locally on a CPU.

Model: mBERT (base, cased) has 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased
text in the top 104 languages with the largest Wikipedias. XLM-R g (base) has ~270M parameters with
12-layers, 768-hidden-state, 3072 feed-forward hidden-state, 8-heads, and trained on on 2.5 TB of newly
created clean CommonCrawl data in 100 languages. XLM-Ry, (large) ~355M parameters with 24-layers,
1027-hidden-state, 4096 feed-forward hidden-state, 16-heads,’.

Hyperparameters: For the two classification tasks, we use a maximum sequence length of 128. We limit
hyperparmeter tuning to a search for the learning rate in {7e — 6, 1le — 5,3e — 5} and use a batch size of
32. For Question Answering, we use a maximum sequence length of 384 with a paragraph slide of 128.
We train using a learning rate of 3e — 5 and a batch size of 12 for 2 epochs. The used learning rate for
XLM-R g along with the dev performance for a model with seed=42 is reported in Table 5. We use four
other models fine-tuned on the English train split with seed € {2,4, 8,16}

XNLI PAWS-X XQuAD

le-5 Te-6 3e-5
84.82 92.45 89.10
Accuracy  Accuracy F1

Table 5: learning rate and English dev performance

Training & Evaluation Runs: Starting from each of the 5 source fine-tuned models, we fine-tune on
the target language for 5 different sets of samples. This is repeated for each size resulting in 25 runs per
size. The runtime for the target language fine-tuning varies based on the number of samples used and the
number of languages in each dataset. For smaller sample sizes, most runtime is spent for the evaluation
on the large test set.

B Languages

code ) (J)anguage properties(!) ) cosine similar.ity to Englishm. XNLI PAWS-X XQuAD
name sizel®)  script language family | syntax phonology inventory family geo

ar Arabic 1.02  Arabic Afro-Asiatic 0.65 0.70 0.71 0.00 0.97 X X

vi Vietnamese 1.24 Latin Austro-Asiatic | 0.66 0.78 0.75 0.00 0.85 X X

de German 2.37 Latin IE: Germanic 0.90 0.81 0.76 0.54 1.00 X X X

en English 5.98 Latin IE: Germanic 1.00 1.00 1.00 1.00 1.00 X X X

el Greek 0.17  Greek IE: Greek 0.78 0.95 0.65 0.15 0.99 X X

hi Hindi 0.13 Devanagari IE: Indo-Aryan | 0.62 0.78 0.71 0.13 091 X X

ur Urdu 0.15  Perso-Arabic IE: Indo-Aryan | 0.62 0.86 0.72 0.13 0.93 X

es Spanish 1.56 Latin IE: Romance 0.82 0.86 0.64 0.10 1.00 X X X

fr French 2.16 Latin IE: Romance 0.81 0.75 0.74 0.10 1.00 X X

u Russian 1.58  Cyrillic IE: Slavic 0.81 0.86 0.65 0.17 0.96 X X

bg Bulgarian 0.26  Cyrillic IE: Slavic 0.86 0.86 0.68 0.14 0.99 X

ja Japanese 1.18 Ideograms Japonic 0.50 0.67 0.65 0.00 0.86 X

ko Korean 0.47 Hangul Koreanic 0.55 0.75 0.71 0.00 0.87 X

th Thai 0.13  Brahmic Kra-Dai 0.64 0.78 0.75 0.00 0.85 X X

SW Swahili 0.05 Latin Niger-Congo 0.46 0.91 0.76 0.00 0.92 X

zh Mandarin 1.09 Chinese ideograms ~ Sino-Tibetan 0.71 0.73 0.70 0.00 0.88 X X X

tr Turkish 0.34 Latin Turkic 0.51 0.82 0.67 0.00 0.98 X X

(1) properties taken from XTREME
(2) similarity calculated using lang2vec
(3) size is the #wikipedia articles in millions

Table 6: Languages in the Datasets

®https://github.com/huggingface/transformers
"https://github.com/scikit-learn/scikit-learn
8https://github.com/imanjundi/cross-lingual-transfer

°from https://huggingface.co/transformers/pretrained_models.html
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Figure 7: Average performance across languages  Figure 8: Average performance across languages for
for translate-train vs. few-shot using mBERT. The  translate-train vs. few-shot using XLM-R;. The
biggest performance boost comes from using translate-  biggest performance boost comes from using translate-
train train
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C Detailed Results

a

2
L

66.08+0.70] -0.05+0.61 | 0.18+0.77 | 1.2220.36 | -0.5220.67 | -0.800.91 [ -0.27+0.52 | 1.05+0.37 | 3.61%0.36 | 5.67+0.38
bg 69.44+0.47] 0.15+0.63 | 0.70+0.73 | 2.21+0.50 || 0.03+0.57 | 0.25+0.88 | 0.50+0.46 | 2.23+0.57 | 4.81%0.64
de 471.2720.61]] 0.20+0.65 | 0.84+0.51 | 1.69%0.63 | 0.29+0.57 | -0.12+1.26 | 0.25+0.83 | 1.680.46 | 3.77%0.39
167.38+0.42) 0.2120.74 | 0.5120.96 | 1.6420.86 || 0.08+0.60 | -0.31%1.33 | -0.51%0.66 | 1.62%0.70 | 4.74+0.30
es 474.72+0.81/| 0.04+0.94 | 0.5720.92 | 0.99+0.76 | -0.03+0.80 | -0.28+1.16 | -0.2620.83 | 0.88+0.60 | 2.50+0.66 | 4.17%0.25
fr 473.7020.62)| 0.39+0.58 | 0.77+0.62 | 1.18+0.63 [|-0.01%0.71 | -0.19+1.03 | -0.48+0.87 | 0.84+0.50 | 2.32+0.53 | 3.97+0.23
60.34+0.41} 0.60+0.88 | 2.04+0.80 | 3.93+0.41 | -0.08+0.74 | -0.11+1.45 | 1.09+0.60 | 3.41+0.47 Ak 7.9240.39
ru469.28+0.55) 0.29+0.69 | 1.1620.70 | 1.6620.57 -0.05+0.79 | 0.07+1.09 | 0.06+0.92 | 1.33+0.58
sw 151.31+0.53] -0.05+0.70 | 0.56+0.37 | 2.02+0.78 [ -0.39+0.58 | 0.21+0.52 | 0.35+0.62 | 5.99%0.61 |kl VEL=r RERLET W]
th 155.05+0.38) 0.43+1.01 | 1.70+0.74 | 4.37+0.63 | -0.63+0.70 | -0.86+1.30 | 0.51+0.99 | 4.2620.43 | :hy/10loht Slolrdela)
163.09+0.20) -0.18+0.51 | 0.17+0.60 | 1.77+0.44 [-0.04+0.68 | -0.40+0.75 | -0.16+0.62 | 2.90+0.51 9.17+0.41
ur 458.42+0.35/| 0.26+0.68 | 1.23+0.97 | 3.10£0.74 | 0.48+0.47 | 1.3320.75 | 1.97%0.75 | 3.39£0.42 | 4.66+0.42 | 5.79%0.44

