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Abstract

The Transformer architecture has led to sig-
nificant gains in machine translation. How-
ever, most studies focus on only sentence-level
translation without considering the context de-
pendency within documents, leading to the in-
adequacy of document-level coherence. Some
recent research tried to mitigate this issue by
introducing an additional context encoder or
translating with multiple sentences or even the
entire document. Such methods may lose the
information on the target side or have an in-
creasing computational complexity as docu-
ments get longer. To address such problems,
we introduce a recurrent memory unit to the
vanilla Transformer, which supports the infor-
mation exchange between the sentence and
previous context. The memory unit is recur-
rently updated by acquiring information from
sentences, and passing the aggregated knowl-
edge back to subsequent sentence states. We
follow a two-stage training strategy, in which
the model is first trained at the sentence level
and then finetuned for document-level transla-
tion. We conduct experiments on three popu-
lar datasets for document-level machine trans-
lation and our model has an average improve-
ment of 0.91 s-BLEU over the sentence-level
baseline. We also achieve state-of-the-art re-
sults on TED and News, outperforming the
previous work by 0.36 s-BLEU and 1.49 d-
BLEU on average.

1 Introduction

Most previous machine translation methods are de-
signed for sentence-level translation. Recent stud-
ies have shown that the effective use of contextual
information between sentences can achieve better
performance in document-level machine translation
(Garcia et al., 2015; Maruf and Haffari, 2018; Mi-
culicich et al., 2018; Zhang et al., 2020; Bao et al.,
2021). Built on the Transformer model (Vaswani
et al., 2017), a general approach is to incorporate
neighboring sentence states (Tiedemann and Scher-

rer, 2017; Zheng et al., 2020) into the attention
mechanism, which has also been widely used in
many long sequence modeling methods (Dai et al.,
2019; Rae et al., 2020; Yang et al., 2019; Belt-
agy et al., 2020). Zhang et al. (2018); Maruf et al.
(2019) have introduced an additional context en-
coder to solve the limitation of sentence-level trans-
lation, which, however, is separated from the orig-
inal translation model and context states is only
applied on the source side. Other works (Junczys-
Dowmunt, 2019; Scherrer et al., 2019; Zhang et al.,
2020; Bao et al., 2021) concatenated sentences or
the entire document and feed into the attention
module of the Transformer. Since more extended
contexts may confound attention on meaningful
portions of the current sentence, the model is dif-
ficult to select valuable inputs from extra contexts
to navigate the redundancy of information. Such
methods also suffer from the quadratically increas-
ing complexity when documents get longer.

We solve such problems by introducing a mem-
ory mechanism to recurrently integrate contextual-
ized knowledge from intermediate state in Trans-
former layers. As recurrent memory has been
widely researched since RNN (Rumelhart et al.,
1986), which has been incorporated with Trans-
former by Transformer-XL (Dai et al., 2019) and
further extended by Rae et al. (2020) who compress
previous states into a two-layer hidden memory. In
our approach, we update the memory through an at-
tention module to select practical information from
sentences and reduce the context space into mul-
tiple dense vectors in the memory. Besides, we
use another attention module to pass the knowl-
edge retained in the memory back to the sentence
state in the next step. Such information exchange
is expected to convey contextualized dependency
between sentences. This memory mechanism can
be applied in each layer for both the source and
target documents, and our study shows that incor-
porating memory only in the last layer achieves the
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best performance. Also, as sentences are ordered
in documents, our model reads one sentence pair at
each step, keeping the computational cost as same
as the sentence-level translation.

We experiment across three widely used datasets
for document-level translation: TED, NEWS, and
Europarl, and evaluate our model with s-BLEU
and d-BLEU. We first train a vanilla Transformer
on sentence-level translation as the baseline and
finetune the model for the documents by initial-
izing the memory mechanism to the Transformer.
Our model outperforms previous SOTA work by
0.5 s-BLEU and 2.30 d-BLEU on TED, and 0.21
s-BLEU and 0.57 d-BLEU on News. We do not
achieve the SOTA result on Europarl, which might
be caused by the different results between the base-
lines for sentence-level translation. However, we
further evaluate the improvement of previous works
from their reported baseline Transformer, and we
achieve the most relative gain on all three datasets.
We also analyze our model from the memory us-
age, long-range effect, context dependency, and
computational complexity, and demonstrate the ef-
fectiveness and efficiency of our approach in the
general understanding of the document machine
translation.

