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Abstract

Humans can obtain the knowledge of novel vi-
sual concepts from language descriptions, and
we thus use the few-shot image classification
task to investigate whether a machine learning
model can have this capability. Our proposed
model, LIDE (Learning from Image and DE-
scription), has a text decoder to generate the de-
scriptions and a text encoder to obtain the text
representations of machine- or user-generated
descriptions. We confirmed that LIDE with
machine-generated descriptions outperformed
baseline models. Moreover, the performance
was improved further with high-quality user-
generated descriptions. The generated descrip-
tions can be viewed as the explanations of the
model’s predictions, and we observed that such
explanations were consistent with prediction
results. We also investigated why the language
description improved the few-shot image clas-
sification performance by comparing the image
representations and the text representations in
the feature spaces.

1 Introduction

Humans can efficiently learn about new concepts
from language (Chopra et al., 2019). Hence, in this
paper, we focus on the few-shot image classifica-
tion problem to verify machine learning models’
capability to understand new concepts from lan-
guage. This problem is a kind of meta-learning
problem in which a model first learns from the con-
cepts of classes by training on a few instances and
then learns unseen classes in the same way.

In our problem setting, the model can use lan-
guage descriptions of images as additional infor-
mation. This setting is similar to teaching a new
concept to others by explaining it deductively
from small amounts of data, unlike most machine
learning models that learn inductively from large
amounts of data.

For this setting, we propose a new model, called
LIDE (Learning from Image and DEscription). As
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Figure 1: Concept of the LIDE model.

shown in Figure 1, LIDE consists of an image en-
coder, an image classifier, a text decoder, and a text
encoder.

LIDE has the advantage of providing explain-
ablity. It passes an image representation encoded
by the image encoder to the text decoder, which
then generates a language description of the im-
age as an explanation of the model’s prediction.
The image classifier then classifies the image in
accordance with the text representation, which is
encoded by the text encoder, in addition to the im-
age representation.

LIDE also provides high accuracy due to its ex-
plainability. It has been difficult to use machine-
generated descriptions to improve image classifica-
tion performance because of their low quality (Mu
et al., 2020). Therefore, we design a training algo-
rithm and a text encoding method to obtain robust
text representations. In addition, LIDE includes a
feature fusion module added to the image classifier
to combine the information from both the image
representation and the text representation.

Moreover, LIDE can take user-generated descrip-
tions as input instead of machine-generated descrip-
tions. We can use a description that contains textual
features captured from an input image by human
perception or a post-edited text in the text decoder
output. The resulting high-quality descriptions pro-
vided by users can improve the image classification
accuracy.

Our contributions are summarized as follows:

• We confirmed that LIDE with machine-
generated descriptions outperformed previ-
ous models, and thus the explanations of the
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model’s predictions were helpful to improve
the classification accuracy.

• We observed that the performance improved
further when gold captions were fed to LIDE
as users’ high-quality descriptions.

• We investigated whether the generated expla-
nations were consistent with the image classi-
fication predictions, and we found a positive
correlation between the quality of the gener-
ated captions and the classification accuracy.

• We thoroughly investigated why the text rep-
resentations explaining the input image con-
tributed to the image classification task, specif-
ically in terms of the distributions of the rep-
resentations in the feature space, the robust-
ness of the representations for noisy images,
and the knowledge of concepts that can be
extracted from the representations.

2 Background

2.1 Few-Shot Image Classification

N -way K-shot classification involves three data
splits, Ttrain, Tdev, and Ttest, and each split con-
sists of many classes and instances. The classes in
the splits are disjoint. Each N -way K-shot clas-
sification task is a classification problem with N
classes. Each task provides K training instances
for each class, called support instances. A task
entails the evaluation of M instances for each class,
called query instances. The tasks, which consist
of the classes and instances, are randomly sampled
from the data splits.

This problem is a meta-learning problem. In the
training phase, we use the episodic training (Ravi
and Larochelle, 2017), where many mini-batches
of size B consisting of B tasks, each of which
consists of N classes and N(K + M) instances,
are independently sampled from Ttrain. In the test
phase, the model learns new N -way K-shot clas-
sification tasks with unseen classes and instances
sampled from Tdev or Ttest. For each sampled task,
a model learns from the supports, and we evaluate
the classification performance of the queries.