470.62+0.51§ 0.28+0.78 | 0.85%+1.00 | 1.82+0.49 ||-0.13%£0.72 | 0.08+1.20 | -0.07+0.72 | 1.83+0.34 | 3.94%£0.48 | 5.15+0.44
zh 469.88+0.56f 0.55+0.73 | 1.61+0.68 | 3.33%£0.64 §-0.28+0.97 | 0.66+1.05 | 1.73+£0.70 | 2.78+0.68 | 4.96+0.62

e
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=
L
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avg-4 65.75 0.22 0.92 221 -0.09 -0.03 0.33 2.44 5.15
1 1 1 1 1 1 1 1 l
0 10 100 1k 10 100 1k 10k 100k 400k
zer-shot few-shot translate-train

Figure 9: Detailed Results on XNLI using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases

ar478.77+0.73 0.48+0.70 | 1.65+0.52 _0.0310.93 0.94+0.78 | 1.29+0.42 | 1.57+0.29 3.76+0.39
bg 483.75+0.46/| 0.67£0.45 | 1.23+0.31 | 1.69+0.25 | 0.25+0.52 | 0.89+0.32 | 0.70+0.45 | 0.99+0.32 | 1.70+0.48
de 182.87+0.47] 0.36+0.58 | 0.71+0.49 | 1.41+0.28 || 0.08+0.55 | 0.06+0.71 | 0.75+0.34 | 0.99+0.30 | 1.54+0.38
el 182.37x0.71]| 0.510.60 | 1.22+0.30 | 1.82+0.43 | 0.18+0.62 | 0.73+0.56 | 0.64+0.68 | 1.16+0.45
es 484.590+0.46 0.33x0.45 | 0.70+0.50 | 1.29+0.40 | 0.09+0.57 | 0.30+0.67 | 0.20%0.63 | 0.59+0.45
fr 183.26+0.24)] 0.42+0.32 | 0.95+0.29 | 1.42+0.26 || 0.11+0.55 | 0.330.66 | 0.38+0.56
hi 76.83+0.88/| 0.54+0.93 | 1.48+0.56 _0.5310.72 0.90+0.84 | 1.030.47
ru180.88+0.45) 0.55+0.48 | 1.31%0.34 | 2.00+0.27 | 0.26+0.62 | 1.01+0.41 | 0.69+0.77
sw172.3320.85)| 0.28+0.95 | 1.14+0.64 | 2.10+0.75 | 0.37+0.82 | 0.11+0.81 | 0.21+1.14
th477.18+1.23| 0.85:1.04 | 2.3920.58 /-0
tr479.35+0.52 ) 0.3420.60 | 1.20%0.38
ur472.5621.16)) 1.09£1.07 | 2.1520.56 | -hi-rio) /15
vi180.1220.65)| 0.40+0.81 | 1.36+0.37
zh 179.64=0.89)| 0.53+0.76 | 1.47+0.44

1.26+0.41 | 1.61+0.39
0.80£0.31 | 1.52+0.19 | 2.13+0.22

3.29+0.37
0.99+0.50
4.05%£0.15 5.01+0.22

0.61+1.07 | 1.26+1.20 | 1.71+0.76 3.22+0.48 4.16+0.28

0.31+0.57 | 0.20+0.84 | 0.55%0.46
0.99+0.44 | 1.10+0.34

1.02%1.03 | 1.98+0.78 | 1.77+0.63
0.28+0.58 | 0.420.68 | 0.87+0.34 | 1.47+0.28 | 2.11%0.32 | 1L\ -p

0.47+0.71 | 0.70+0.87 | 1.43+0.51 | 1.84+0.39 3.70+0.22

avg- 79.61 0.53 135 2.10 0.33 0.70 0.87 Lz, 2.86
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Figure 10: Detailed Results on XNLI using XLM-R;. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases
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de 4 84.86+1.27 § 0.23x1.17 0.12+1.54 1.97+0.98 0.20£1.07 0.36+0.85 0.47+0.88 1.82+0.98 2.70%0.66
es - 87.87+1.31 | 0.04+1.06 -0.04+1.18 0.71+£0.96 § -0.06+1.27 | -0.28+1.22 0.26+0.86 1.53+0.64 2.62%0.52
fr 4 87.03+0.64 | 0.07+0.63 -0.12+0.90 0.67+0.54 § -0.03+0.57 | -0.04%0.60 0.39+0.35 1.40+0.38 2.78%0.56
ja- 74.23£2.36 | 0.14%=1.54 -0.28+2.15 2.76x1.28 § -0.14+1.58 0.20+1.62 1.91+0.90 5.02+0.73 7.42+1.07
ko 74.51+2.31 § 0.75+1.43 0.15+2.28 2.28+1.43 0.55+1.80 0.20+1.56 1.04+1.40 3.73+1.29 6.30+1.26
zh 4 78.96+2.22 | 0.08+1.37 0.05+1.71 2.18+1.25 0.25%1.25 0.34+1.11 1.75+0.94 3.53%+0.59 5.18+0.48
avg 81.24 0.22 -0.02 1.76 .13 0.13 0.97 2.84 4.50

|
0 10 100 1k 10 100 1k 10k 50k

Figure 11: Detailed Results on PAWS-X using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Japanese and Korean.