Overall, this paper makes several contributions:
(i) Our work reduces the contextualized knowledge
space of sentences states to multiple dense vectors,
and considers the sentence dependency for both
source and target documents, while keeping com-
putational complexity in sentence-level. (ii) Our
model significantly improves the sentence level
baseline by 0.91 s-BLEU average and achieved the
SOTA results on TED and News. (iii) Our model
shows the effective use of memory, long-range in-
fluence, context-dependency across sentences, and
decoding efficiency through convincing analysis.

2 Related Works

Recurrent Sequence Modeling RNN (Rumel-
hart et al., 1986) was the first class of models that
introduced hidden states as the memory in neural
models. Although improved on sequential-oriented
tasks, RNN has unsatisfactory learning of long-
term information due to gradient vanishing and
explosion. LSTM (Hochreiter and Schmidhuber,
1997) improved RNN by introducing gate mecha-
nisms to selectively retain knowledge at each step.

This RNN variant dominated NLP models until
the Transformer replaced the memory unit with a

self-attention mechanism and achieved great suc-
cess in a wide range of NLP applications. Although
we cannot deny the robustness and effectiveness of
the Transformer model, the quadratically increased
computational cost as the increase of token num-
bers makes Transformer unable to fit the long-range
sequence. Some studies (Parmar et al., 2018; Child
et al., 2019; Beltagy et al., 2020; Ainslie et al.,
2020; Qiu et al., 2020; Zaheer et al., 2020; Martins
et al., 2021) try to mitigate this issue by reducing
the complexity of the attention module. However,
such work still suffers from the problems by unlim-
ited the document length and the document model-
ing is hard to solve.

Transformer-XL (Dai et al., 2019) broke this
dilemma by introducing the recurrent memory
into Transformer-based models. It cached previ-
ous hidden sentences computation and mapped
such states to subsequent sentences states. The-
oretically, Transformer-XL could handle infinite
length text but storing uncompressed hidden state
requires tremendous memory space, which im-
peded Transformer-XL from good performance
on dealing with practical long-sequence tasks.
The Compressive Transformer (Rae et al., 2020)
further addressed this problem by mapping the
evicted hidden state from cached memory to a more
compressed representation. However, two-layer
caching still requires a huge memory space and
may be improved with trainable memories.

Document Machine Translation Machine
Translation has been a widely researched area
for decades. A series of models have addressed
various translation problems (Koehn et al., 2003;
Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Luong et al., 2015). As most of
them target translation at the sentence level,
document-level translation poses a fundamental
challenge requiring models to pass intra-sentential
information throughout consecutive sequences of
sentences, and it has been addressed by Gong et al.
(2011); Hardmeier et al. (2013); Pouget-Abadie
et al. (2014); Garcia et al. (2015); Koehn and
Knowles (2017); Läubli et al. (2018); Agrawal
et al. (2018) among others.

Recent studies have attempted to incorporate
additional contextual information into the Trans-
former structure to improve the performance of
neural machine translation models further. The in-
tuitive way is to leverage neighboring sentences
from paragraphs or the documents (Tiedemann and
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Figure 1: An overview of the model architecture, where E and D refers to Encoder and Decoder respectively.

Scherrer, 2017; Maruf and Haffari, 2018; Zheng
et al., 2020), demonstrating the effectiveness of the
additional contexts. Specifically, in the first class
of methodologies for document-level translation,
independent from the architecture of vanilla Trans-
former processing current sentences, some studies
(Miculicich et al., 2018; Zhang et al., 2018; Maruf
et al., 2019; Voita et al., 2019a,b; Ma et al., 2020;
Donato et al., 2021) introduces context-aware com-
ponents only attend to source or target contexts and
usually jointly train with the rest of the network
from scratch. The second class of models follows
the pattern of concatenating multiple sentences for
translation (Agrawal et al., 2018; Scherrer et al.,
2019; Junczys-Dowmunt, 2019; Zhang et al., 2020).
Such a method is expected to capture the contextual
correlations between sentences. However, one of
its drawbacks is the quadratically increased compu-
tational complexity in the face of longer contexts se-
quences. Also, longer sequences usually confound
document-level attention and sometimes even over-
look key information on the current sentences. Bao
et al. (2021) uses group masks to introduce local-
ity constraints to reinforce sentence information
in multi-head attention to resolve the confounding
issue in long contexts.