A major approach for N -way K-shot classifica-
tion is the prototypical network (ProtoNet) (Snell
et al., 2017). In both the training and test phase,
instead of updating the model parameters for each
sampled task with few support instances, the proto-
typical network computes the class prototypes. Let

hck be the k-th support feature of class c. Here, the
class prototype zc is

zc =
1

K

∑

k

Wprotoh
c
k.

In the training phase, the model is trained with the
cross-entropy loss of the queries from Ttrain:

Lclass = − 1

M

∑

i

∑

c

yci log
exp [s(zc, hi)]∑
c′ exp [s(z

c′ , hi)]
,

where hi is the i-th query feature, s(zc, hmm,i) =
z⊤c Wprotohmm,i is a score function containing
Wproto as a trainable parameter, and yci ∈ {0, 1} is
the ground-truth label of the i-th query. In the test
phase, the class prototypes are obtained from the
supports, and the average score over the sampled
tasks is reported.

2.2 Few-Shot Image Classification with
Language Description

We focus on the few-shot image classification to
verify the machine learning models’ capability to
learn new concepts from language descriptions in
addition to the images. Previous studies have used
the language description to improve the few-shot
image classification. The classifiers in the stud-
ies are based on ProtoNet, which corresponds to
the model with the image encoder and prediction
module in Figure 2. Mu et al. (2020) proposed
LSL by introducing a text decoder to ProtoNet to
avoid overfitting by training the image encoder with
a language generation loss. They observed that a
text representation from a noisy machine-generated
description was harmful for image classification.
Accordingly, they viewed the text decoder as a reg-
ularizer and did not use a text encoder. RS-FSL
(Afham et al., 2021) replaced the GRU (Cho et al.,
2014) text decoder of LSL with a bi-directional
transformer (Vaswani et al., 2017).

Andreas et al. (2018) were interested in describ-
ing the hidden states with natural language, but not
in improving the image classification performance.
They proposed L3 by adding both a text decoder
and encoder to ProtoNet. They encoded an image
into an image representation and decoded it into
an explanation. The input of their image classifier
was only the text representation encoded by the text
encoder. L3 provided the explainability, but their
model performance decreased.

All of the aforementioned papers assumed that
the image encoder was not pre-trained in a super-
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Figure 2: Overall structure of LIDE. The text decoder generates a caption on the basis of the image representation
encoded by the image encoder. The text encoder obtains the text representation from the generated caption or a
gold caption. The feature fusion module combines the image and text representation to generate the multi-modal
representations. The prediction module outputs the classification probability.

vised or self-supervised fashion with external im-
ages. Our motivation is to clarify the benefit of the
language description to learn novel visual concepts,
and so we follow their setting.

3 Methods

3.1 Model
We show the overall model structure of LIDE in
Figure 2. The model components are explained in
the following.

Image Encoder We can use any network as the
image encoder, and we used a 4-layer CNN as
in the previous studies. The output is the image
feature himg.

Text Decoder First, we map the image feature to
the text feature space as follows:

fI2T (himg) = Linear(LayerNorm(himg)),

where LayerNorm is layer normalization (Ba et al.,
2016). Then, we pass the text feature vector to the
text decoder as an encoder hidden state sequence
of length 1. The text decoder autoregressively gen-
erates the j-th token tj . The j-th token generation
probability pj is written as

pj = Pr(tj ; fI2T (himg), t0:j−1).

We used a uni-directional three-layer transformer.

Text Encoder We use BERT (Devlin et al., 2019)
for the text encoder, which outputs the last hidden
states HBERT . The text feature htext is a weighted
average pooling of HBERT :

htext =
1∑
pjwj

∑
pjwjhBERT,j ,

where the weight pj is the token generation prob-
ability in the text decoder. If a caption is user-
generated, then pj is 1 for all tokens. The weight

wj is 1 if the j-th token is not a stop word; other-
wise, wj = 0.

The use of weighted average pooling with
the text generation probability has two advan-
tages. First, the text encoder can ignore the low-
confidence tokens. Second, the image classification
loss back-propagates to the text decoder through
the weight pj . Because the discrete operation of
text generation breaks the computation graph, we
cannot back-propagate the gradient of HBERT to
the decoder without the method.