de 4 86.75+0.95 §| -0.34+0.97 | -0.42+1.18 0.17+0.74 § -0.29+1.00 | -0.33%1.02 | -0.52%1.12 0.46+1.00 1.29+0.82
es - 87.94+0.65 | 0.02+0.53 -0.52+1.18 0.24+0.55 -0.82+0.97 | -0.91%1.17 | -0.01+0.64 0.77+0.70 1.77+0.38
fr 4 88.74+0.85 § -0.16+0.73 | -0.18+0.86 0.10+0.65 -0.07+0.58 | -0.59+0.93 0.11+0.57 0.68+0.56 1.58+0.57
ja+ 75.91+x0.59 § 0.07+0.56 -1.05+1.60 0.63+0.87 0.10+0.51 0.10+0.85 0.34+0.85 1.96+0.68 80
ko 73.95%+1.32 § 1.02+0.93 0.85+0.77 1.92+0.88 § -0.18+1.75 0.81+0.94 0.96+1.03 4.05+0.78 6.43+1.07
zh 4 79.16%x1.43 § 0.52+0.66 0.11+1.13 1.49+0.63 0.20%1.43 0.07+1.08 1.14+1.00 2.65%0.57
avg - 82.07 0.19 -0.20 0.76 -0.18 -0.14 0.34 1.76
! l

2.99

. cl; 10 ) Iltl)p 1k 10 100 o 1_'|< - 10k 50k

Figure 12: Detailed Results on PAWS-X using XLM-R . Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Korean.

de 4 90.26+0.25 J| -0.56+0.86 | -0.78+0.87 0.37+0.54 § -0.21+0.59 | -0.48+0.60 | -0.27+0.45 0.46+0.35 1.25+0.17
es - 90.47+0.47 §| -0.05+0.88 | -0.75%1.32 0.46+0.48 § -0.56%+1.15 | -0.33%1.30 0.17+0.57 1.06+0.34 1.69+0.47
fr4 90.76+0.53 J| -0.31+0.99 | -0.73%0.91 0.04+0.51 -0.23+0.76 | -0.06%0.62 0.07+0.45 0.93+0.42 1.65+0.39

ja- 80.36x0.76 § 0.41x0.42 -0.72+1.56 1.02+0.58 0.23+1.00 -0.03x1.29 0.55+0.53 2.33+£0.57 4.00+0.29

ko - 80.31+1.55 § 0.70%x1.57 0.34x1.77 2.11+0.64 0.34£1.65 0.79+1.11 1.50%+0.77 6+0.36 4.94+0.24
zh 4 83.21+0.82 § 0.16+1.01 -0.46x1.67 1.03+0.88 0.06+0.98 0.03%+0.85 0.79+0.64 2.06+0.38 460
avg 85.89 0.06 -0.52 0.84 -0.06 -0.01 0.47 1.70 8
(I) 1I0 1(I)O llk 1I0 1(I)0 llk l(le 50k

Figure 13: Detailed Results on PAWS-X using XLM-R,. Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Japanese and Korean.
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ar461.3620.80] 0.54+1.17 | 1.47+1.65 | 2.20+0.81 | 0.43+0.89 | 1.46=1.27 | 2.39+0.90 | 4.83+0.87 | 7.73%0.58 | 9.17%1.03
de 172.06+1.02] 0.18+0.69 | 0.23+£0.95 | 0.10+0.83 || 0.35+0.82 | 0.00+0.92 | 0.03+0.87 | 0.81+0.88 | 2.59+0.52 | 4.20+0.64
el 461.92+1.36/| 0.60+1.12 | 2.26+1.23 | 2.61=1.14 || 0.14+1.38 | 1.64=1.40 | 2.07+1.10 | 4.65+0.86 | 7.42%0.59 |1} 0rt0/ 1
es 174.38+0.74]] 0.37+1.05 | 0.63+0.92 | 0.65=0.63 || 0.59+0.96 | 0.86+1.03 | 1.37+0.90 | 2.76+0.58 | 4.04+0.50
hi456.41+1.11)] 0.42+1.10 | 2.43+1.27 | 3.821.06 | 0.76+1.24 | 2.02+1.17 | 3.90+1.30 | 7.2120.67 el Ea LI ELREETIE
ru470.76+0.50f -0.13+0.77 | -0.59+1.03 | -0.59+0.93 | 0.38+0.39 | 0.15+0.75 | 0.26=0.73 | 1.46+0.61 | 2.84+0.56 | 5.05=0.60
th 138.1620.52/| 2.98+1.66 | o)l a0 2.13+1.65 | 7.3922.13 FPNI SR IERRT TSR] 8.89+2.12 | -0.18+1.50
tr452.95+1.03] 1.25£1.24 | 4.45+1.46 | 6.68+1.15 | 1.73+1.04 | 4.70=1.63 | 7.29+1.46 |ki)cr:rtbe ko ER LN RN PP TR
vi469.16+0.43)] 0.3120.94 | 1.44+0.97 | 2.63+0.86 || 0.27+1.05 | 1.27+1.01 | 2.22+1.02 | 3.94=0.71 | 6.28+0.61 A 8.31+0.27
zh 457.98+0.85) -0.15+1.01 | 0.81+1.36 | 1.99+1.18 || 0.03+0.87 | 0.09+1.36 | 1.59+1.01 | 3.64=0.95 | 6.76+0.64 A 8.39+0.39

avg4 61.51 0.64 2.28 3.55 0.68 1.96 3.39 5.75 7.22 8.33
' i ' ' ' ' ' ' ' '
0 10 100 250 10 100 250 1k 10k 88k
zer-shot few-shot translate-train

Figure 14: Detailed Results on XQuAD using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.