Our work incorporates the idea of the recurrent
memory to document-level machine translation. It
follows the locality assumptions by reducing the
context space into multiple memory vectors and
passes dependencies between sentences. The mech-
anism to update and output memory is similar to
models which store cached bilingual sentence pairs

in the memory to enhance the sentence-level trans-
lation (Feng et al., 2017; He et al., 2021; Jiang et al.,
2021). We believe our approach is intuitive to ef-
ficiently store sentence states and transfer context
information across sentences.

3 Approach

Our model is shown in Figure 1. Additional to
the vanilla Transformer, we introduce a contextual
memory unit and two attention modules to manipu-
late the memory defined as Update Attention and
Output Attention. These modules can be applied at
each layer in both the encoder and decoder.

As input sentences are ordered from left to right
in the document, our model only reads one sen-
tence every time. The memory is expected to store
contextualized information from the input sentence
states and convey such knowledge to the next sen-
tence. At each step, the Update Attention step
maps the contextual information from the sentence
state to the memory, and updates the memory to the
next step. Meanwhile, the Output Attention step
fuses the information from the current sentence and
the contextual memory, and outputs the aggregated
knowledge to the remaining modules of the layer.

Formally, we define ht as the sentence state from
self-attention module in Transformer layer, and Mt

refers to the contextual memory M at step t, where
t refers to the index of tth sentence in the document.
Mt and ht are updated and outputted as:

Mt+1 = UpdateAttention(Mt, ht)

h̃t = OutputAttention(Mt, ht)
(1)
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3.1 Contextual Memory
Memory M ∈ RdM×dmodel where dmodel refers to
the hidden dimension and dM is a hyper-parameter,
indicating how many vectors will be allocated for
memory. To avoid the redundancy of memory
space, we set dM to 16. Detailed analysis is dis-
cussed later.

3.2 Update Attention
We update contextual memory through an atten-
tion module (Vaswani et al., 2017). Attention is a
mapping function between input vectors of query
(Q) and key-value (K-V) pairs. The output is the
weighted sum of values with corresponding scores.

Attention(Q,K,V) = Softmax(
QKT

√
dk

)V

Multi-Head attention extends the vanilla attention
by projecting input vectors (Q,K,V) to differ-
ent representation subspaces, and attention is per-
formed in parallel in each head. Attention outputs
from multiple heads will be concatenated and pro-
jected to the expected space.

MHA(Q,K,V) = Concat(head1, ..,headn)W
o

headi = Attention(QWq
i ,KWk

i ,VW
v
i )

where dk is the hidden dimension of the K, Wq,
Wk, Wv ∈ Rdmodel×dh , and Wo ∈ Rn×dh×dmodel

are learnable parameters. dmodel and dh refer to
the hidden dimension of the model and each head.

To update the contextual memory Mt to next
step, sentence state ht is mapped to Mt through
the Multi-Head Attention. Both the memory and
context state are projected into different sub-spaces
and contextualized knowledge is expected to be
mapped to each memory vector from different per-
spectives. The memory at step t is updated as:

M̃t = AddNorm(MHA(Mt,ht, ht)) (2)

A Feed-Forward Network is then used to fur-
ther enhance the memory representation from the
attention output.

Mt+1 = AddNorm(FeedForward(M̃t)) (3)

In the memory matrix M, each vector is expected
to select contextualized information from different
perspectives. However, it is hard to distinguish
such vectors since they do not have actual posi-
tional meanings, and the same key-value pairs are

mapped to these vectors in the attention phase re-
sulting in the same representation in each memory
vector. To solve such a problem, we use the po-
sitional encoding PE() as introduced in Vaswani
et al. (2017) to differentiate multiple memory vec-
tors. M is added by such position-level bias in each
update phase.