Feature Fusion Module The feature fusion mod-
ule combines the single-modal features himg and
htext into a multi-modal feature hmm. Let [; ] be
the vector concatenations, fT2I be a mapping func-
tion from the text feature space to the image feature
space, and g be a linear function to R2. fT2I is a
three-layer FFNN with ReLU activation. The fea-
ture fusion operation is the weighted sum of the
two features:

[wimg;wlang] = softmax(g([himg;htext])),

hmm = wimghimg + wtextfT2I(htext).

Prediction Module We use ProtoNet for the pre-
diction module and replace h with hmm.

3.2 Algorithms
Loss Function For image classification, we com-
pute two image classification losses: Lclass,gold is
computed from the image feature and the gold cap-
tion, while Lclass,gen is computed from the image
feature and the generated caption. For text gener-
ation, we compute Ltext with teacher-forcing and
cross-entropy loss.

To enrich the mapped text feature fT2I(htext),
we use the contrastive loss (Sohn, 2016; Oord et al.,
2018) between the gold and generated captions.
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Let vcgold and vcgen be the averages of the mapped
support text features in class c from the gold and
generated captions, respectively. The similarity is
cos(vcgold

⊤vc
′

gen). Then, the contrastive loss Lcntr

is

Lcntr = − 1

2N

∑

c

log
exp [cos(vcgold

⊤vcgen)/τ ]∑
c′ exp [cos(v

c
gold

⊤vc′gen)/τ ]

− 1

2N

∑

c′
log

exp [cos(vc
′

gold
⊤vc

′
gen)/τ ]∑

c exp [cos(v
c
gold

⊤vc′gen)/τ ]
,

where τ is a temperature parameter.
The total loss that we minimize in the training

phase to optimize the whole model parameters in
an end-to-end manner is

L = Lclass,gold+Lclass,gen+λtextLtext+λcntrLcntr,

where λtext and λcntr are hyperparameters.

Pre-Training Following Afham et al. (2021);
Wang et al. (2019), we pre-train the model with
the training data for the downstream task. The
pre-training consists of the standard image classifi-
cation task, and we replace the prediction module
with a linear classifier for all training classes. The
loss function is L = Lclass,gen + λtextLtext.

Caption Generation In the training phase, we
use a greedy algorithm and random sampling for
computational reasons. In each step, we uniformly
and randomly choose between the two algorithms.
In random sampling, we restrict the candidate to-
kens to the top 20 tokens at each position.

In the test phase, we input the generated cap-
tions to the text encoder in the setting where the
user-generated description is not available. The
generation algorithm is beam search with a beam
width of five and a length penalty of 0.5. Thus, the
token sequence t1:l is generated as

argmaxl,t1:l
1

l0.5

l∑

j=1

log Pr(tj ; fI2T (himg), t1:j−1),

where l is the text length. The length penalty re-
duces the preference for words consisting of multi-
ple subwords, such as ‘point _y’ (‘pointy’).

4 Evaluation

4.1 Dataset
We used the Caltech-UCSD Birds (CUB) dataset
(Wah et al., 2011) for evaluation. It contains 200

bird species (classes) and 40-60 images for each
class. The classes are split into 100 training classes,
50 development classes, and 50 test classes. We
used this dataset for the N = 5-way K = 1-shot
classification problem. The number of query in-
stances M per class was 15.

The CUB dataset has 10 captions for each image
(Reed et al., 2016). For each step, we randomly
sampled one caption from the 10 gold captions.

4.2 Metrics

For the image classification, we report the average
accuracy over 600 tasks, following the previous
studies. To evaluate the generated caption qual-
ity, we used major metrics for image captioning,
BLEU4 (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGEL (Lin, 2004).

4.3 Implementation

We pre-processed the images in the same way as
Mu et al. (2020). The dimension of the image
feature himg was 1600. The text encoder and to-
kenizer were the pre-trained BERT-base-uncased
model. The text encoder output dimension was 768.
The configuration of the transformer layers in the
text decoder was the same as that of the T5-base
decoder model (Raffel et al., 2020), but we did not
use the pre-trained parameters for the text decoder
because they did not contribute to the performance.
The parameter size of Wproto was 1600 × 1600.
The other hyperparameters and optimization de-
tails are given in Appendix A.