ar 467.7620.61] 0.08+0.57 | -0.32+0.86 | -0.29+0.81 ]| 0.29+0.52 | -0.03£0.66 | 0.17+0.75 | 1.49+0.74 | 3.68+0.81 | 3.31%0.37
de 474.75+1.02) -0.26+0.90 | -0.70+1.00 | -1.31+0.85 | 0.03+0.87 | -0.67+0.97 | -1.05=1.00 | -1.04+0.90 | 0.22+0.55 | 1.000.29
el 473.01+0.32]| -0.3620.37 | -0.75+0.75 | -0.99+0.54 || -0.350.45 | -1.06+0.88 | -1.29+0.56 | -0.89+0.60 | 0.27+0.63 | 2.36+0.41
es 176.16=0.70) -0.13+0.52 | -0.45+0.54 | -0.53+0.64 | -0.13+0.57 | -0.530.64 | -0.16+0.72 | 0.35+0.75 | 1.07+0.58 | 2.88+0.16
hi 468.36+1.17/| -0.00+0.84 | -0.22+0.83 | -0.40+0.68 || 0.23+0.95 | -0.13+0.80 | 0.200.91 | 0.98+0.89 | 3.25+0.64 | 4.73+0.44
ru473.5320.96/| -0.10£0.86 | -0.7620.76 | -1.080.64 || -0.04+0.84 | -0.26+0.77 | -0.58+0.76 | -0.38+0.77 | 0.72+0.52 | 2.74+0.86
th 66.40+1.08l 0.79+0.92 | 1.58+0.88 | 2.53+1.12 || 0.67+1.09 | 1.72+1.09 | 3.36+1.35 | 7.24%0.81 1.73:1.63
tr467.1121.19) -0.05+1.14 | -0.13+1.33 | -0.34=0.66 || -0.06+0.95 | -0.170.69 | 0.22+1.05 | 1.44+0.89 | 3.61+0.65 | 4.22+0.65
vi473.84+0.33]| -0.04+0.43 | 0.04+0.77 | 0.39£0.94 || 0.05+0.41 | -0.02+0.71 | -0.20+0.63 | 0.73+0.71 | 2.27+0.43 | 3.39+0.35
zh 164.19+0.94| 0.46+0.76 | 1.51+0.94 | 3.75+1.08 | -0.39+0.85 | -0.54=1.20 | 0.09+1.08 | 1.95+0.89 | Ilraovi) 7.78=1.84
avg{ 7051 0.04 -0.02 0.17 0.03 0.17 0.08 1.19 2.67 1.65
1 1 1 1 1 1 1

1 1 1
0 10 100 250 10 100 250 1k 10k 88k
zer-shot few-shot translate-train

Figure 15: Detailed Results on XQuAD using XLM-R . Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.

ar476.67+0.26§§ 0.38+0.37 | -0.12+0.58 | -0.50%+0.82 || 0.50+0.46 | 0.42+0.74 | 0.24+0.75 | 0.98+0.55 | 2.16+0.58 | 1.38+0.45
de 480.00+0.78{ -0.03+0.56 | -0.62+0.68 | -0.89+0.77 § -0.17+0.63 | -0.74%0.73 | -0.89+0.77 | -1.23+0.83 | -0.71£0.56 | -0.01+0.57
el 479.51+0.67 -0.20+0.49 | -0.59+0.68 | -0.89+0.73 § -0.12+0.49 | -0.94+0.67 | -1.07+0.66 | -0.91+0.62 | -0.25+0.65 | 0.35%+0.88
es 480.91+0.63§ 0.09+0.66 | -0.08+0.60 | -0.31+0.59 § 0.06%+0.71 | -0.25%+0.74 | -0.28+0.52 | 0.30+0.65 | 1.39+0.68 | 2.11+0.20
hi 475.85+0.32§ 0.10+£0.39 | -0.33+£0.81 | -0.66+0.85 | 0.16+0.47 | -0.16+0.55 | -0.23+£0.74 | 0.05+£0.72 | 0.89+0.54 | 1.98%0.55
ru-79.55+£0.65) -0.13+0.45 | -0.97+0.61 | -1.17+0.61 § -0.07+0.51 | -0.48+0.59 | -0.66+0.54 | -0.83+0.54 | -0.17£0.55 | 0.69+0.45
th {73.86+1.20 0.38+0.72 | 0.87+1.16 | 2.00+1.00 § 0.59%1.05 | 1.73+0.82 | 2.77+0.60 | 6.38+£0.59 | 2.00+1.42
tr474.08+0.53§ -0.02+£0.41 | 0.03+0.47 | -0.04+0.72 § 0.10+0.40 | 0.08+0.65 | 0.13+£0.59 | 0.93+0.72 | 2.39£0.71 | 2.94+0.98
Vi 479.93+£0.491 -0.11+0.42 | -0.06+0.55 | 0.04%0.51 §-0.15+0.44 | -0.17%0.60 | -0.53+0.55 | -0.31+0.45 | 0.46+0.54 | 1.20+0.41
zh {69.41+0.44} 0.03£0.66 | 1.06*+1.21 | 3.27+1.69 || -0.17+0.54 | -0.34+0.92 | -0.19%£0.93 | 1.13%+0.82 8.6711.49 6.29+0.95
avg-4 76.98 0.05 -0.08 0.08 0.07 -0.09 -0.07 0.65 1.68 0.29
' '