Mt = Mt + PE(Mt) (4)

3.3 Output Attention
To map the contextualized knowledge from Mt to
the sentence state ht, multi-head attention is used
to take the representation of ht and Mt as query
and key-value, respectively.

h̃t = MHA(ht,Mt,Mt) (5)

h̃t will be passed to the subsequent modules in the
Transformer layer.

Similar approaches have been discussed in pre-
vious works. Simply increasing the context space
does not help but introduces a lot of noise. Instead
of incorporating multiple sentences to the context
attention, we compress contextualized information
into multiple memorized vectors and map such vec-
tors back to the sentence state at the next step. We
find that both the BLEU score and the informa-
tion gained from the context attention space do not
increase when the memory length increases from
64 to 128. Therefore, a large context space in M
seems redundant for the model to learn, and we find
dM = 16 for the most effectiveness and efficiency.

3.4 Document Neural Machine Translation
In the task of document-level machine translation,
the source and target documents are represented as
sequences of sentences X = {xt|1 ≤ t ≤ n}, and
Y = {yt|1 ≤ t ≤ n} respectively, where t refers
to the sentence index. Given a vanilla Transformer
and its parameters θ, the objective is to maximize
the target document probability conditioned on the
source document.

argmax
θ

P(Y|X, θ)

Our approach recurrently translates an ordered doc-
ument sentence by sentence, and the objective is:

argmax
θ̃

∏

t

P(Yt|X6t,Y<t, θ̃)

where θ̃ refers to Transformer parameters including
Memory, Update Attention and Output Attention.
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Model TED News Europarl
s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

Vaswani et al. (2017) 23.10 - 22.40 - 29.40 -
Miculicich et al. (2018) 24.58 - 25.03 - 28.60 -
Maruf et al. (2019) 24.42 - 24.84 - 29.75 -
Ma et al. (2020) 24.87 - 23.55 - 30.09 -
Zheng et al. (2020) 25.10 - 24.91 - 30.40 -
Bao et al. (2021) 25.12 (+0.30) 27.17 25.52 (+0.33) 27.11 32.39 (+1.02) 34.08
Sentence Baseline 24.73 - 25.18 - 30.13 -
Finetune on Sentence 25.62 (+0.89) 29.47 25.73 (+0.55) 27.78 31.41 (+1.28) 33.50

Table 1: Experiments results of BLEU scores on three datasets. The improvement from the Transformer baseline
for previous models are also reported as in "()". It indicates the score improved from sentence-level translation
provided by their implementations. Results are averaged from two runs.

Data # of Docs # of Sents/Doc
TED 1.7K/93/23 123/98/105
News 6.1K/71/155 40/25/20
Europarl 118K/240/360 14/15/14

Table 2: Dataset Statistics for Train/Valid/Test

As suggested by Beltagy et al. (2020); Bao et al.
(2021), context would be better applied in higher
layers and keep only local information in lower
layers. Therefore we only apply the memory unit
M in the top layer of encoder and decoder, and
in lower layers, we keep using the original Trans-
former structure. Analysis regarding the location
of memory is discussed in Section 5.1.

Training During training, our model takes an in-
put of xt and yt, which refer to sequences of tokens
of the tth sentence in source and target documents.
Memory unit M is initialized trainable parameters
before the first input of each document, and it will
be updated after each input sentence pair, which
are batched as the sentence order in the document.
For computational convenience, the gradients are
only back-propagated to the current sentence and
the most recent sentence in each update step, and
we stop the gradient for M before it is passed to the
next step.

Inference In the decoding phase, our model
translates the source document sentence by sen-
tence. In the generation of each sentence, tokens
are decoded in an auto-regressive order until the
stop sign or exceeds the max length. The memory
M will not be updated until the complete sentence
is generated since the update of M depends on all
tokens in the current sentence. If M is updated

after each token generation, the attention space in
the output attention does not represent the com-
plete contextualized information of the expected
sentence. The computational complexity keeps in
sentence-level since we only feed one sentence ev-
ery time, and there is no cache vector besides M.