4.4 Compared Models

ProroNet (Snell et al., 2017) was the baseline, with
only the image encoder. As for the other com-
pared models, L3 (Andreas et al., 2018) used a 200-
dimensional GRU text encoder and decoder but
did not use image representation for classification.
LSL (Mu et al., 2020) used a 200-dimensional GRU
text decoder for regularization. RS-FSL (Afham
et al., 2021) used a 2-layer, 768-dimensional, bi-
directional transformer as the text decoder. All
models used a 4-layer CNN as the image encoder,
along with the ProtoNet-based prediction module.

4.5 Ablated Models

To evaluate the models that use a single-modal rep-
resentation for image classification, we introduced
the models “No Text,” “No Image,” and “No Text
Encoder” by removing the feature fusion module
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Model Text Dec. Text Enc. Modal Baseline

No Text Image ProtoNet
No Image ✓ ✓ Text L3

No Text Enc. ✓ Image LSL, RS-FSL

Table 1: Setting of ablated single-modal models.

Model Accuracy Img. Enc. Text Enc. Fusion Text Dec.

ProtoNet 57.97 ±0.96 ✓
L3 53.96 ±1.06 ✓ ✓

LSL 61.24 ±0.96 ✓ ✓
RS-FSL 65.66 ±0.90 ✓ ✓

LIDE 67.53 ±0.91 ✓ ✓ ✓ ✓

Table 2: Performance of the compared models.

from LIDE. Each model corresponds to our im-
plementation of the baseline models, as shown in
Table 1.

4.6 Evaluation Results for LIDE as Few-Shot
Image Classification Model

4.6.1 Main Results
Performance with Machine-generated Descrip-
tion Table 2 summarizes the results. LIDE out-
performed ProtoNet, LSL, and RS-FSL, which use
an image classifier using image representations
only. LIDE improved the image classification per-
formance with the mechanism of encoding text and
combining multi-modal representations, while L3,
which uses an image classifier with text representa-
tions only, harmed their performance.

Performance with User’s Description The ad-
vantage of the text encoder is that it enables textual
input by users. Specifically, a user can use lan-
guage as an explanation from humans to machines
by feeding the textual features captured from the
input image to the model. In addition, if a user
objects to the model’s explanations, the user can
edit them to correct the model’s misunderstanding.

To evaluate LIDE in this setting, we viewed the
gold captions as user descriptions. As the CUB
dataset has 10 gold captions per image, we selected
one gold caption and fed it to the model to maxi-
mize the similarity to a generated caption and thus
simulate a user editing the generated caption. The
similarity was defined as the bi-gram precision of
the gold caption with respect to the generated cap-
tion.

Table 3 shows that the performance was im-
proved significantly when a high-quality gold cap-
tion was given. However, the performance declined

Random Description 58.89 ±0.93
Generated Description 67.53 ±0.91

Gold Description 73.08 ±0.88

Table 3: Performance with each kind of description.

when a wrong caption was given, which was a ran-
domly sampled caption from all captions in Ttest.
We conclude that the model’s output depends on
the quality of the description.

4.6.2 Ablation Study
Evaluation on modalities The first set of rows
in Table 4 lists ablation study results for the dif-
ferent modalities that LIDE uses. We confirmed
that LIDE using all the modalities outperformed
the compared models using part of the modalities.
The image and text representations complemented
each other, as will be discussed later.

Evaluation on introduced techniques The sec-
ond set of rows in Table 4 lists the techniques
that were introduced in LIDE: image classification
loss with generated captions, contrastive learning,
weighted average pooling, and random sampling
during caption generation. We confirmed that all
of these techniques contributed to the performance
of LIDE.

We assume that the loss with the generated cap-
tions decreases the discrepancy between the train
and test phases. The contrastive loss enriches the
text representation and makes the representations
of the generated text and the gold caption close.
The weighted average pooling reduces the effect
of noisy generated text. The random sampling in
the training phase contributes to the generation of
diverse captions.