' ' '
0 10 100 250 10 100 250 1k 10k 88k
zer-shot few-shot translate-train

Figure 16: Detailed Results on XQuAD using XLM-R; . Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.
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ar{71.98+0.50) 0.44+1.06 | 1.15+0.70 | 1.44+0.80 | 2.15%2.34 | -0.11+1.12 | 0.40+0.86 | 0.82+1.14 | 1.7720.21 JRLEINY,
bg 477.73+0.25) 0.46+0.99 | 1.07+0.36 | 1.39+0.48 || 0.09+1.36 | 0.18+0.83 | -0.69+1.68 | 0.55+0.45 | 1.87+0.32
de 476.59+0.26 | 0.58+0.99 | 1.05+0.52 | 1.91+0.56 | 0.40+1.02 | -0.15+0.96 | 0.06+1.41 | 1.17+0.51 | 1.69+0.68 | 2 r-ol (]
el 476.42+0.42 0.06+0.99 | 0.53+0.75 | 1.28+0.47 [|-0.31+1.20 | 0.02+0.80 | -1.10+1.55 | 0.23+0.61 | 0.88+0.27 | 0.79+0.23
es 179.02+0.23)| 0.24+0.92 | 0.30£0.64 | 1.06+0.57 | -0.04+0.72 | -0.41+0.86 | -1.15+1.07 | 0.26+0.65 | 0.65+0.49 | 1.81%0.26
fr 478.64+0.57| 0.24+0.85 | 0.32+0.73 | 0.77+0.64 | -0.31+1.09 | -0.65+1.20 | -0.35+1.07 | -0.08+0.91 | 1.03+0.41 | 1.42+0.27
hi 470.40+0.96 | 0.49+1.40 | 1.31+0.94 | 1.98+0.73 || -0.38+1.37 | -0.05+1.38 | -1.07+1.59 | 0.97+1.23 | 2.68 2.76+0.56
ru475.99+0.450 0.17+0.81 | 0.84+0.46 | 1.21+0.28 |-0.43%1.10 | -0.09%0.75 | -0.15+0.61 | 0.25+0.87
sw 465.49+0.56 1 -0.10+0.83 | 0.53+0.99 | 1.32+0.89 | -0.03+0.81 | -0.73+1.21 | -0.37+1.56 | 2.3820.63 | =1l 10 -k WRFETNLE
th 471.90+0.85 0.79+1.68 2.17:0.36_0.0711.64 0.62£1.24 | 1.0420.70 | 2.1420.73 PEllE 0L PP RN Y]
tr473.17+0.30(-0.02+1.20 | 1.07+0.68 | 1.44+0.62 | 0.43+1.03 | -0.08+0.95 | -0.50+1.06 | 0.89+0.88 | 1.52+0.45 | 1.97+0.44
ur 466.57+0.69 | 0.85+1.56 | 1.91+0.68 | 2.51£0.50 | 0.07+1.09 | 0.72+0.67 | 0.80%0.66 | 0.21+0.81 | -0.43+0.29 | 0.49+0.46
vi475.39+0.63) 0.92+1.51 | 1.71+0.62 | 2.03+0.67 | 0.40+1.11 | 0.53+0.98 | -0.11+1.19 | 1.3120.74 | 2.22+0.31 [ EILET0o),
zh 473.75+0.48) 0.70+1.45 | 2.13+0.48 3.0010.48 -0.44+1.52 | -0.13+1.23 | 0.56%1.51 | 2.0620.92 | 77kt s BENREToeh!
avg4 73.79 0.41 1.15 1.72 -0.19 -0.02 -0.19 0.94 1.80

1 1 1 1
0 10 100 1k 10 100 1k 10k 100k
zer-shot few-shot translate-train

1
400k

Figure 17: Detailed Results on XNLI using a part of the available data as dev. The few-shot performance only
changes slightly with minor increases and decreases for across the languages. The highest increase on average is
at 10 samples with an increase of 0.05%. Translate-train performance decreases for almost all languages and on
average.

de 4 86.75+0.95 J| -1.20%£1.58 | -0.25+0.71 0.22+0.75 -0.64+1.42 | -1.12+0.97 | -0.85%1.22 0.17+1.04 ‘ 1.69+0.42 |
es - 87.94+0.65 J| -0.57%0.97 0.08+0.51 0.26+0.46 § -1.40+1.44 | -0.31+1.06 | -0.56%0.85 0.64+0.54 ‘ 2.53+0.60 |
fr 4 88.74+£0.85 § -0.77%£1.33 | -0.27+0.74 | -0.08+0.78 § -0.82+1.39 | -0.61%+1.17 | -0.30%0.85 0.29+1.07 2.49+0.38
ja+ 75.91+0.59 § -0.56+1.29 0.05+0.55 0.26x1.07 -0.77+1.38 | -0.44%0.94 0.03+1.13 2.13+0.82 5.42+0.40
ko - 73.95+1.32 §| -0.33%£1.65 1.09+1.04 2.19+0.76 § -0.26+2.11 0.49+1.39 1.23+1.57 4.27+1.05 7.71+0.64
zh 4 79.16%x1.43 § 0.53+0.79 0.55+0.95 1.20+0.85 -0.10%+1.47 | -0.12%+1.32 0.61+1.02 2.42+0.53 4.71+0.18
avg - 82.07 -0.48 0.21 0.67 -0.67 -0.35 0.03 1.65 4.09
! ! l l

1 1 1 1 1
0 10 100 1k 10 100 1k 10k 50k

Figure 18: Detailed Results on PAWS-X using a part of the available data as dev. The few-shot performance
shows mixed gains decreasing by ~0.60% for 10 samples, increasing by ~0.40% at 100 then decreasing againg by
~0.10%. Translate-train performance decreases util the full dataset is used where it increases by ~1%.
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(a) PAWS-X Performance variance on different shots.(b) XQuAD Performance variance on different shots.
Variance decreases with an increased data size Variance increases with an increased data size

Figure 19: Performance variance on different shots
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lang ar bg de el es fr hi o sw th tr ur vi zh  avg

10 0.64 042 042 051 063 0.75 049 -025 063 048 0.70 0.19 048 042 0.50
50 082 059 059 076 074 0.87 066 0.11 070 081 0.84 054 073 056 0.69
100 0.76 053 047 046 064 0.77 0.69 -050 0.58 0.58 064 0.06 073 033 0.52
500 0.84 0.64 077 079 073 081 077 0.18 0.67 071 0.88 0.54 077 073 0.72
1000 0.72 0.63 0.74 069 0.72 084 060 0.10 006 051 0.80 0.03 051 075 0.58
all 077 059 062 069 073 079 066 0.15 0.62 057 079 038 0.65 0.55 0.64

Table 7: XNLI Pearson correlation between the performance on English and the performance on other languages
using the same set of samples.

de en es fr ja ko zh

de 1.00 066 052 056 021 054 0.64
en 066 1.00 056 041 0.11 0.37 0.36
es 052 056 1.00 057 022 054 0.57
fr 056 041 057 1.00 0.03 0.59 0.55
ja. 021 011 022 0.03 1.00 0.16 0.32
ko 054 037 054 059 0.16 1.00 0.54
zh  0.64 036 057 055 032 054 1.00
avg 0.59 050 057 053 029 054 057