4 Experiment

4.1 Datasets

We experiment across three widely used datasets
for English→German document translation.

TED Training data for TED comes from
IWSLT’17. We use tst2016-2017 as test set and a
held-out set from training as valid.

News The corpus comes from News Commen-
tary v11. We use tst2016-2017 as test set and a
held-out set from training as valid.

Europarl Train, valid and test sets are extracted
from the corpus Europarl v7, as mentioned in
(Maruf et al., 2019).

Detailed statistics for the datasets is in Table 2.
Moses (Koehn et al., 2007) is used for data process-
ing and BPE (Sennrich et al., 2016) is used with
vocab-size of 30K for all datasets.

4.2 Settings

We adopt Transformer model with the transformer-
base configurations as the baseline, which has six
layers with a hidden size of 512 and an interme-
diate size of 2048. Token embedding is shared
for source and target languages, and token indexes
are encoded with a learnable embedding matrix.
We first train a baseline model with vanilla Trans-
former architecture for sentence-level translation
and finetune our model based on the sentence-level
baseline. We use the AdamW optimizer with an ini-
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Figure 2: Evaluation on TED with different memory
sizes.

tial learning rate of 5× 10−4 and warm-up steps of
4000 for training sentence-level baseline. The drop-
out rate is set to 0.3 for TED and News and 0.1 for
the Europarl. As for finetuning after sentence-level
Transformer, the learning rate is set as 3×10−4 for
newly initialized parameters and 6× 10−5 for pre-
trained parameters, and warm-up steps of 1000 are
set for TED and 2000 for News and Europarl. The
drop-out rate is set to 0.1 for the Europarl and 0.2
for the TED and News during finetuning. We also
apply gradient accumulation, and detailed studies
are discussed in the section 5.3. Models are trained
with a patience of 5 for both sentence-level and
document-level. We use the beam size of 5 during
inference and compute the BLEU score in a max
order of 4 after removing BPE-tokens. s-BLEU
and d-BLEU are used as evaluation metrics, where
s-BLEU refers to the BLEU score for sentences,
and d-BLEU is the score for documents.

4.3 Results

Experiment results are shown in Table 1. Our
method shows consistent improvements over three
datasets from sentence-level Transformer. We
achieve the state-of-the-art results of s-BLEU of
25.62 and d-BLEU of 29.47 on TED and s-BLEU
of 25.73 and d-BLEU of 27.78 on News . Though
our results do not outperform G-Transformer (Bao
et al., 2021) on Europarl, we think the difference
mostly comes from the gap between sentence-
level baselines. Such difference may be caused
by the implementation framework and computing
resources, which they use Fairseq library and mul-
tiple GPUs, while we adopt the code from Hug-
gingFace and only a single 1080-Ti GPU is used
for our training. We further report the score of
works gained from their reported baseline, and our
model makes the greatest improvement on all three

Side Index s-BLEU d-BLEU
Source+Target 0-1 25.31 29.13
Source+Target 2-3 25.30 29.23
Source+Target 4-5 25.43 29.22
Source+Target 5 25.62 29.47
Source Only 5 25.42 29.33
Target Only 5 25.43 29.25

Table 3: Evaluation on TED with memory on differ-
ent sides and layers. We adopt the 6-layer Transformer
model finetued on the sentence-level baseline, and 0
refers to the first layer, and 5 refers to the last layer.

datasets. Overall, the results could demonstrate
the advantages of our method in the general under-
standing of the document machine translation.

5 Analysis

In this section, we discuss our model from memory
usage, long-range modeling, context effect, and
computational complexity, respectively. Experi-
ments are conducted with the model finetuned on
the sentence baseline and evaluated on the TED,
since TED has the most average sentence number
per document, which is more likely to reflect the
performance of our model for long documents.