Evaluation on pre-training of text encoder We
also found that the multi-modal feature was use-
ful even when the text encoder was trained from
scratch. The text representation could assist in the
image representation without BERT pre-training,
because the captions in the CUB dataset are re-
stricted to the descriptions of birds, and the training
data thus covers the space of the captions well.

4.7 Evaluation Results for LIDE as
Interpretable Machine Learning Model

Evaluation on quality of generated captions
First, generated captions are insufficient as expla-
nations if they are not accurate. The upper bound
was the CNN-LSTM model pre-trained with the
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LIDE 67.53 ±0.91

No Text (ProtoNet) 62.22 ±0.92
No Image (L3) 49.60 ±1.03

No Text Encoder (LSL, RS-FSL) 63.10 ±0.90

No Lclass,gen 61.96 ±0.90
No Contrastive Loss 64.60 ±0.88

No Weighted Average Pooling 66.16 ±0.93
No Random Sampling 66.40 ±0.93

None of the Above 59.68 ±0.98

No BERT Pre-Training 66.42 ±0.94

Table 4: Ablation study results.

BLEU4 METEOR ROUGEL

UB: Caption 59.0 36.1 69.7
No Text Enc.: Caption 50.0 34.6 67.2

Correlation 0.114 0.201 0.217
LIDE: Caption 48.1 34.1 66.4

Correlation 0.309† 0.468∗ 0.436∗∗

Table 5: Captioning scores and correlations to the pre-
diction scores.†: p < 0.1, * : p < 0.05, ** : p < 0.01

MSCOCO (Lin et al., 2014) dataset from Chen et al.
(2017). Although we had no training data without
the CUB dataset, Table 5 shows that the differences
between LIDE and the upper bound were only 2.0
points for METEOR and 3.3 points for ROUGE.

Evaluation on consistency between generated
captions and image classification When the gen-
erated captions are correct (respectively, incorrect),
the classification results should also be correct (in-
correct) in terms of the consistency between expla-
nations and classification results.

Accordingly, we calculated the Spearman rank-
order correlation coefficient between the captioning
scores and the classification scores. We divided
2,953 test-split images into 30 bins in accordance
with the ascending order of each captioning score,
and we computed the average image classification
accuracy in each bin.

Table 5 lists the results. We confirmed a posi-
tive correlation between the quality of the gener-
ated captions and the prediction accuracy of LIDE.
However, LIDE without the text encoder, which
corresponds to LSL (Mu et al., 2020) and RS-
FSL (Afham et al., 2021), showed a low correlation.
This result demonstrated the importance of the text
encoder and the feature fusion modules introduced
in LIDE.

Qualitative analysis on generated captions Fig-
ure 3 shows examples of the generated captions.
We found that the captions captured the birds’ char-

Figure 3: Examples of generated captions and gold
captions.

acteristics. However, the structures of the captions
were uniform, and they could not describe a birds’
most distinctive element, such as the red face in
the second example. We believe that overfitting to
the 5-class classification problems with the small
dataset caused this problem.

We restricted the image encoder to a 4-layer
CNN for fair comparison to the existing models,
and we did not use external training data to vali-
date the ability to learn novel classes from language
descriptions. Removal of the limitations would im-
prove the performance of LIDE as an explainable
machine learning model.

4.8 Discussion

In this section, we clarify four reasons why text
representations are useful in the few-shot image
classification task. Specifically, we compared the
multi-modal feature space of LIDE with the gold
captions to the image feature space of the “No Text”
and “No Text Encoder” models.

How are classes distributed in each modal fea-
ture space? First, we calculated the inner- and
inter-class distances in each feature space. Table
6 lists the results. The inner-class distances in the
multi-modal feature space of LIDE were smaller
than those in the image feature space; the inter-
class distances of LIDE were larger. As a result, the
clusters were distributed well in the multi-modal
feature space.

We believe that this is because the captions de-
scribe the similarities and differences between the
images more obviously than the images themselves
do. For example, to determine that two birds be-
long to different species, one piece of evidence is
the belly color. The captions can explain this in-
formation clearly, e.g., “yellow belly” and “white
belly”. From the image, however, the extraction
of this information requires multiple steps such as
locating the belly and specifying its color.
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Inner-Class Dist. Inter-Class Dist. LID

No Text (Image) 0.504 0.592 17.8
No Text Enc. (Image) 0.526 0.609 19.0

LIDE (Fusion) 0.459 0.709 6.73

Table 6: Distribution of feature representations.