Table 8: PAWS-X Pearson correlation of the performance between languages.

lang de es fr ja ko zh  avg

10 047 065 034 -022 053 056 048
50 081 056 057 -035 0.53 048 0.51
100 0.78 053 042 040 047 044 0.57
500 052 055 053 016 041 011 047
1000 0.75 0.77 030 -0.01 -0.02 035 0.45
all 0.66 056 041 011 037 036 0.50

Table 9: PAWS-X Pearson correlation between the performance on English and the performance on other
languages using the same set of samples.

de es fr ja ko zh
0.66 0.62 0.68 045 038 0.52

Table 10: PAWS-X Pearson correlation between the performance of machine translation and manual translation.
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ar de zh vi en es hi el th tr ru ro
ar 1.00 -0.14 0.03 0.07 0.12 -0.02 0.01 -0.03 0.07 025 0.12 -0.06
de -0.14 100 -054 -0.18 035 057 042 022 -026 040 -0.09 -0.00
zh 0.03 -054 1.00 0.16 -037 -0.38 -0.21 -041 0.55 -0.17 -0.24 -0.22
vi 0.07 -0.18 0.16 1.00 -0.08 -0.02 -0.08 -0.01 0.02 -0.18 -0.12 -0.26
en 0.12 035 -037 -0.08 1.00 046 008 0.07 -0.17 0.06 -0.04 -0.06
es -0.02 057 -038 -002 046 100 0.10 002 -031 0.09 -029 -0.24
hi 0.01 042 -0.21 -0.08 0.08 0.10 1.00 0.18 0.06 037 027 0.18
el -0.03 022 -041 -001 007 002 018 1.00 -0.15 0.01 034 0.13
th 0.07 -0.26 055 0.02 -0.17 -031 0.06 -0.15 1.00 0.17 0.07 0.10
tr 025 040 -0.17 -0.18 0.06 0.09 037 0.01 0.17 1.00 033 0.27
ru 0.12 -0.09 -0.24 -0.12 -0.04 -0.29 0.27 034 0.07 033 1.00 0.56
ro -0.06 -0.00 -022 -026 -0.06 -024 0.18 0.13 0.10 027 056 1.00
avg 0.12 0.15 -0.07 003 0.12 0.08 020 0.11 0.10 022 0.16 0.12

Table 11: XQuAD Pearson correlation of the performance between languages.

lang ar de zh vi es hi el th tr ru ro  avg
10 054 041 008 -040 030 005 -0.10 043 044 -025 -023 0.19
50 037 024 -028 0.11 -0.01 0.19 027 0.12 021 -0.04 -0.08 0.18
100 -0.37 035 -0.54 -0.03 0.71 0.02 0.08 -0.09 -0.08 -040 -0.12 0.05
250 0.08 020 -0.25 0.03 0.65 -0.16 -0.38 -0.31 -045 -0.33 -0.34 -0.02
all 0.12 035 -0.37 -008 046 008 0.07 -0.17 0.06 -0.04 -0.06 0.12

Table 12: XQuAD Pearson correlation between the performance on English and the performance on other
languages using the same set of samples.
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XNLI PAWS-X

MSE RMSE MSE RMSE
avg (baseline) 1.05£0.56  0.99+0.26 1.26+0.76 1.08+0.34
model using features:
en performance 0.68+0.41 0.80+0.23 1.08+0.92 0.97+0.42
mt performance 0.34+0.28 0.56+0.20 0.92+0.56 0.93+0.28
en + mt performance  0.33+0.26 0.55+0.18 0.91+0.56 0.92+0.28
+ lang features 0.32£0.25 0.54+0.18 0.58+0.27 0.75+0.17

only lang features 0.93+0.47 0.93+0.24 1.01+0.45 0.98+0.25

Table 13: Performance prediction error. Predicting the few-shot performance gain using models with the English
and MT performance as features. For each language, the average performance gain for all other languages is used
as a baseline. +lang features further adds features from lang2vec. Having a combination of English and MT
performance with language features achieves the best results.

en 1.17% 1.29% 1.27% en-1.24% 0.68% 1.22% 0.84% 1.04% en-1.20% 1.06% 0.88% 1.00% 1.02%
2.85% | 2.21%

2.95% | 2.35% | 2.83% | 2.77% | 2.29%

ar
bg- 1.72% 0.82% 2.02% 138% 142%

b9 EELL] 159% EEE 163%, 1ast
de-2.03% 094% 175% 128% 132%

bg

de -PXTA 1.79% | de 7 1.13% %
-1.40% 0.92% 1.02% 1.08% 0.84% el ] el-1.61% 1.50%
es-[1.70% 0.78% 1.08%  1.40% ) es{ZEP70 0.76% |1.84% |1.72% es-1.56% 0.82%
fr- 1.06% 0.72% 0.84% 0.34% 0.52% fr- 0.90% 0.44% 0.82% 0.04% 0.46% fr-[1.78% 0.66% 1.56% 0.78% 1.28%
ru ru 12% 1.18% 1.10% ru % 0.94% 1. 1.55%
sw -- sw- 0.92% 1.18% 0.78% 1.04% 0.84%

th

Vi Vi

bAR 3.43% | 2.94% | 3.00% | 3.02% | 2.80% f4® 3.00% | 2.92% | 2.76% | 2.68% POl 3.32% | 2.82% | 3.30% | 2.52% | 3.12%
avg - 2 LY 201 8% BV 2.29% 2.27% g avg - 4 2.34% | 2.05% | 2.17%
{ '