5.1 Discussion of Memory

Memory Size Memory size is evaluated through
information gain (IG) between the random initial-
ized memory and well trained memory. It is cal-
culated from attention maps in Update Attention
and Output Attention. IG from Update Attention
indicates the difference of selected information in
the memory, and IG from Output Attention refers
to how much contextualized knowledge in mem-
ory is mapped to the next sentence state. Figure
2 shows IG keeps increasing as memory size in-
creases from 8 to 64, but it dramatically drops at the
size of 128 and 512. While increasing the memory
size can fit more contextual information, an exces-
sively large memory space is likely to introduce
redundant noise. Therefore, it indicates that con-
textualized knowledge should be better distributed
into a relatively dense space. Based on the corre-
sponding s-BLEU score, we set memory size to 16
in all other experiments for the most effectiveness.

Memory Side To analyze the effect of the mem-
ory on source and target documents, we set the
memory on encoder, decoder and both sides respec-
tively. We find that it is not only necessary to have
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the memory to convey the dependency between
sentences on the source side but also in the decod-
ing process for the target document. As shown in
Table 3, applying the memory on either side can
outperform the baseline but the model achieves bet-
ter scores when incorporating the memory on both
sides. It indicates the necessity of contextualized
information for both source and target documents.

Memory Position Previous work (Bao et al.,
2021; Beltagy et al., 2020) has shown that Trans-
former lower layers are more likely to have local
information while the context is better incorporated
into higher layers. We set the memory in lower, in-
termediate, and higher layers respectively. The
results as shown in Table 3 are consistent with the
claim. Applying memory in higher layers outper-
forms the others, and it is even better to have it on
only the top layer, which satisfies that the model is
more likely to focus on the locality on lower layers
and fuse the contextualized information on the top.

5.2 Discussion of Long Dependency
Metric Breakdown To find out on what kind
of sentences our model outperforms the sentence-
level Transformer, we evaluate the TED dataset
with respect to the sentence index in the document.
Sentences are ordered fed into the model. We com-
pute and average the s-BLEU for sentences at each
sentence index in the document. We further average
the scores for every ten index range. As in Figure
3, the x-axis refers to the index range of sentences
(e.g., 20 refers to sentences with indexes from 10
to 20), and the y-axis indicates the s-BLEU differ-
ence between our model and sentence Transformer.
Our model has consistently greater performance,
especially for sentences in later part of documents,
indicating our model has the superiority than the
sentence-level Transformer on longer document
translation and long-range modeling.

Long-Range Influence We also analyze the
long-range dependency of our model through gra-
dient attribution test introduced by Ancona et al.
(2018); Sundararajan et al. (2017). The gradient at-
tribution test reflects the significance of the model
input feature to its output prediction. We perform
this test by calculating the gradients of our well-
trained model on the test set of TED. Since sen-
tences are ordered when fed into the model, evalu-
ating previous sentences’ gradient attribution to the
current sentence infers if the model supports the
long-range dependency. More formally, we define
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Figure 3: TED datset separated by sentences from dif-
ferent indexes in documents, evaluated with Sentence-
Transformer and Context-Aware Model.
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Figure 4: TED dataset evaluated by gradients com-
puted from different sentences ranges. x-axis refers to
the difference between the sentence indexes for gradi-
ent calculation and loss computation.

the gradient of the previous sentence i computed
by the loss propagated from current sentence j as:

G(Senti,Sentj).

Specifically, the gradient of a certain token in
previous sentences is retrieved from its correspond-
ing embedding weight. We conducted experiments
for different sentence ranges k for the test with ten
sentences intervals, and the gradient for each range
k is computed as:

Score(k) = Avg(

D∑

d=1

Sd∑

s=1

s+k+10∑

i=s+k

G(Sents, Senti))

where D refers to number of documents, Sd refers
to number of sentences in Document d. To prevent
the gradient attribution accumulated by the same
token within the evaluated range, only unique to-
kens within this range are considered. As shown
in Figure 4, our model has gradients propagated to
sentence tokens even by 90+ sentences from the
computed loss, indicating our model does have the
ability for long-range sequence modeling.
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Figure 5: Training Loss on TED Dataset, with different optimization window sizes

Figure 6: Attention map from Update Attention, each
token at sentence t is mapped to each memory vector.

Figure 7: Attention map from Output Attention, mem-
ory vectors are mapped to each token in sentence t+1.