What are characteristics of latent feature
spaces? Second, we examined the dimensions
of the feature spaces. Lee and Chung (2021) ob-
served that the features embedded in a manifold
with a smaller latent dimension are more general-
ized. They evaluated the latent dimension by using
the average of the local intrinsic dimensions (LID)
of the features. The LID measures the number of
dimensions of a feature manifold in the neighbor
of x, and it can be estimated as

ˆLID(x) = −
{

1

nnn

nnn∑

i

log

(
ri(x)

rnnn(x)

)}−1

by maximum likelihood estimation, where nnn

is the number of the nearest neighbors and ri is
the Euclidean distance from x to the i-th nearest
neighbor (Levina and Bickel, 2005; Amsaleg et al.,
2015). We set nnn = 20 in accordance with the
previous studies.

Table 6 lists the estimated LIDs of the features
of each model. In addition, we applied principal
component analysis (PCA) to the features, and Fig-
ure 4 shows the cumulative contribution rates. All
features were embedded in R1600.

The multi-modal features existed in a manifold
with a smaller latent dimension than those of the
image-only representations. Therefore, the text
representation contributed to shrinking the repre-
sentation manifold to a smaller dimension. We as-
sume that the text controlled the main focus among
the many objects in an image. For example, the
captions in the CUB dataset describe the character-
istics of birds. As a result, the model can extract the
important information from captions for the down-
stream image classification task. In contrast, an im-
age has much information, such as the background,
and image features thus require a larger-dimension
manifold.

Are multi-modal representations robust for
noisy images? Next, we hypothesize that lan-
guage descriptions can help to classify noisy or
obscure images. To verify our hypothesis, we
performed experiments in two heuristic noisy set-
tings: One consisted of grayscale images and the

Figure 4: Cumulative contribution rates for PCA of each
representations.

Original Grayscale Adversarial
No Text 62.22 ±0.92 38.04 ±0.78 33.09 ±0.69

No Text Enc. 63.10 ±0.90 38.55 ±0.80 31.30 ±0.65
LIDE 78.09 ±0.79 59.81 ±0.97 56.31 ±1.01

Table 7: Performance in noisy settings.

other consisted of images that were adversarially
attacked via the fast gradient sign method (Good-
fellow et al., 2015). We compared LIDE with gold
captions to the ablated models using the image rep-
resentations and evaluated their performance with
the noisy images in the test phase.

Table 7 lists the result. When a caption was
not provided, the classification accuracy dropped
greatly in both settings. However, LIDE reduced
the decline by virtue of the textual information.
These results indicate that the text representation
may be useful for classifying certain ill-conditioned
images, such as an image in which the bird is ex-
tremely small.

What information do text representations have?
Finally, we performed a probing test for each
modality of representation, as in previous natural
language processing (NLP) studies that discovered
linguistic properties (Conneau et al., 2018; Hup-
kes and Zuidema, 2018) in the text representations.
The CUB dataset has annotations of the birds’ attri-
butions, and we recover the attribution labels from
himg and htext. Each image has {0, 1} labels for
312 attributions.

We used our trained model to obtain himg and
htext for all images and captions. Then, we
used linear classifiers Wimg,attr ∈ R1600×312 and
Wlang,attr ∈ R768×312, which were trained the lin-
ear classifiers with binary-cross-entropy loss in the
training split. Next, we determined the thresholds
in the development split and obtained prediction
results in the test split. Finally, we performed a
Wilcoxon signed-rank test between the image re-
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Image Text No Significance
43 17 8

Table 8: Numbers of significant attributions.

has_bill_shape::all-purpose
has_wing_color::white
has_back_color::black
has_breast_color::white
has_throat_color::white
has_eye_color::brown
has_eye_color::white
has_nape_color::black
has_nape_color::white
has_nape_color::red

has_belly_color::white
has_size::small_(5_-_9_in)
has_back_pattern::spotted
has_tail_pattern::spotted
has_belly_pattern::spotted

has_crown_color::grey
has_crown_color::black

Table 9: Attributions that were significantly recovered
from text representations.