A B C D E

A B C D E

A B C D E

Figure 20: XNLI few-shot gain over zero-shot across 5 sets of samples (size=1000) for 3 different model
initalizations. Sets A and C yield better performance for the 3 different initalizations. The English performance can
be used as an indicator.
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ar (ESNON 0.04(+1.01) MOEVIESWEIN 0.28(+1.61) ar 0.22(+0.61) | -0.02(+0.95) | 0.08(+1.29) | -0.09(+1.25)
0.74(+1.25) 4 0.29(+1.72) bg - 0.32(+0.68) 0.23(+1.36) 0.13(+1.56)
0.25(+1.15) | 0.24(+1.39) WAF(CR2] ) de 0.29(+1.19) | 0.19(+1.34) | 0.35(+1.99) | 0.35(+2.19)

0.29(+0.62) [IFTERL)) 0.12(+1.27)
es 40.26(+0.51) MVEVIETR:D)) +0.85) | 0.32(+1.22) | 0.28(+1.46)
0.17(+0.41) | 0.32(+0.72) | 0.09(+0.74) [WEHIELN 0.32(+0.97)
0.30(+1.09)

el 4 0.35(+0.68) | 0.37(+0.66) | 0.37(+0.93) | 0.25(+0.92) | 0.31(+1.46)
es - 0.30(+0.55) WOR:IEN R 0.28(+0.76) | 0.28(+1.17) | 0.39(+1.57)
fr - 0.38(+0.63) | 0.36(+0.76) | 0.08(+0.73) 0.27(+0.92)
0.25(+1.60) | ERIEPIPIO N -0.16(+1.94) hi 4 0.41(+0.90) | 0.36(+1.15) | 0.18(+1.53) [ok:l3 3 0.20(+2.30)

ru - 0.31(+0.55) 0.03(+0.94) | 0.14(+1.35) | 0.21(+1.58) ru- 0.41(+0.64) | 0.29(+0.86) | 0.24(+1.15) | 0.08(+1.29) | 0.28(+1.65)
B 0.55(+0.59) 0.90(+0.75) [ 0.52(+0.63) 0.57(+0.93) NUXES¥L)) sw - 0.22(+0.26) 0.33(+1.67)

[R 0.59(+0.89) 0.10(+1.93) | 0.26(+2.46) | 0.10(+2.71) IO 1.19(+1.50 0.34(+2.17) | 0L e 0.29(+2.90)
tr 0.53(+1A14) 0.14(+1.14) 0.25(+1.72) '8 0.69 0.17(+0.78) | 0.02(+1.02) | 0.31(+1.47) | 0.39(+1.85)
ur (NS TESHON -0.04(+2.15) 0.25(+2.58) ur 9) 0.8 0.35(+2.54)

B 0.68(+1.02) 0.80(+1.54) [[RZIESEIN 0.78(+2.51) [IREIEEED) YR 0.70 0.6 A0 0.17(+1.79) ORCIEPEN 0.40(+2.58)
zh +1.50) | -0.02(+1.89) | 0.27(+2.91) | 0.22(+3.19) zh - 0.32(+0.84) 0.17(+2.08) | 0.35(+3.00) | 0.38(+3.35)
avg - 1) EFIEERD N 0.19(+1.32) 0.19(+1.90) avg 0.23(+1.36) 0.30(+2.01)
100 1000 10 50 100 500 1000
(a) XNLI chosen-shots gain (b) XNLI chosen-shots gain
using English performance using machine translation performance
0.41(+0.80) | -0.02(+0.95) -0.09(+1.25) ar -0.02(+0.95) 0.01(+1.34)
| 0.47(+0.99) 0.12(+1.55) bg - 0.31(+0.66) 0.35(+1.48) | 0.42(+1.34) | 0.36(+1.79)
0.37(+2.21) de 0.29(+1.19) | 0.19(+1.34) 0.37(+2.21)
el { 0.35(+0.68) el - 0.35(+0.68) 0.23(+0.90) | 0.31(+1.46)

s 0.30(+0.55) | 01,0 <k0 | 0.42(+0.90) | 0.32(+1.22) | 0.32(+1.50) es-| 0.33(+0.58) | (/[ 0kl | 0.42(+0.90) | 0.32(+1.22) | 0.32(+1.50)
fr- 0.36(+0.61) | 0.30(-+0.70) | 0.04(+0.69) | 0.51 0.31(+0.96) fr 4 0.36(+0.61) | 0.33(+0.73) | 0.04(-+0.69) 0.31(+0.96)
hi - 0.37(+0.86) | 0.36(+1.15) 0.86(+2.61) [IRIEZIED) hi | 0.36(+0.85) | 0.36(+1.15) e XEN 0.20(+2.30)
ru - 0.35(+0.59) | 0.29(+0.86) 0.28(+1.65) ru- 0.35(+0.59) | 0.29(+0.86) | 0.20(+1.11) | 0.31(+1.52) | 0.28(+1.65)
sw - 0.22(+0.26) 0.48(+0.84) | 0.33(+1.67) sw - 0.22(+0.26) 0.67(+0.78 0.33(+1.67)
R 1.19(+1.50) 0.32(+2.15) LN 0.29(+2.90) th 0 0.32(+2.15) 0.35(+2.96)
'8 0.69(+1.12) 0.28(+1.28) 0.39(+1.85) tr 0.37(+0.98) | 0.28(+1.28) | 0.24(+1.40) | 0.39(+1.85)
ur RZESENIREIEE XN 0.38(+2:57) | ( ) ur REEPIN 0.15(+2.34)

vi RIS RENMNNIESWEN 0.16(+1.78) [ORLIETIENN 0:40(+2.58) YR 0.79 0.37(+1.98) |[ICLICEI0 0.40(+2.58)
zh 0.18(+2.09) | 0.35(+3.00) | 0.30(+3.28) zh 4 0.21(+0.74) | 0.37(+1.49) | 0.18(+2.09) | 0.35(+3.00) | 0.30(+3.28)
avg - 0.50(+0 0.4 11) | 0.29(+1.42) | 0.4 0.29(+2.01) avg 0.31(+1.44) 0.32(+2.03)
10 50 100 1000 10 50 100 500 1000
(c) XNLI chosen-shots gain (d) XNLI chosen-shots gain
using (en + mt) model using (en + mt + lang features) model

de -| -0.22(-0.56) | 0.10(-0.10)
- -0.06(-0.04) | 0.36(+0.20)