5.3 Discussion of Context

Convergence Our model is trained concerning
the sentence order in the document. We find the
model hard to converge during training as the loss
oscillates within a wide range. Because of the var-
ious distribution of consecutive sentences in doc-
uments, the directions of continuing optimization
steps vary greatly, resulting in an unstable con-
vergence curve. To mitigate this issue, we use
group optimization to update the model, consider-
ing the dependency among sentences. Specifically,

a number from the optimization window is ran-
domly sampled, and the gradients are accumulated.
The model will not be updated until the accumu-
lated steps reach the sampled number. We conduct
experiments with different optimization window
sizes for the update of 5000 steps, and the loss
curves are shown in Figure 5, where full means the
total number of sentences in the document. The
result shows that the model converges faster and
more stable with increasing optimization window
size. Such improvement benefits from the grouped
update steps concerning the difference of contextu-
alized distribution among sentences.

Dependency Across Sentences We evaluate the
attention maps from Update Attention and Output
Attention to determine what contextualized infor-
mation is passed in and out from memory. In Fig-
ure 6, tokens from tth sentence are mapped to each
memory vector, and the 8th memory vector has a
substantial attention weight on token "Frau". Fig-
ure 7 shows memory vectors are mapped back to
the following sentence and the token "sie" has a
high probability on the 8th memory vector. German
words "Frau" and "sie" refer to "Mrs" and "she"
in English. Hence, the memory mechanism has
the ability to parse the word dependency between
sentences at different steps.

5.4 Discussion of Complexity

We further analyze our model’s space and time
complexity during the inference phase. Since we
only evaluate the decoding speed and memory ef-
ficiency in this case, we use dummy tokens to per-
form the inference. We randomly generate a se-
quence of tokens as the source inputs and let the
model decode the same number of tokens as the tar-
get. We compare our model with both the sentence-
level Transformer and document-level Transformer.
For the sentence-level Transformer, we split the
sequence of tokens into chunks, and each chunk
has a length of 100. The decoding complexity is

1416



100 200 500 1000 2000 4000 6000 8000 10000
Number of Tokens

0

1000

2000

3000

4000

5000

6000

7000
Pe

ak
 G

PU
 M

em
or

y 
(M

B)

0.6

0.8

1.0

1.2

1.4

Se
co

nd
s P

er
 To

ke
n

1e 2
Memory-Ours
Memory-Transformer-Sent
Memory-Transformer-Doc
Speed-Ours
Speed-Transformer-Sent
Speed-Transformer-Doc

Figure 8: Space and Time Complexity for different
number of tokens during inference.

evaluated over all chunks. For the document-level
Transformer, we use the entire sequence of tokens
as the source input and evaluate the complexity of
decoding the entire target sequence. Similar to the
sentence-level Transformer, our model is evaluated
by the chunk by chunk decoding, and meanwhile,
we keep the contextual memory updated. As shown
in Figure 8, our model keeps the same space com-
plexity as the sentence-level Transformer and takes
a slightly more time cost because of the update of
contextual memory. However, the document-level
Transformer has an increasing cost for both space
and time complexity, especially when the target
sequence has a length greater than 1,000 tokens.
Overall, results have shown the decoding efficiency
of our model, which keeps the computational com-
plexity as low as the sentence-level Transformer,
even in the case of over thousands of tokens.

6 Conclusion

This paper introduces a memory unit that recur-
rently maps information into and out of Trans-
former intermediate states and addresses the lim-
itation about the context dependency and com-
putational complexity in document-level machine
translation. We have achieved the SOTA score on
TED and News and a great improvement from the
sentence-level baseline. Our model demonstrates
the effectiveness and efficiency of reduced mem-
ory space, context dependency for both source and
target document, and long range influence across
documents. The limitation of our work is the train-
ing cost since we accumulate the update steps and
retain the graph for memory update at each step.
Our work does not conduct experiments for pre-
trained settings due to the time limitation. How-
ever, it should be easy to apply our method to any
Transformer-based pretrained models, such as Liu

et al. (2020). Also, this paper only experiments
on document-level machine translation, and future
works may apply this approach for other tasks that
need long-range sequence modeling.
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