sults and the text results.
Table 8 lists the numbers of attributions having

significance at a p-value of 0.05. Among the 68
attributions, 60 were recovered more easily from
one modality than from the other modality. In other
words, the image and text representations comple-
mented each other. Most of the attributes favored
the image representation, but 17 of them favored
the text representation. Table 9 lists those 17 at-
tributes, and we can observe two main characteris-
tics among them. First, the colors black and white
were recovered from the text representation. These
attributes may be difficult to recover from an image
because of light and shadow. The second character-
istic was a spotted pattern, which is obscure in an
image with 84× 84 pixels.

5 Related Work

Image classification with language Several
studies have provides gold language information in
the test phase. For zero-shot learning or few-shot
learning, class-label words are used as additional
information (Frome et al., 2013; Socher et al., 2013;
Xing et al., 2019). Moreover, He and Peng (2017);
Liang et al. (2020) used language descriptions for
the standard image classification problem, in which
the classes in the training and test phases are the
same. The few-shot image classification is a more
challenging problem that requires the capability

of learning novel concepts from language descrip-
tions.

Textual explanation of image representation
Explainability of artificial intelligence (XAI) has
attracted much attention (Bastings et al., 2021). Pa-
pers have proposed methods to generate an image
description for XAI in the image classification task
and visual question answering (VQA) task (Hen-
dricks et al., 2016, 2018; Li et al., 2018). In contrast
to those studies, the motivation of this paper is to
decode and encode such descriptions to improve
the few-shot image classification performance. We
could integrate the findings of XAI studies into
LIDE.

Analysis of image and text representations Pre-
vious papers have investigated why language in-
formation is useful in vision and language tasks.
Collell Talleda and Moens (2016) also found that
the image and text representations complemented
each other; for example, taxonomic attributes are
captured well in the language. Li et al. (2020) ob-
served that the attention heads of the multi-modal
pre-trained models ground elements of language to
image regions.

6 Conclusion

We tackled the few-shot image classification task
through learning of novel concepts from language
descriptions of images. We observed that machine-
and user-generated descriptions improved the few-
shot image classification performance. We also
found that the generated captions explained the
input image and were consistent with the prediction
performance.

Our experiments also revealed four reasons why
the text representation improved the performance:
the inner-class distances of the multi-modal rep-
resentations are smaller and the inter-class dis-
tances are larger than those of image representa-
tions; multi-modal representations are embedded
in a space with a smaller latent dimension; multi-
modal representations are robust for noisy images;
and certain types of knowledge are easily recovered
from text representations.

Humans can learn concepts from language and
explain them with language, but this is still diffi-
cult for machine learning models. This study sheds
light on the importance of interactivity in explanat-
ing with language in machine learning.
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A Experimental Setup

We trained all the models on an NVIDIA Quadro
RTX 8000 (48GB), and each experiment took al-
most one day. The hyperparameter settings are
listed in Table 10. We used the Adam opti-
mizer (Kingma and Ba, 2014), PyTorch (Paszke
et al., 2017), and transformers (Wolf et al., 2020).
Stop words were implemented with NLTK (Bird
et al., 2009), and “bird” was added to the stop
words. The training of the “No Image” ablated
model was unstable due to the transformer architec-
ture, so we used greedy decoding in the test phase
to reduce the discrepancy between the train and test
phases.

Pre-Training Fine-Tuning
Batch size 128 100
# Epochs 100 1500

Learning rate for main model 1e-3 1e-3
Learning rate for text encoder 1e-3 1e-4
Learning rate for text decoder 1e-5 1e-5

λtext — 10
λcntr — 0.1
τ — 0.05

Table 10: Hyperparameters.

For the experiments on recovering attributions
(Section 4.8), we used sigmoid activation and de-
termined the thresholds for each attribution. We
sampled one caption for each image in the develop-
ment and test splits. When an attribution was not
described in a caption even though the label was 1,
the example was ignored. We also removed attribu-
tions when the number of correct predictions was
less than 20 or the number of positive examples
was less than 20. Here, a positive example means
one for which the label is 1 and the attribution is
described in the caption. As a result, 68 attributions
remained.

1430

https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