) | 0.15(+0.09) | 0.15(+0.32)
0.09(+0.33) | ¢ )

de - 0.23(-0.11) | 0.10(-0.10) | 0.34(-0.08) | 0.16(+0.10) | -0.29(-0.12)
es - 0.22(+0.24) | 0.38(+0.22) | 0.12(-0.40) |-0.08(+0.16) |-0.13(+0.11)

e

n

fr- 0.04(-0.12) | 0.13(-0.30) | -0.04(-0.22) | -0.09(-0.32) | 0.18(+0.28) fr- 0.18(+0.02) | 0.06(-0.37) | 0.13(-0.05) | 0.11(-0.12) | 0.35(+0.45)
ja-0.12(+0.19) | 0.09(-0.26) RMUIENEIR -0.37(-0.27) |-0.10(+0.53) ja-0.25(+0.32) | 0.32(-0.03) WMLJENIN -0.23(-0.13) | -0.26(+0.37)
ko - 0.07(+1.09) | 0.12(+1.09) | 0.14(+0.99) -0.85(+1.07) ko --0.01(+1.01) | 0.04(+1.01) | 0.07(+0.92) |-0.28(+1.28) | 0.16(+2.08)
zh -0.06(+0.46) | -0.28(+0.00) 0 0.30(+1.33) | -0.05(+1.44) zh - 0.26(+0.78) | 0.16(+0.44) | -0.01(+0.10) | 0.20(+1.23) | 0.03(+1.52)
avg -0.02(+0.17) | 0.08(+0.10) 0.09(+0.53) | -0.04(+0.71) avg - 0.19(+0.38) | 0.17(+0.19) | 0.29(+0.09) |-0.02(+0.42) | -0.02(+0.73)
1‘0 5‘0 560 10‘00 1‘0 5‘0 160 560 10‘00
(e) PAWSX chosen-shots gain (f) PAWS-X chosen-shots gain
using English performance using machine translation performance
0.26(-0.16) | 0.12(+0.06) | 0.13(+0.30)

de- 0.22(-0.12) | 0.05(-0.15) | 0.26(-0.16) | 0.12(+0.06) | 0.03(+0.20) de - 0.20(-0.14) | -0.10(-0.30)

- 0.20(+0.22) | 0. 0 0.0 -0.17(+0.07) | -0.13(+0.11) es - -0.03(-0.01) | 0.19(+0.03)
fr-| 0.05(-0.11) | 0.09(-0.34) | 0.08(-0.10) | -0.06(-0.29) fr- 0.05(-0.11) | 0.09(-0.34)
ja-{-0.04(+0.03) | 0.26(-0.09) 00(-0.0 -0.02(+0.08) | -0.31(+0.32) ja- -0.08(-0.01) | 0.26(-0.09)

e

n

[WRY/CXOEIN -0.17(+0.07) | -0.13(+0.11)
0.13(-0.05) | -0.06(-0.29) | 0.16(+0.26)
1.00(-0.05) 0.20(+0.83)

ko- 0.10(+1.12) | 0.09(+1.06) | -0.02(+0.83) |-0.04(+1.52) | -0.01(+1.91) ko - 0.10(+1.12) | 0.07(+1.04) | -0.06(+0.79) | -0.04(+1.52) | -0.01(+1.91)
zh -{ 0.29(+0.81) 0.12(+0.23) | 0.14(+1.17) | 0.03(+1.52) zh - 0.29(+0.81) -0.17(-0.06) | 0.24(+1.27) | -0.16(+1.33)
avg - 0.14(+0.32) | 0.07(+0.09) | 0.33(+0.13) | -0.00(+0.44) | -0.00(+0.76) avg -| 0.09(+0.28) | 0.01(+0.03) | 0.29(+0.09) | 0.09(+0.53) | 0.03(+0.79)
1‘0 5‘0 160 560 10‘00 1‘0 5‘0 160 560 10‘00
(g) PAWS-X chosen-shots gain (h) PAWS-X chosen-shots gain
using (en + mt) model using (en + mt + lang features) model

Figure 21: Chosen-shots gain in performance. The gain of choosing shots over the average of no-choosing
(average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in parenthesis as follows:
chosen-shots-gain (few-shot-gain). When chosen-shots-gain is positive (green), choosing the shots results in more
gain. When negative (red), it hurts and results in less gain.
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Figure 22: XQuAD chosen-shots gain in performance (no gain!). The gain of choosing shots over the average of
no-choosing (average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in parenthesis
as follows chosen-shots-gain (few-shot-gain). We can see that there is no gain in choosing the shots. Experiments
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(a) XQuAD chosen-shots gain

using English performance

[(BL:ICNYAN 0.13(+0.15) EEVEX:ICORION -0.12(-0.41)
de - -0.15(-0.41) | 0.00(-0.52) | -0.21(-0.91) | -0.10(-1.42)
el - -0.15(-0.51) | 0.12(-0.60) | 0.09(-0.66) | 0.05(-0.94)
es - -0.17(-0.30) | -0.13(-0.41) | 0.05(-0.40) | 0.22(-0.31)
hi 4 0.04(+0.03) | -0.09(-0.27) | -0.15(-0.37) | -0.29(-0.69)
ro- -0.15(-0.09) | -0.23(-0.49) | 0.17(-0.19) | -0.11(-0.76)
ru- 0.12(+0.02) | -0.05(-0.39) | -0.04(-0.80) | 0.18(-0.91)
th --0.02(+0.77) | 0.10(+1.45) | -0.08(+1.50) | 0.02(+2.54)
tr -1 0.10(+0.05) | -0.15(-0.16) | 0.13(+0.01) | -0.18(-0.52)
vi--0.18(-0.22) | 0.26(+0.44) | -0.19(-0.14) | 0.06(+0.45)
zh 0.36(+0.82) 0.15(+1.29) | 0.06(+1.57) 0.35(+4.09)

avg - 0.03(+0.07) | 0.01(+0.04) | -0.07(-0.12) | 0.01(+0.10)
1I0 5I0 1(I)0 2.%0

(b) XQuAD chosen-shots gain
using en performance model

with adding language features to the model further decrease the performance.
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